Antipov, G., Baccouche, M., & Dugelay, J. L. (2017, September). Face aging with conditional generative adversarial networks. In 2017 IEEE international conference on image processing (ICIP) (2089-2093). IEEE.
Bi, X., & Xing, J. (2020). Multi-Scale Weighted Fusion Attentive Generative Adversarial Network for Single Image De-Raining. IEEE Access, 8, 69838-69848.
Bu, Q., Luo, J., Ma, K., Feng, H., & Feng, J. (2020). An enhanced pix2pix dehazing network with guided filter layer. Applied Sciences, 10(17), 5898.
Chang, Y. L., Liu, Z. Y., Lee, K. Y., & Hsu, W. (2019). Free-form video inpainting with 3d gated convolution and temporal patchgan. In Proceedings of the IEEE/CVF International Conference on Computer Vision (9066-9075).
Demir, U., & Unal, G. (2018). Patch-based image inpainting with generative adversarial networks. arXiv preprint arXiv:1803.07422.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing systems, 27.
He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In Proceedings of the IEEE international conference on computer vision (2961-2969).
He, K., Sun, J., & Tang, X. (2012). Guided image filtering. IEEE transactions on pattern analysis and machine intelligence, 35(6), 1397-1409.
Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2017). Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (1125-1134).
Karara, G., Hajji, R., & Poux, F. (2021). 3D Point Cloud Semantic Augmentation: Instance Segmentation of 360° Panoramas by Deep Learning Techniques. Remote Sensing, 13(18), 3647.
Kim, P. (2017). Convolutional neural network. In MATLAB deep learning (121-147). Apress, Berkeley, CA.
Li, G., Ma, B., He, S., Ren, X., & Liu, Q. (2020). Automatic tunnel crack detection based on u-net and a convolutional neural network with alternately updated clique. Sensors, 20(3), 717.
Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition ( 3431-3440).
Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784.
Morgenstern, O., & Von Neumann, J. (1953). Theory of games and economic behavior. Princeton university press.
Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention ( 234-241). Springer, Cham.
Weng, W., & Zhu, X. (2015). Convolutional Networks for Biomedical Image Segmentation. IEEE Access.
Wu, H., Zhang, J., Huang, K., Liang, K., & Yu, Y. (2019). Fastfcn: Rethinking dilated convolution in the backbone for semantic segmentation. arXiv preprint arXiv:1903.11816.
Xie, C., Wang, Z., Chen, H., Ma, X., Xing, W., Zhao, L., ... & Lin, Z. (2021). Image Style Transfer Algorithm Based on Semantic Segmentation. IEEE Access, 9, 54518-54529.
Xu, Y., Wang, K., Yang, K., Sun, D., & Fu, J. (2019, September). Semantic segmentation of panoramic images using a synthetic dataset. In Artificial Intelligence and Machine Learning in Defense Applications (Vol. 11169, p. 111690B).
International Society for Optics and Photonics.
Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on computer vision ( 2223-2232).
Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., & Metaxas, D. N. (2017). Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks. In Proceedings of the IEEE international conference on computer vision (5907-5915).
Zhao, Z. Q., Zheng, P., Xu, S. T., & Wu, X. (2019). Object detection with deep learning: A review. IEEE transactions on neural networks and learning systems, 30(11), 3212-3232.
于佩琴. (2014).。室內設計的本質性: 室內空間居家性之探討. 中原大學室內設計研究所學位論文, 1-83.
宋傑, 肖亮, 練智超, 蔡子贇, & 蔣國平. (2021).。基於深度學習的數字病理圖像分割綜述與展望. Journal of Software, 32(5).
冷翊 (2016)。以三維電腦繪圖為核心的室內設計流程及表現之研究。南華大學藝術與設計學院創意產品設計學系。
林庭生 (2021)。以Pix2Pix與超解析度成像網路為基礎之金門老照片修復研究。國立金門大學資訊科技與應用碩士班施旻岳(2021)。以生成對抗網路為基礎之閩式建築風格轉換研究(碩士論文)。國立金門大學資訊科技與應用碩士班。連禹睿 (2021)。 基於生成對抗網路 GAN 模型之書法字體生成系統.
張榮傑 (2015)。基於語義分割之影片風格轉換。國立交通大學多媒體工程研究所
張峻瑋 (2019).。3D 效果圖擬真度影響設計發展之視覺思考研究. 中原大學室內設計研究所學位論文, 1-184.
楊詒鈞 (2021)。生成對抗網路應用於多角度學習情緒辨識之研究(碩士論文)。國立中興大學資訊管理學系。簡嘉琳 (2021)。基於生成對抗網路的繪畫風格轉換(碩士論文) 。國立宜蘭大學資訊工程學系研究所。