|
1. J. M. Hollas, Modern Spectroscopy, Fourth Edition, pp.1-2 (2003). 2. D. A. Skoog, F. J. Holler, S. R. Crouch, Principles of instrumental analysis, sixth edition, pp.481-482 (2006). 3. C. Lima, H. Muhamadali, R. Goodacre, The role of Raman spectroscopy within quantitative metabolomics, Annu. Rev. Anal. Chem. 14, 323-345 (2021). 4. Y. K. Lin, H. Y. Leong, T. C. Ling, D.-Q. Lin, S.-J. Yao, Chin. J. Chem. Eng. 30, 204–211 (2021). 5. S. Lee, Z. Q. Zhang, B.-H. Li, M. Vinu, C.-H. Lin, T. Pei, Raman observation of the “Volcano Curve” in the formation of carbonized metal−organic frameworks, J. Phys. Chem. C. 121, 22939-22947 (2017). 6. A. C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B. 61,14095–14107 (2000). 7. A. C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon, Phys. Rev. B. 64, 075414/1–075414/13 (2001). 8. M. J. Matthews, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, M. Endo, Origin of dispersive effects of the Raman D band in carbon materials, Phys. Rev. B. 59, R6585–R6588 (1999). 9. M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes, Phys. Rep. 409, 47-99 (2005). 10. H. Tan, L. An, L. Q. Liu, Z. X. Guo, R. Czerw, D. L. Carroll, P. M. Ajayan, N. Zhang, H. L. Guo, Probing the phonon dispersion relations of graphite from the double-resonance process of Stokes and anti-Stokes Raman scatterings in multiwalled carbon nanotubes, Phys. Rev. B. 66, 245410/1-8 (2002). 11. M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. Souza Filho, R. Saito, Raman spectroscopy on isolated single wall carbon nanotubes, Carbon. 40, 2043–2061 (2002). 12. S. Lee, J.-W. Peng, Effect of plasma treatment on electrical conductivity and Raman spectra of carbon nanotubes, J. Phys. Chem. Solids. 72, 1101–1103 (2011). 13. K. Sato, R. Saito, Y. Oyama, J. Jiang, L.G. Cancado, M.A. Pimenta, A. Jorio, Ge.G. Samsonidze, G. Dresselhaus, M.S. Dresselhaus, D-band Raman intensity of graphitic materials as a function of laser energy and crystallite size, Chem. Phys. Lett. 427, 117-121 (2006). 14. S. Lee, J.-W. Peng, C.-H. Liu, Probing plasma-induced defect formation and oxidation in carbon nanotubes by Raman dispersion spectroscopy, Carbon. 47, 3488-3497 (2009). 15. X. M. Tang, J. Weber, Y. Baer, C. Müller, W. Hänni, and H. E. Hintermann, Influence of hydrogen on the structure of amorphous carbon, Phys. Rev. B. 48, 10124 (1993). 16. J. Schwan, S. Ulrich, V. Batori, and H. Ehrhardt, S. R. P. Silva, Raman spectroscopy on amorphous carbon films, J. Appl. Phys. 80, 440-447 (1996). 17. E. B. Barros, N. S. Demir, A. G. S. Filho, J. M. Filho, A. Jorio, G. Dresselhaus, and M. S. Dresselhaus, Raman spectroscopy of graphitic foams, Phys. Rev. B. 71, 165422 (2005). 18. P. Lespade, A. Marchand, M. Couzi, F. Cruege, Characterization of Carbon Materials by Raman Microspectrometry, Carbon. 22, 375-385 (1987). 19. R. J. Nemanich, S. A. Solin, First- and Second-Order Raman Scattering from Finite-Size Crystals of Graphite, Phys. Rev. B. 20, 392-401 (1979). 20. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, Eklund, Raman Scattering from High-Frequency Phonons in Supported n-Graphene Layer Films, Nano Lett. 6, 2667-2673 (2006). 21. L. G. Cançado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, N. L. Spezialic, A. Jorio, M. A. Pimenta, Measuring the Degree of Stacking Order in Graphite by Raman Spectroscopy, Carbon. 46, 272-275 (2008). 22. H. Wilhelm, M. Lelaurain, E. McRae, Raman spectroscopic studies on well-defined carbonaceous materials of strong two-dimensional character, J. Appl. Phys. 84, 6552-6558 (1998). 23. M. Endo, C. Kim, T. Karaki, T. Tamaki, Y. Nishimura, M. J. Matthews, S. D. M. Brown, M. S. Dresselhaus, Structural analysis of the B-doped mesophase pitch-based graphite fibers by Raman spectroscopy, Phys. Rev. B. 58, 8991-8996 (1998). 24. E. F. Antunes, A. O. Lobo, E. J. Corat, V. J. Trava-Airoldi, A. A. Martin, C. Verissimo, Comparative study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation, Carbon. 44, 2202-2211 (2006). 25. S. Osswald, M. Havel, Y. Gogotsi, Monitoring Oxidation of Multiwalled Carbon Nanotubes by Raman Spectroscopy, J. Raman Spectrosc. 38, 728-736 (2007). 26. G. Gouadec, P. Colomban, Raman Spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties, Prog. Cryst. Growth Charact. Mater. 53, 1-56 (2007). 27. P. Colomban, G. Couadec, L.Mazerolles, Raman analysis of materials corrosion: the example of SiC fibers, Corros. Mater. 53, 306-315 (2002). 28. J. M. Caridad, F. Rossella, V. Bellani, M. S. Grandi, E. Diez, Automated detection and characterization of graphene and few-layer graphite via Raman spectroscopy, J. Raman Spectrosc. 42, 286-293 (2011). 29. B. Martin-Garcia, M. M. Velazquez, F. Rossella, V. Bellani, E. Diez, J. L. G. Fierro, J. A. Perez-Hernandez, J. Hernandez-Toro, S. Claramunt, A. Cirera, Functionalization of Reduced Graphite Oxide Sheets with a Zwitterionic Surfactant, Chemphyschem. 13, 3682-3690 (2012). 30. D. B. Schuepfer, F. Badaczewski, J. M. Guerra-Castro, D. M. Hofmann, C. Heiliger, B. Smarsly, P. J. Klar, Assessing the structural properties of graphitic and non-graphitic carbons by Raman spectroscopy, Carbon. 161, 359-372 (2020). 31. K. J. Laidler, The Development of the Arrhenius Equation, J. Chem. Educ. 61, 494-498 (1984). 32. S. Lee, Y.-C. Liu, C.-H. Chen, Raman study of the temperature-dependence of plasma-induced defect formation rates in carbon nanotubes, Carbon. 50, 5210-5216 (2012). 33. U. Bergmann, P. Glatzel, S. P. Cramer, Bulk-sensitive XAS characterization of light elements: from X-ray Raman scattering to X-ray Raman spectroscopy, Microchem. J. 71, 221–230 (2002). 34. C. V. Raman, A classical derivation of the Compton effect, Indian J. Phys. 3, 357-369 (1928). 35. C. V. Raman, K. S. Krishnan, A new type of secondary radiation, Nature. 121, 501-502 (1928). 36. A. C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond, Phil. Trans. R. Soc. Lond. A. 362, 2477–2512 (2004). 37. J. Kundu, O. Neumann, B. G. Janesko, D. Zhang, S. Lal, A. Barhoumi, G. E. Scuseria, N. J. Halas, Adenine- and Adenosine Monophosphate (AMP)-gold binding interactions studied by surface-enhanced Raman and infrared spectroscopies, J. Phys. Chem. C. 113, 14390-14397 (2009). 38. K. Nakamoto, Infrared and Raman spectra of inorganic and coordination compounds, Sixth Edition, Wiley-Interscience (2009). 39. R. L. McCreery, Raman Spectroscopy for chemical analysis, New York: Wiley-Interscience (2000). 40. F. M. Andrews, A guide for selecting statistical techniques for analyzing social science data, Survey Research center, university of Michigan, Ann arbor (1974). 41. K. Kneipp, H. Kneipp, I. Itzkan, R. R Dasari, M. S Feld, Surface-enhanced Raman scattering and biophysics, J. Phys. Condens. Matter. 14, R597-R624 (2002). 42. P. McKendry, Energy production from biomass (part 1): overview of biomass, Bioresour. Technol. 83, 37-46 (2002). 43. A. Tursi, A review on biomass: importance, chemistry, classification, and conversion, Biofuel Res. J. 22, 962-979 (2019). 44. B. Hu, K. Wang, L. Wu, S.-H. Yu, M. Antonietti, M.-M. Titirici, Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass, Adv. Mater. 22, 813-828 (2010). 45. A. D. French, N. R. Bertoniere, R. M. Brown, H. Chanzy, D. Grey, K. Hattori, W. Glasser, Cellulose. 5, 360-394 (1998). 46. P. L. Nasatto, F. Pignon, J. L. M. Silveira, M. E. R. Duarte, M. D. Noseda, M. Rinaudo, Methylcellulose, a Cellulose Derivative with Original Physical Properties and Extended Applications, Polymers. 7, 777-803 (2015). 47. Q. Wang, F. Cao, Q. Chen, C. Chen, Preparation of carbon micro-spheres by hydrothermal treatment of methylcellulose sol, Mater. Lett. 59, 3738-3741 (2005). 48. P. Ahmadi, A. Jahanban-Esfahlan, A. Ahmadi, M. Tabibiazar, M. Mohammadifar, Development of Ethyl Cellulose-based Formulations: A Perspective on the Novel Technical Methods, Food Rev. Int. 38 685-732 (2022). 49. T. A. Stortz, D. C. D. Moura, T. Laredoc, A. G. Marangoni, Molecular interactions of ethylcellulose with sucrose particles, RSC Adv. 4, 55048-55061 (2014). 50. M. Winger, M. Christen, W. F. van Gunsteren, On the Conformational Properties of Amylose and Cellulose Oligomers in Solution, Int. J. Carbohydr. Chem. 2009, 307695 (2009). 51. S. Lee, J.-W. Peng, C.-H. Liu, Raman study of carbon nanotube purification using atmospheric pressure plasma, Carbon. 46, 2124-2132 (2008). 52. T. C. Hirschmann, M. S. Dresselhaus, H. Muramatsu, M. Seifert, U. Wurstbauer, E. Parzinger, K. Nielsch, Y. Ahm Kim, P. T. Araujo, G' band in double- and triple-walled carbon nanotubes: A Raman study, Phys. Rev. B. 91, 075402 (2015). 53. L. Zeng, A. R. Thiruppathi, J. v. d. Zalm, X. Li, A. Chen, Biomass-derived amorphous carbon with localized active graphite defects for effective electrocatalytic N2 reduction, Appl. Surf. Sci. 575, 151630 (2022). 54. C. Klinke, J. Bonard, K. Kern, Comparative Study of the Catalytic Growth of Patterned Carbon Nanotube Films, Surf. Sci. 492, 195-201 (2001). 55. C. J. Lee, J. Park, J. A Yu, Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition, Chem. Phys. Lett. 360, 250-255 (2002). 56. Z. P. Huang, D. Z. Wang, J. G. Wen, M. Sennett, H. Gibson, Z. F. Ren, Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes, Appl. Phys. A. 74, 387-391 (2002). 57. F. Doustan, M. A. Pasha, Growth of carbon nanotubes over Fe-Co and Ni-Co catalysts supported on different phases of TiO2 substrate by thermal CVD, Fuller. Nanotub. Carbon Nanostructures. 24, 25-33 (2015). 58. A. Fonseca, K.Hernadi, J. B.Nagy, D. Bernaerts, A. A. Lucas, Optimization of catalytic production and purification of buckytubes, J. Mol. Catal. A Chem. 107, 159-168 (1996). 59. A. Morozan, V. Goellner, Y. Nedellec, J. Hannauer, F. Jaouen, Effect of the Transition Metal on Metal–Nitrogen–Carbon Catalysts for the Hydrogen Evolution Reaction, J. Electrochem. Soc. 162, H719-H726 (2015). 60. Q. Wang, H. Song, S. Pan, Na. Dong, X. Wang, S. Sun, Initial pyrolysis mechanism and product formation of cellulose: An Experimental and Density functional theory(DFT) study, Sci. Rep. 10, 3626 (2020). 61. M. J. Zohuriaan, F. Shokrolahi, Thermal studies on natural and modified gums, Polym. Test. 23, 575-579 (2004). 62. Y. A. Aggour, Thermal decomposition behaviour of ethyl cellulose grafted copolymers in homogeneous media, J. Mater. Sci. 35, 1623-1627 (2000). 63. M. Piglowska, B. Kurc, L. Rymaniak, P. Lijewski, P. Fuc, Kinetics and Thermodynamics of Thermal Degradation of Different Starches and Estimation the OH Group and H2O Content on the Surface by TG/DTG‐DTA, Polymers. 12, 357 (2020). 64. H. Johnston, J. Birks, Activation energies for the dissociation of diatomic molecules are less than the bond dissociation energies, Acc. Chem. Res. 5, 327-335 (1972). 65. P. Atkins, J. D. Paula, Alkins’ Physical Chemistry, Ninth Edition (2010). 66. M. Mozurkewich, S. W. Benson, Negative Activation Energies and Curved Arrhenius Plots. 1. Theory of Reactions over Potential Wells, J. Phys. Chem. 88, 6429-6435 (1984). 67. M. Mozurkewich, J. J. Lamb, S. W. Benson, Negative Activation Energies and Curved Arrhenius Plots. 2. OH + CO, J. Phys. Chem. 88, 6435-6441 (1984). 68. M. Mozurkewich, J. J. Lamb, S. W. Benson, Negative activation energies and curved Arrhenius plots. 3. Hydroxyl + nitric acid and hydroxyl + peroxynitric acid, J. Phys. Chem. 88, 6441-6448 (1984). 69. N. D. Coutinho, V. H. C. Silva, H. C. B. d. Oliveira, A. J. Camargo, K. C. Mundim, V. Aquilanti, Stereodynamical Origin of Anti-Arrhenius Kinetics: Negative Activation Energy and Roaming for a Four-Atom Reaction, J. Phys. Chem. Lett. 6, 1553-1558 (2015). 70. S. W. Benson, The foundations of chemical kinetics, 308-405 (1960). 71. V. D. Kiselev, J. G. Miller, Experimental proof that the Diels-Alder reaction of tetracyanoethylene with 9,10-dimethylanthracene passes through formation of a complex between the reactants, J. Am. Chem. Soc. 97, 4036-4039 (1975). 72. M.-H. Hui, W. R. Ware, Exciplex Photophysics. V. The kinetics of fluorescence quenching of anthracene by N-N-Dimethylaniline in cyclohexane, J. Am. Chem. Soc. 98, 4718-4727 (1976). 73. A. A. Gorman, G. Lovering, M. A. J. Rodgers, The entropy-controlled reactivity of singlet oxygen (1Δg) toward furans and indoles in toluene. A variable-temperature study by pulse radiolysis, J. Am. Chem. Soc. 101, 3050-3055 (1979). 74. U. Maharaj, M. A. Winnik, Quenching of aromatic ketone phosphorescence by simple alkenes: An arrhenius study, J. Am. Chem. Soc. 103, 2328-2333 (1981). 75. M. M. Tang, R. Bacon, Carbonization of cellulose fibers-I. Low temperature pyrolysis, Carbon. 2, 211-214 (1964). 76. K. Raveendran, A. Ganesh, K. C. Khilar, Pyrolysis characteristics of biomass and biomass components, Fuel. 75, 987-998 (1996). 77. A. Demirbas, G. Arin, An Overview of Biomass Pyrolysis, Energy Sources. 24, 471-482 (2002). 78. K. Ishimaru, T. Hata ,P. Bronsveld, D. Meier, Y. Imamura, Spectroscopic analysis of carbonization behavior of wood, cellulose and lignin, J. Mater. Sci. 42, 122-129 (2007). 79. X. Liu, L. Yu, F. Xie, M. Li, L. Chen, X. Li, Kinetics and mechanism of thermal decomposition of cornstarches with different amylose/amylopectin ratios, Starke. 62, 139-146 (2010). 80. V.N. Tsaneva, W. Kwapinski, X. Teng, B.A. Glowacki, Assessment of the structural evolution of carbons from microwave plasma natural gas reforming and biomass pyrolysis using Raman spectroscopy, Carbon. 80, 617-628 (2014). 81. Y. Eom, S. M. Son , Y. E. Kim, J.-E. Lee, S.-H. Hwang, H G. Chae, Structure evolution mechanism of highly ordered graphite during carbonization of cellulose nanocrystals, Carbon. 150, 142-152 (2019). 82. K. Ishimaru, T. Vystavel, P. Bronsveld, T. Hata, Y. Imamura, J. De Hosson, Diamond and pore structure observed in wood charcoal, J. Wood Sci. 47, 414-416 (2001). 83. S. Yamauchi, Y. Kurimoto, Raman spectroscopic study on pyrolyzed wood and bark of Japanese cedar: temperature dependence of Raman parameters, J. Wood Sci. 49, 235-240 (2003). 84. K. Kawamoto, K. Ishimaru, Y. Imamura, Reactivity of wood charcoal with ozone, J. Wood Sci. 51, 66-72 (2005). 85. V. A. Alvarez, A. Vazquez, Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites, Polym. Degrad. Stab. 84, 13-21 (2004). 86. X. Zhang, J. Golding, I. Burgar, Thermal decomposition chemistry of starch studied by 13C high-resolution solid-state NMR spectroscopy, Polymer. 43, 5791-5796 (2002). 87. A. S. Patnaik, J. L. Goldfarb, Continuous activation energy representation of the Arrhenius equation for the pyrolysis of cellulosic materials: feed corn stover and cocoa shell biomass, Cellul. Chem. Technol. 50, 311-320 (2016). 88. P. Parthasarathy, K. S. Narayanan, L. Arockiam, Study on kinetic parameters of different biomass samples using thermo-gravimetric analysis, Biomass Bioenergy. 58, 58-66 (2013). 89. N. J. Turro, G. F. Lehr, J. A. Butcher, R. A. Moss, W. Guo, Temperature dependence of the cycloaddition of phenylchlorocarbene to alkenes. Observation of negative activation energies, J. Am. Chem. Soc. 104, 1754-1756 (1982). 90. Z. Yang, L. Zhang, Y. Zhang, M. Bai, Y. Zhang, Z. Yue, E. Duan, Effects of apparent activation energy in pyrolytic carbonization on the synthesis of MOFs-carbon involving thermal analysis kinetics and decomposition mechanism, Chem. Eng. J. 395, 124980 (2020). 91. J. M. Valverde, On the negative activation energy for limestone calcination at high temperatures nearby equilibrium, Chem. Eng. Sci. 132, 169–177 (2015).
|