跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/03/20 05:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林瑋庭
研究生(外文):LIN, WEI-TING
論文名稱:以拉曼光譜偵測生質材料的碳化反應
論文名稱(外文):Monitoring the carbonization of biomass using Raman spectroscopy
指導教授:李世琛
指導教授(外文):LEE, SZE-TSEN
口試委員:蔡祐輔周芳如
口試委員(外文):TSAI, YO-FUJOU, FANG-JU
口試日期:2022-07-19
學位類別:碩士
校院名稱:中原大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:116
中文關鍵詞:拉曼光譜生質材料碳化反應
外文關鍵詞:Raman spectroscopybiomasscarbonization
DOI:10.6840/cycu202201276
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇研究探討在氮氣環境中利用高溫爐碳化生質材料—纖維素、甲基纖維素、乙基纖維素、支鏈澱粉的過程,我們也在碳化過程中添加硝酸鐵作為催化劑,試圖增加碳化產物的石墨含量。我們以拉曼光譜分析碳化溫度、時間、催化劑對於D band、G band、G' band的強度比值(ID/IG、IG'/I¬G)、位置和線寬的影響。了解生質材料經由高溫處理後的結構變化之外,我們特別分析IG'/I¬G強度比值,因為此比值不但與石墨烯層的堆疊順序有關,也是碳材石墨化的指標。因為ID/IG強度比值與碳質顆粒的石墨化程度成反比,我們根據四種生質材料碳化的溫度所對應之ID/IG比值找到最佳碳化溫度(即ID/IG最小值),碳化時間設定在1小時,分別為纖維素900 ℃、甲基纖維素900℃、乙基纖維素1000 ℃和支鏈澱粉1000℃。除了改變溫度外,我們還改變碳化時間(1到3小時,每間格0.5小時做一次實驗)以探討四種生質材料碳化的活化能,溫度改變範圍從600℃到1000℃,依不同生質材料而有所調整。以Arrhenius equation計算得到四種生質材料碳化反應的活化能均為負值,因為生質材料的碳化繁瑣,涉及多道反應速率以及平衡係數不同的反應,包含脫水、產生CO及CO2以及C-H、C-C、C=C鍵重組等,即使每步反應的活化能都是正值,但是多道反應的過渡狀態彼此之間的能量高低落差可能使整體反應的活化能為負值,詳細之結果將於論文中討論。
The carbonization process of biomass materials (cellulose, methyl cellulose, ethyl cellulose and amylopectin) in a tubular furnace under nitrogen flow is discussed in this study. During carbonization, ferric nitrate was added as a catalyst to increase the graphitic content in the carbonization product. The effects of carbonization temperature, time and catalyst on intensity ratios (ID/IG, IG'/IG), positions and linewidths of D band, G band and G' band were analyzed on the basis of Raman spectra. In addition to the structural changes of biomass materials after high temperature treatment, the IG'/IG intensity ratio, which is not only related to the stacking order of graphene layers but also an indicator of the degree of graphitization of carbon materials, was investigated in particular. Since the ID/IG intensity ratio is inversely proportional to the graphitization degree of carbonaceous particles, the optimized temperature was determined based on the ID/IG intensity ratio (i.e., minimum ID/IG) corresponding to the carbonization temperatures of four different biomass materials (cellulose = 900℃, methyl cellulose = 900℃, ethyl cellulose = 1000℃ and amylopectin = 1000℃). The carbonization time was set to be 1 h. Besides the temperature, carbonization time was tuned (1-3 h, a test was executed at an interval of 0.5 h) to investigate the activation energy of four different biomass materials. The temperature range was 600-1000℃, depending on the specific biomass material. According to Arrhenius equation, the activation energies calculated from the carbonization reactions of all the four biomass materials were negative. This can be attributed to the fact that carbonization of biomass materials is a complicated process involving multiple reactions with different reaction rates and equilibrium coefficients, including dehydration, generation of CO and CO2 (decarboxylation) and rearrangement of C-H, C-C, C=C. Even if the activation energy of each reaction is positive, the activation energy of transition state may lead to negative activation energy of the overall reaction. Detailed results will be discussed in this thesis.
目錄
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 XI
第一章、緒論 1
1-1 光譜學簡介 1
1-1-1 歷史發展 1
1-1-2 光譜學分類 2
1-2 碳材料的拉曼光譜圖 4
1-3 活化能簡介 6
1-4 研究動機 8
第二章、實驗原理 9
2-1 拉曼散射光譜 9
2-1-1 拉曼散射簡介 9
2-1-2 拉曼散射原理 10
2-1-3 拉曼散射理論 12
第三章、文獻回顧 16
3-1 生質材料簡介 16
3-2 纖維素 17
3-2-1 纖維素簡介 17
3-3 甲基纖維素 18
3-3-1 甲基纖維素簡介 18
3-4 乙基纖維素 19
3-4-1 乙基纖維素簡介 19
3-5 支鏈澱粉 20
3-5-1 支鏈澱粉簡介 20
第四章、實驗內容 21
4-1 實驗藥品 21
4-2 實驗儀器 22
4-2-1 顯微鏡拉曼 23
4-3 實驗流程 24
4-4 實驗步驟 25
4-4-1 生質材料的碳化處理 25
4-4-2 生質材料添加硝酸鐵碳化 28
4-4-3 拉曼樣品製備 29
4-4-4 拉曼樣品分析 29
第五章、結果與討論 30
5-1 生質材料碳化之拉曼光譜圖及拉曼強度(ID/IG)分析 30
5-2 生質材料添加硝酸鐵碳化之拉曼光譜圖及拉曼強度(ID/IG及IG'/IG)分析 42
5-3 計算生質材料碳化之反應速率常數 58
5-4 計算生質材料之活化能 91
第六章、結論 95
參考文獻 96

圖目錄
圖1-1 拉曼光譜工作原理的簡圖[4] 3
圖1-2 拉曼光譜圖之D band及G band[5] 4
圖1-3 拉曼光譜圖之G' band[14] 5
圖2-1 雷利散射與拉曼散射示意圖[38] 11
圖2-2 光的散射型態[39] 11
圖2-3 光入射分子後產生誘導偶極矩[39] 12
圖2-4 外加電場極化分子後產生電偶極矩[39] 12
圖2-5 拉曼散射的能階示意圖(參考[36]重新繪製) 14
圖3-1 生質材料的來源[43] 16
圖3-2 纖維素的結構式(參考[43]重新繪製) 17
圖3-3 甲基纖維素的結構式(參考[46]重新繪製) 18
圖3-4 乙基纖維素的結構式(參考[49]重新繪製) 19
圖3-5 支鏈澱粉的結構式(參考[43]重新繪製) 20
圖4-1 顯微鏡拉曼裝置圖 23
圖4-2 實驗流程圖 24
圖4-3 高溫爐裝置圖 25
圖5-1 纖維素經不同溫度碳化處理的拉曼光譜圖 31
圖5-2 纖維素未經碳化處理的拉曼光譜圖 31
圖5-3 甲基纖維素經不同溫度碳化處理的拉曼光譜圖 32
圖5-4 甲基纖維素未經碳化處理的拉曼光譜圖 32
圖5-5 乙基纖維素經不同溫度碳化處理的拉曼光譜圖 33
圖5-6 乙基纖維素未經碳化處理的拉曼光譜圖 33
圖5-7 支鏈澱粉經不同溫度碳化處理的拉曼光譜圖 34
圖5-8 支鏈澱粉未經碳化處理的拉曼光譜圖 34
圖5-9 不同溫度碳化纖維素碳材的拉曼光譜圖之D,G band使用Gaussian譜線形狀fitting 35
圖5-10 不同溫度碳化甲基纖維素碳材的拉曼光譜圖之D,G band使用Gaussian譜線形狀fitting 36
圖5-11 不同溫度碳化乙基纖維素碳材的拉曼光譜圖之D,G band使用Gaussian譜線形狀fitting 37
圖5-12 不同溫度碳化支鏈澱粉碳材的拉曼光譜圖之D,G band使用Gaussian譜線形狀fitting 38
圖5-9 纖維素添加硝酸鐵經碳化處理的拉曼光譜圖 43
圖5-10 甲基纖維素添加硝酸鐵經碳化處理的拉曼光譜圖 43
圖5-11 乙基纖維素添加硝酸鐵經碳化處理的拉曼光譜圖 44
圖5-12 支鏈澱粉添加硝酸鐵經碳化處理的拉曼光譜圖 44
圖5-13 纖維素添加硝酸鐵經不同溫度碳化處理的拉曼光譜圖 45
圖5-14 甲基纖維素添加硝酸鐵經不同溫度碳化處理的拉曼光譜圖 45
圖5-15 乙基纖維素添加硝酸鐵經不同溫度碳化處理的拉曼光譜圖 46
圖5-16 支鏈澱粉添加硝酸鐵經不同溫度碳化處理的拉曼光譜圖 46
圖5-17 不同溫度碳化纖維素添加硝酸鐵碳材的拉曼光譜圖之D,G band使用Lorentzian譜線形狀fitting 47
圖5-18 不同溫度碳化纖維素添加硝酸鐵碳材的拉曼光譜圖之G' band使用Lorentzian譜線形狀fitting 48
圖5-19 不同溫度碳化甲基纖維素添加硝酸鐵碳材的拉曼光譜圖之D,G band使用Lorentzian譜線形狀fitting 49
圖5-20 不同溫度碳化甲基纖維素添加硝酸鐵碳材的拉曼光譜圖之G' band使用Lorentzian譜線形狀fitting 50
圖5-21 不同溫度碳化乙基纖維素添加硝酸鐵碳材的拉曼光譜圖之D,G band使用Lorentzian譜線形狀fitting 51
圖5-22 不同溫度碳化乙基纖維素添加硝酸鐵碳材的拉曼光譜圖之G' band使用Lorentzian譜線形狀fitting 52
圖5-23 不同溫度碳化支鏈澱粉添加硝酸鐵碳材的拉曼光譜圖之D,G band使用Lorentzian譜線形狀fitting 53
圖5-24 不同溫度碳化支鏈澱粉添加硝酸鐵碳材的拉曼光譜圖之G' band使用Lorentzian譜線形狀fitting 54
圖5-25 纖維素600°C碳化,不同碳化時間之拉曼光譜圖 59
圖5-26 纖維素700°C碳化,不同碳化時間之拉曼光譜圖 59
圖5-27 纖維素750°C碳化,不同碳化時間之拉曼光譜圖 60
圖5-28 纖維素800°C碳化,不同碳化時間之拉曼光譜圖 60
圖5-29 甲基纖維素800°C碳化,不同碳化時間之拉曼光譜圖 61
圖5-30 甲基纖維素900°C碳化,不同碳化時間之拉曼光譜圖 61
圖5-31 甲基纖維素950°C碳化,不同碳化時間之拉曼光譜圖 62
圖5-32 甲基纖維素1000°C碳化,不同碳化時間之拉曼光譜圖 62
圖5-33 乙基纖維素600°C碳化,不同碳化時間之拉曼光譜圖 63
圖5-34 乙基纖維素700°C碳化,不同碳化時間之拉曼光譜圖 63
圖5-35 乙基纖維素750°C碳化,不同碳化時間之拉曼光譜圖 64
圖5-36 乙基纖維素800°C碳化,不同碳化時間之拉曼光譜圖 64
圖5-37 支鏈澱粉600°C碳化,不同碳化時間之拉曼光譜圖 65
圖5-38 支鏈澱粉700°C碳化,不同碳化時間之拉曼光譜圖 65
圖5-39 支鏈澱粉750°C碳化,不同碳化時間之拉曼光譜圖 66
圖5-40 支鏈澱粉800°C碳化,不同碳化時間之拉曼光譜圖 66
圖5-41 纖維素在600˚C不同碳化時間的拉曼光譜圖之D,G band使用Gaussian譜線形狀fitting 67
圖5-42 纖維素在700˚C不同碳化時間的拉曼光譜圖之D,G band使用Gaussian譜線形狀fitting 68
圖5-43 纖維素在750˚C不同碳化時間的拉曼光譜圖之D,G band使用Gaussian譜線形狀fitting 69
圖5-44 纖維素在800˚C不同碳化時間的拉曼光譜圖之D,G band使用Gaussian譜線形狀fitting 70
圖5-45 甲基纖維素在800˚C不同碳化時間的拉曼光譜圖之D,G band使用Gaussian譜線形狀fitting 71
圖5-46 甲基纖維素在900˚C不同碳化時間的拉曼光譜圖之D,G band使用Gaussian譜線形狀fitting 72
圖5-47 甲基纖維素在950˚C不同碳化時間的拉曼光譜圖之D,G band使用Gaussian譜線形狀fitting 73
圖5-48 甲基纖維素在1000˚C不同碳化時間的拉曼光譜圖之D,G band使用Gaussian譜線形狀fitting 74
圖5-49 乙基纖維素在600˚C不同碳化時間的拉曼光譜圖之D,G band使用Gaussian譜線形狀fitting 75
圖5-50 乙基纖維素在700˚C不同碳化時間的拉曼光譜圖之D,G band使用Gaussian譜線形狀fitting 76
圖5-51 乙基纖維素在750˚C不同碳化時間的拉曼光譜圖之D,G band使用Gaussian譜線形狀fitting 77
圖5-52 乙基纖維素在800˚C不同碳化時間的拉曼光譜圖之D,G band使用Gaussian譜線形狀fitting 78
圖5-53 支鏈澱粉在600˚C不同碳化時間的拉曼光譜圖之D,G band使用Gaussian譜線形狀fitting 79
圖5-54 支鏈澱粉在700˚C不同碳化時間的拉曼光譜圖之D,G band使用Gaussian譜線形狀fitting 80
圖5-55 支鏈澱粉在750˚C不同碳化時間的拉曼光譜圖之D,G band使用Gaussian譜線形狀fitting 81
圖5-56 支鏈澱粉在800˚C不同碳化時間的拉曼光譜圖之D,G band使用Gaussian譜線形狀fitting 82
圖5-57 纖維素在各碳化溫度的ln(ID/IG)對時間(min)作圖 87
圖5-58 甲基纖維素在各碳化溫度的ln(ID/IG)對時間(min)作圖 88
圖5-59 乙基纖維素在各碳化溫度的ln(ID/IG)對時間(min)作圖 89
圖5-60 支鏈澱粉在各碳化溫度的ln(ID/IG)對時間(min)作圖 90
圖5-61 生質材料碳材的ln k對1/T作圖 92
圖5-62 預平衡反應的能量變化 (a) Ea,obs為正值;(b) Ea,obs為負值[65] 93

表目錄
表4-1 實驗藥品資料表 21
表4-2 實驗儀器資料表 22
表4-3 生質材料碳化之溫度時間參數設定(改變溫度) 26
表4-4 生質材料碳化之溫度時間參數設定(改變時間) 27
表4-5 生質材料混合硝酸鐵碳化之溫度時間參數設定 28
表5-1 纖維素碳材利用Gaussian譜線形狀fitting後的ID/IG 39
表5-2 甲基纖維素碳材利用Gaussian譜線形狀fitting後的ID/IG 39
表5-3 乙基纖維素碳材利用Gaussian譜線形狀fitting後的ID/IG 40
表5-4 支鏈澱粉碳材利用Gaussian譜線形狀fitting後的ID/IG 40
表5-5 生質材料碳化的最佳溫度(以ID/IG比值判斷) 41
表5-6 纖維素添加硝酸鐵碳材利用Lorentzian譜線形狀fitting後的ID/IG及IG'/IG 55
表5-7 甲基纖維素添加硝酸鐵碳材利用Lorentzian譜線形狀fitting後的ID/IG及IG'/IG 55
表5-8 乙基纖維素添加硝酸鐵碳材利用Lorentzian譜線形狀fitting後的ID/IG及IG'/IG 56
表5-9 支鏈澱粉添加硝酸鐵碳材利用Lorentzian譜線形狀fitting後的ID/IG及IG'/IG 56
表5-10 生質材料添加硝酸鐵碳化的最佳溫度(以ID/IG、IG'/IG比值判斷) 57
表5-11 纖維素利用Gaussian譜線形狀fitting後的ID/IG 83
表5-12 甲基纖維素利用Gaussian譜線形狀fitting後的ID/IG 84
表5-13 乙基纖維素利用Gaussian譜線形狀fitting後的ID/IG 85
表5-14 支鏈澱粉利用Gaussian譜線形狀fitting後的ID/IG 86
表5-15 纖維素在各碳化溫度的k值 87
表5-16 甲基纖維素在各碳化溫度的k值 88
表5-17 乙基纖維素在各碳化溫度的k值 89
表5-18 支鏈澱粉在各碳化溫度的k值 90
表5-19 生質材料碳材的活化能 92
1. J. M. Hollas, Modern Spectroscopy, Fourth Edition, pp.1-2 (2003).
2. D. A. Skoog, F. J. Holler, S. R. Crouch, Principles of instrumental analysis, sixth edition, pp.481-482 (2006).
3. C. Lima, H. Muhamadali, R. Goodacre, The role of Raman spectroscopy within quantitative metabolomics, Annu. Rev. Anal. Chem. 14, 323-345 (2021).
4. Y. K. Lin, H. Y. Leong, T. C. Ling, D.-Q. Lin, S.-J. Yao, Chin. J. Chem. Eng. 30, 204–211 (2021).
5. S. Lee, Z. Q. Zhang, B.-H. Li, M. Vinu, C.-H. Lin, T. Pei, Raman observation of the “Volcano Curve” in the formation of carbonized metal−organic frameworks, J. Phys. Chem. C. 121, 22939-22947 (2017).
6. A. C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B. 61,14095–14107 (2000).
7. A. C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon, Phys. Rev. B. 64, 075414/1–075414/13 (2001).
8. M. J. Matthews, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, M. Endo, Origin of dispersive effects of the Raman D band in carbon materials, Phys. Rev. B. 59, R6585–R6588 (1999).
9. M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes, Phys. Rep. 409, 47-99 (2005).
10. H. Tan, L. An, L. Q. Liu, Z. X. Guo, R. Czerw, D. L. Carroll, P. M. Ajayan, N. Zhang, H. L. Guo, Probing the phonon dispersion relations of graphite from the double-resonance process of Stokes and anti-Stokes Raman scatterings in multiwalled carbon nanotubes, Phys. Rev. B. 66, 245410/1-8 (2002).
11. M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. Souza Filho, R. Saito, Raman spectroscopy on isolated single wall carbon nanotubes, Carbon. 40, 2043–2061 (2002).
12. S. Lee, J.-W. Peng, Effect of plasma treatment on electrical conductivity and Raman spectra of carbon nanotubes, J. Phys. Chem. Solids. 72, 1101–1103 (2011).
13. K. Sato, R. Saito, Y. Oyama, J. Jiang, L.G. Cancado, M.A. Pimenta, A. Jorio, Ge.G. Samsonidze, G. Dresselhaus, M.S. Dresselhaus, D-band Raman intensity of graphitic materials as a function of laser energy and crystallite size, Chem. Phys. Lett. 427, 117-121 (2006).
14. S. Lee, J.-W. Peng, C.-H. Liu, Probing plasma-induced defect formation and oxidation in carbon nanotubes by Raman dispersion spectroscopy, Carbon. 47, 3488-3497 (2009).
15. X. M. Tang, J. Weber, Y. Baer, C. Müller, W. Hänni, and H. E. Hintermann, Influence of hydrogen on the structure of amorphous carbon, Phys. Rev. B. 48, 10124 (1993).
16. J. Schwan, S. Ulrich, V. Batori, and H. Ehrhardt, S. R. P. Silva, Raman spectroscopy on amorphous carbon films, J. Appl. Phys. 80, 440-447 (1996).
17. E. B. Barros, N. S. Demir, A. G. S. Filho, J. M. Filho, A. Jorio, G. Dresselhaus, and M. S. Dresselhaus, Raman spectroscopy of graphitic foams, Phys. Rev. B. 71, 165422 (2005).
18. P. Lespade, A. Marchand, M. Couzi, F. Cruege, Characterization of Carbon Materials by Raman Microspectrometry, Carbon. 22, 375-385 (1987).
19. R. J. Nemanich, S. A. Solin, First- and Second-Order Raman Scattering from Finite-Size Crystals of Graphite, Phys. Rev. B. 20, 392-401 (1979).
20. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, Eklund, Raman Scattering from High-Frequency Phonons in Supported n-Graphene Layer Films, Nano Lett. 6, 2667-2673 (2006).
21. L. G. Cançado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, N. L. Spezialic, A. Jorio, M. A. Pimenta, Measuring the Degree of Stacking Order in Graphite by Raman Spectroscopy, Carbon. 46, 272-275 (2008).
22. H. Wilhelm, M. Lelaurain, E. McRae, Raman spectroscopic studies on well-defined carbonaceous materials of strong two-dimensional character, J. Appl. Phys. 84, 6552-6558 (1998).
23. M. Endo, C. Kim, T. Karaki, T. Tamaki, Y. Nishimura, M. J. Matthews, S. D. M. Brown, M. S. Dresselhaus, Structural analysis of the B-doped mesophase pitch-based graphite fibers by Raman spectroscopy, Phys. Rev. B. 58, 8991-8996 (1998).
24. E. F. Antunes, A. O. Lobo, E. J. Corat, V. J. Trava-Airoldi, A. A. Martin, C. Verissimo, Comparative study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation, Carbon. 44, 2202-2211 (2006).
25. S. Osswald, M. Havel, Y. Gogotsi, Monitoring Oxidation of Multiwalled Carbon Nanotubes by Raman Spectroscopy, J. Raman Spectrosc. 38, 728-736 (2007).
26. G. Gouadec, P. Colomban, Raman Spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties, Prog. Cryst. Growth Charact. Mater. 53, 1-56 (2007).
27. P. Colomban, G. Couadec, L.Mazerolles, Raman analysis of materials corrosion: the example of SiC fibers, Corros. Mater. 53, 306-315 (2002).
28. J. M. Caridad, F. Rossella, V. Bellani, M. S. Grandi, E. Diez, Automated detection and characterization of graphene and few-layer graphite via Raman spectroscopy, J. Raman Spectrosc. 42, 286-293 (2011).
29. B. Martin-Garcia, M. M. Velazquez, F. Rossella, V. Bellani, E. Diez, J. L. G. Fierro, J. A. Perez-Hernandez, J. Hernandez-Toro, S. Claramunt, A. Cirera, Functionalization of Reduced Graphite Oxide Sheets with a Zwitterionic Surfactant, Chemphyschem. 13, 3682-3690 (2012).
30. D. B. Schuepfer, F. Badaczewski, J. M. Guerra-Castro, D. M. Hofmann, C. Heiliger, B. Smarsly, P. J. Klar, Assessing the structural properties of graphitic and non-graphitic carbons by Raman spectroscopy, Carbon. 161, 359-372 (2020).
31. K. J. Laidler, The Development of the Arrhenius Equation, J. Chem. Educ. 61, 494-498 (1984).
32. S. Lee, Y.-C. Liu, C.-H. Chen, Raman study of the temperature-dependence of plasma-induced defect formation rates in carbon nanotubes, Carbon. 50, 5210-5216 (2012).
33. U. Bergmann, P. Glatzel, S. P. Cramer, Bulk-sensitive XAS characterization of light elements: from X-ray Raman scattering to X-ray Raman spectroscopy, Microchem. J. 71, 221–230 (2002).
34. C. V. Raman, A classical derivation of the Compton effect, Indian J. Phys. 3, 357-369 (1928).
35. C. V. Raman, K. S. Krishnan, A new type of secondary radiation, Nature. 121, 501-502 (1928).
36. A. C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond, Phil. Trans. R. Soc. Lond. A. 362, 2477–2512 (2004).
37. J. Kundu, O. Neumann, B. G. Janesko, D. Zhang, S. Lal, A. Barhoumi, G. E. Scuseria, N. J. Halas, Adenine- and Adenosine Monophosphate (AMP)-gold binding interactions studied by surface-enhanced Raman and infrared spectroscopies, J. Phys. Chem. C. 113, 14390-14397 (2009).
38. K. Nakamoto, Infrared and Raman spectra of inorganic and coordination compounds, Sixth Edition, Wiley-Interscience (2009).
39. R. L. McCreery, Raman Spectroscopy for chemical analysis, New York: Wiley-Interscience (2000).
40. F. M. Andrews, A guide for selecting statistical techniques for analyzing social science data, Survey Research center, university of Michigan, Ann arbor (1974).
41. K. Kneipp, H. Kneipp, I. Itzkan, R. R Dasari, M. S Feld, Surface-enhanced Raman scattering and biophysics, J. Phys. Condens. Matter. 14, R597-R624 (2002).
42. P. McKendry, Energy production from biomass (part 1): overview of biomass, Bioresour. Technol. 83, 37-46 (2002).
43. A. Tursi, A review on biomass: importance, chemistry, classification, and conversion, Biofuel Res. J. 22, 962-979 (2019).
44. B. Hu, K. Wang, L. Wu, S.-H. Yu, M. Antonietti, M.-M. Titirici, Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass, Adv. Mater. 22, 813-828 (2010).
45. A. D. French, N. R. Bertoniere, R. M. Brown, H. Chanzy, D. Grey, K. Hattori, W. Glasser, Cellulose. 5, 360-394 (1998).
46. P. L. Nasatto, F. Pignon, J. L. M. Silveira, M. E. R. Duarte, M. D. Noseda, M. Rinaudo, Methylcellulose, a Cellulose Derivative with Original Physical Properties and Extended Applications, Polymers. 7, 777-803 (2015).
47. Q. Wang, F. Cao, Q. Chen, C. Chen, Preparation of carbon micro-spheres by hydrothermal treatment of methylcellulose sol, Mater. Lett. 59, 3738-3741 (2005).
48. P. Ahmadi, A. Jahanban-Esfahlan, A. Ahmadi, M. Tabibiazar, M. Mohammadifar, Development of Ethyl Cellulose-based Formulations: A Perspective on the Novel Technical Methods, Food Rev. Int. 38 685-732 (2022).
49. T. A. Stortz, D. C. D. Moura, T. Laredoc, A. G. Marangoni, Molecular interactions of ethylcellulose with sucrose particles, RSC Adv. 4, 55048-55061 (2014).
50. M. Winger, M. Christen, W. F. van Gunsteren, On the Conformational Properties of Amylose and Cellulose Oligomers in Solution, Int. J. Carbohydr. Chem. 2009, 307695 (2009).
51. S. Lee, J.-W. Peng, C.-H. Liu, Raman study of carbon nanotube purification using atmospheric pressure plasma, Carbon. 46, 2124-2132 (2008).
52. T. C. Hirschmann, M. S. Dresselhaus, H. Muramatsu, M. Seifert, U. Wurstbauer, E. Parzinger, K. Nielsch, Y. Ahm Kim, P. T. Araujo, G' band in double- and triple-walled carbon nanotubes: A Raman study, Phys. Rev. B. 91, 075402 (2015).
53. L. Zeng, A. R. Thiruppathi, J. v. d. Zalm, X. Li, A. Chen, Biomass-derived amorphous carbon with localized active graphite defects for effective electrocatalytic N2 reduction, Appl. Surf. Sci. 575, 151630 (2022).
54. C. Klinke, J. Bonard, K. Kern, Comparative Study of the Catalytic Growth of Patterned Carbon Nanotube Films, Surf. Sci. 492, 195-201 (2001).
55. C. J. Lee, J. Park, J. A Yu, Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition, Chem. Phys. Lett. 360, 250-255 (2002).
56. Z. P. Huang, D. Z. Wang, J. G. Wen, M. Sennett, H. Gibson, Z. F. Ren, Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes, Appl. Phys. A. 74, 387-391 (2002).
57. F. Doustan, M. A. Pasha, Growth of carbon nanotubes over Fe-Co and Ni-Co catalysts supported on different phases of TiO2 substrate by thermal CVD, Fuller. Nanotub. Carbon Nanostructures. 24, 25-33 (2015).
58. A. Fonseca, K.Hernadi, J. B.Nagy, D. Bernaerts, A. A. Lucas, Optimization of catalytic production and purification of buckytubes, J. Mol. Catal. A Chem. 107, 159-168 (1996).
59. A. Morozan, V. Goellner, Y. Nedellec, J. Hannauer, F. Jaouen, Effect of the Transition Metal on Metal–Nitrogen–Carbon Catalysts for the Hydrogen Evolution Reaction, J. Electrochem. Soc. 162, H719-H726 (2015).
60. Q. Wang, H. Song, S. Pan, Na. Dong, X. Wang, S. Sun, Initial pyrolysis mechanism and product formation of cellulose: An Experimental and Density functional theory(DFT) study, Sci. Rep. 10, 3626 (2020).
61. M. J. Zohuriaan, F. Shokrolahi, Thermal studies on natural and modified gums, Polym. Test. 23, 575-579 (2004).
62. Y. A. Aggour, Thermal decomposition behaviour of ethyl cellulose grafted copolymers in homogeneous media, J. Mater. Sci. 35, 1623-1627 (2000).
63. M. Piglowska, B. Kurc, L. Rymaniak, P. Lijewski, P. Fuc, Kinetics and Thermodynamics of Thermal Degradation of Different Starches and Estimation the OH Group and H2O Content on the Surface by TG/DTG‐DTA, Polymers. 12, 357 (2020).
64. H. Johnston, J. Birks, Activation energies for the dissociation of diatomic molecules are less than the bond dissociation energies, Acc. Chem. Res. 5, 327-335 (1972).
65. P. Atkins, J. D. Paula, Alkins’ Physical Chemistry, Ninth Edition (2010).
66. M. Mozurkewich, S. W. Benson, Negative Activation Energies and Curved Arrhenius Plots. 1. Theory of Reactions over Potential Wells, J. Phys. Chem. 88, 6429-6435 (1984).
67. M. Mozurkewich, J. J. Lamb, S. W. Benson, Negative Activation Energies and Curved Arrhenius Plots. 2. OH + CO, J. Phys. Chem. 88, 6435-6441 (1984).
68. M. Mozurkewich, J. J. Lamb, S. W. Benson, Negative activation energies and curved Arrhenius plots. 3. Hydroxyl + nitric acid and hydroxyl + peroxynitric acid, J. Phys. Chem. 88, 6441-6448 (1984).
69. N. D. Coutinho, V. H. C. Silva, H. C. B. d. Oliveira, A. J. Camargo, K. C. Mundim, V. Aquilanti, Stereodynamical Origin of Anti-Arrhenius Kinetics: Negative Activation Energy and Roaming for a Four-Atom Reaction, J. Phys. Chem. Lett. 6, 1553-1558 (2015).
70. S. W. Benson, The foundations of chemical kinetics, 308-405 (1960).
71. V. D. Kiselev, J. G. Miller, Experimental proof that the Diels-Alder reaction of tetracyanoethylene with 9,10-dimethylanthracene passes through formation of a complex between the reactants, J. Am. Chem. Soc. 97, 4036-4039 (1975).
72. M.-H. Hui, W. R. Ware, Exciplex Photophysics. V. The kinetics of fluorescence quenching of anthracene by N-N-Dimethylaniline in cyclohexane, J. Am. Chem. Soc. 98, 4718-4727 (1976).
73. A. A. Gorman, G. Lovering, M. A. J. Rodgers, The entropy-controlled reactivity of singlet oxygen (1Δg) toward furans and indoles in toluene. A variable-temperature study by pulse radiolysis, J. Am. Chem. Soc. 101, 3050-3055 (1979).
74. U. Maharaj, M. A. Winnik, Quenching of aromatic ketone phosphorescence by simple alkenes: An arrhenius study, J. Am. Chem. Soc. 103, 2328-2333 (1981).
75. M. M. Tang, R. Bacon, Carbonization of cellulose fibers-I. Low temperature pyrolysis, Carbon. 2, 211-214 (1964).
76. K. Raveendran, A. Ganesh, K. C. Khilar, Pyrolysis characteristics of biomass and biomass components, Fuel. 75, 987-998 (1996).
77. A. Demirbas, G. Arin, An Overview of Biomass Pyrolysis, Energy Sources. 24, 471-482 (2002).
78. K. Ishimaru, T. Hata ,P. Bronsveld, D. Meier, Y. Imamura, Spectroscopic analysis of carbonization behavior of wood, cellulose and lignin, J. Mater. Sci. 42, 122-129 (2007).
79. X. Liu, L. Yu, F. Xie, M. Li, L. Chen, X. Li, Kinetics and mechanism of thermal decomposition of cornstarches with different amylose/amylopectin ratios, Starke. 62, 139-146 (2010).
80. V.N. Tsaneva, W. Kwapinski, X. Teng, B.A. Glowacki, Assessment of the structural evolution of carbons from microwave plasma natural gas reforming and biomass pyrolysis using Raman spectroscopy, Carbon. 80, 617-628 (2014).
81. Y. Eom, S. M. Son , Y. E. Kim, J.-E. Lee, S.-H. Hwang, H G. Chae, Structure evolution mechanism of highly ordered graphite during carbonization of cellulose nanocrystals, Carbon. 150, 142-152 (2019).
82. K. Ishimaru, T. Vystavel, P. Bronsveld, T. Hata, Y. Imamura, J. De Hosson, Diamond and pore structure observed in wood charcoal, J. Wood Sci. 47, 414-416 (2001).
83. S. Yamauchi, Y. Kurimoto, Raman spectroscopic study on pyrolyzed wood and bark of Japanese cedar: temperature dependence of Raman parameters, J. Wood Sci. 49, 235-240 (2003).
84. K. Kawamoto, K. Ishimaru, Y. Imamura, Reactivity of wood charcoal with ozone, J. Wood Sci. 51, 66-72 (2005).
85. V. A. Alvarez, A. Vazquez, Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites, Polym. Degrad. Stab. 84, 13-21 (2004).
86. X. Zhang, J. Golding, I. Burgar, Thermal decomposition chemistry of starch studied by 13C high-resolution solid-state NMR spectroscopy, Polymer. 43, 5791-5796 (2002).
87. A. S. Patnaik, J. L. Goldfarb, Continuous activation energy representation of the Arrhenius equation for the pyrolysis of cellulosic materials: feed corn stover and cocoa shell biomass, Cellul. Chem. Technol. 50, 311-320 (2016).
88. P. Parthasarathy, K. S. Narayanan, L. Arockiam, Study on kinetic parameters of different biomass samples using thermo-gravimetric analysis, Biomass Bioenergy. 58, 58-66 (2013).
89. N. J. Turro, G. F. Lehr, J. A. Butcher, R. A. Moss, W. Guo, Temperature dependence of the cycloaddition of phenylchlorocarbene to alkenes. Observation of negative activation energies, J. Am. Chem. Soc. 104, 1754-1756 (1982).
90. Z. Yang, L. Zhang, Y. Zhang, M. Bai, Y. Zhang, Z. Yue, E. Duan, Effects of apparent activation energy in pyrolytic carbonization on the synthesis of MOFs-carbon involving thermal analysis kinetics and decomposition mechanism, Chem. Eng. J. 395, 124980 (2020).
91. J. M. Valverde, On the negative activation energy for limestone calcination at high temperatures nearby equilibrium, Chem. Eng. Sci. 132, 169–177 (2015).
電子全文 電子全文(網際網路公開日期:20270803)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top