|
[1] Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement. ArXiv, abs/1804.02767. [2] Ge, Z., Liu, S., Wang, F., Li, Z., & Sun, J. (2021). YOLOX: Exceeding YOLO Series in 2021. ArXiv, abs/2107.08430. [3] Teichmann, M., Weber, M., Zöllner, J.M., Cipolla, R., & Urtasun, R. (2018). MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving. 2018 IEEE Intelligent Vehicles Symposium (IV), pages 1013-1020. [4] Qian, Y., Dolan, J.M., & Yang, M. (2020). DLT-Net: Joint Detection of Drivable Areas, Lane Lines, and Traffic Objects. IEEE Transactions on Intelligent Transportation Systems, 21, pages 4670-4679. [5] Glenn Jocher et al. yolov5. https://github.com/ultralytics/yolov5, 2021. [6] Wu, D., Liao, M., Zhang, W., & Wang, X. (2021). YOLOP: You Only Look Once for Panoptic Driving Perception. ArXiv, abs/2108.11250. [7] Girshick, R.B., Donahue, J., Darrell, T., & Malik, J. (2014). Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. 2014 IEEE Conference on Computer Vision and Pattern Recognition, pages 580-587. [8] Uijlings, J.R., Sande, K.E., Gevers, T., & Smeulders, A.W. (2013). Selective Search for Object Recognition. International Journal of Computer Vision, 104, pages 154-171. [9] Girshick, R.B. (2015). Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV), pages 1440-1448. [10] Ren, S., He, K., Girshick, R.B., & Sun, J. (2015). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, pages 1137-1149. [11] Redmon, J., Divvala, S.K., Girshick, R.B., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 779-788. [12] Redmon, J., & Farhadi, A. (2017). YOLO9000: Better, Faster, Stronger. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 6517-6525. [13] Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., & Belongie, S.J. (2017). Feature Pyramid Networks for Object Detection. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 936-944. [14] Shelhamer, E., Long, J., & Darrell, T. (2017). Fully Convolutional Networks for Semantic Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, pages 640-651. [15] Chen, L., Papandreou, G., Kokkinos, I., Murphy, K.P., & Yuille, A.L. (2015). Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. CoRR, abs/1412.7062. [16] Chen, L., Papandreou, G., Kokkinos, I., Murphy, K.P., & Yuille, A.L. (2018). DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, pages 834-848. [17] Chen, L., Papandreou, G., Schroff, F., & Adam, H. (2017). Rethinking Atrous Convolution for Semantic Image Segmentation. ArXiv, abs/1706.05587. [18] Dumoulin, V., & Visin, F. (2016). A guide to convolution arithmetic for deep learning. ArXiv, abs/1603.07285. [19] Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition. CoRR, abs/1409.1556. [20] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770-778. [21] Lin, T., Goyal, P., Girshick, R.B., He, K., & Dollár, P. (2020). Focal Loss for Dense Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, pages 318-327. [22] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, pages 1904-1916. [23] Bochkovskiy, A., Wang, C., & Liao, H.M. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection. ArXiv, abs/2004.10934. [24] Liu, S., Qi, L., Qin, H., Shi, J., & Jia, J. (2018). Path Aggregation Network for Instance Segmentation. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8759-8768.
[25] Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., & Darrell, T. (2018). BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. ArXiv, abs/1805.04687. [26] Geiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision meets robotics: The KITTI dataset. The International Journal of Robotics Research, 32, pages 1231-1237. [27] Kui Xu. kitti_object_vis. https://github.com/kuixu/kitti_object_vis, 2021.
|