|
REFERENCES
[1]M.S.A. Putri, J.L. Lin, L.H.C. Hsieh, Y. Zafirah, G. Andhikaputra, Y.C. Wang, .2020. Influencing factors analysis of Taiwan eutrophicated reservoirs, Water (Switzerland). 12 1–16. [2]S.F. Mohsenpour, S. Hennige, N. Willoughby, A. Adeloye, T. Gutierrez, .2021. Integrating micro-algae into wastewater treatment: A review, Sci. Total Environ. 752 142168. [3]B.O. Isiuku, C.E. Enyoh, .2020. Pollution and health risks assessment of nitrate and phosphate concentrations in water bodies in South Eastern, Nigeria, Environ. Adv. 2 100018. [4]W.H.R. Van Hassel, M. Andjelkovic, B. Durieu, V.A. Marroquin, J. Masquelier, B. Huybrechts, A. Wilmotte, .2022. A Summer of Cyanobacterial Blooms in Belgian Waterbodies: Microcystin Quantification and Molecular Characterizations, Toxins (Basel). 14 1–21. [5]D.L. Sutherland, M.H. Turnbull, P.A. Broady, R.J. Craggs, .2014. Effects of two different nutrient loads on microalgal production, nutrient removal and photosynthetic efficiency in pilot-scale wastewater high rate algal ponds, Water Res. 66 53–62. [6]T. Li, B.Z. Dong, Z. Liu, W.H. Chu, .2011. Characteristic of algogenic organic matter and its effect on UF membrane fouling, Water Sci. Technol. 64 1685–1691. [7]J.L. Lin, M.S. Nugrayanti, A. Karangan, .2022. Effect of Al hydrates on minimization of disinfection-by-products precursors by coagulation with intensified pre-oxidation towards cyanobacteria-laden water, Sci. Total Environ. 810 152251. [8]R. Huang, Z. Liu, B. Yan, J. Zhang, D. Liu, Y. Xu, P. Wang, F. Cui, Z. Liu, .2019. Formation kinetics of disinfection byproducts in algal-laden water during chlorination: A new insight into evaluating disinfection formation risk, Environ. Pollut. 245 63–70. [9]X. Wang, H. Xu, R. Jiao, G. Ma, D. Wang, .2021. Coagulation removal of phosphorus from a southern China reservoir in different stages of algal blooms: Performance evaluation and Al[sbnd]P matching principle analysis, Sci. Total Environ. 782 146849. [10]J.L. Lin, L.C. Hua, S.K. Hung, C. Huang, .2018. Algal removal from cyanobacteria-rich waters by preoxidation-assisted coagulation–flotation: Effect of algogenic organic matter release on algal removal and trihalomethane formation, J. Environ. Sci. (China). 63 147–155. [11]J.L. Lin, L.C. Hua, S.K. Hung, C. Huang, .2018. Algal removal from cyanobacteria-rich waters by preoxidation-assisted coagulation–flotation: Effect of algogenic organic matter release on algal removal and trihalomethane formation, J. Environ. Sci. (China). 63 147–155. [12]R.K. Padhi, S. Subramanian, K.K. Satpathy, .2019. Formation, distribution, and speciation of DBPs (THMs, HAAs, ClO2−,andClO3−) during treatment of different source water with chlorine and chlorine dioxide, Chemosphere. 218 540–550. [13]S. Lucakova, I. Branyikova, S. Kovacikova, M. Pivokonsky, M. Filipenska, T. Branyik, M.C. Ruzicka, .2021. Electrocoagulation reduces harvesting costs for microalgae, Bioresour. Technol. 323. [14]J. An, N. Li, S. Wang, C. Liao, L. Zhou, T. Li, X. Wang, Y. Feng, .2019. A novel electro-coagulation-Fenton for energy efficient cyanobacteria and cyanotoxins removal without chemical addition, J. Hazard. Mater. 365 650–658. [15]S. Gao, J. Yang, J. Tian, F. Ma, G. Tu, M. Du, .2010. Electro-coagulation–flotation process for algae removal, J. Hazard. Mater. 177 336–343. [16]S. Visigalli, M.G. Barberis, A. Turolla, R. Canziani, M. Berden Zrimec, R. Reinhardt, E. Ficara, .2021. Electrocoagulation–flotation (ECF) for microalgae harvesting – A review, Sep. Purif. Technol. 271. [17]P. Rafiee, S. Ebrahimi, M. Hosseini, Y.W. Tong, .2020. Characterization of Soluble Algal Products (SAPs) after electrocoagulation of a mixed algal culture, Biotechnol. Reports. 25. [18]D. Ghernaout, .2019. Electrocoagulation Process for Microalgal Biotechnology-A Review, Djamel Ghernaout. Electrocoagulation Process Microalgal Biotechnol. Rev. Appl. Eng. 3 85–94. [19]I.D. Tegladza, Q. Xu, K. Xu, G. Lv, J. Lu, .2021. Electrocoagulation processes: A general review about role of electro-generated flocs in pollutant removal, Process Saf. Environ. Prot. 146 169–189. [20]A.Y. Bagastyo, F. Sidik, A.D. Anggrainy, J.L. Lin, E. Nurhayati, .2022. The Performance of Electrocoagulation Process in Removing Organic and Nitrogenous Compounds from Landfill Leachate in a Three-Compartment Reactor, J. Ecol. Eng. 23 235–245. [21]M. Chen, O. Dollar, K. Shafer-Peltier, S. Randtke, S. Waseem, E. Peltier, .2020. Boron removal by electrocoagulation: Removal mechanism, adsorption models and factors influencing removal, Water Res. 170 115362. [22]S.Y. Lee, G.A. Gagnon, .2016. Growth and structure of flocs following electrocoagulation, Sep. Purif. Technol. 163 162–168. [23]Y. Watanabe, .2017. Flocculation and me, Water Res. 114 88–103. [24]A.K. Tolkou, A.I. Zouboulis, .2020. Application of composite pre-polymerized coagulants for the treatment of high-strength industrial wastewaters, Water (Switzerland). 12. [25]J.L. Lin, C. Huang, J.R. Pan, D. Wang, .2008. Effect of Al(III) speciation on coagulation of highly turbid water, Chemosphere. 72 189–196. [26]W. Dongsheng, L. Hong, L. Chunhua, T. Hongxiao, .2006. Removal of humic acid by coagulation with nano-Al13, Water Sci. Technol. Water Supply. 6 59–67. [27]J. Duan, J. Gregory, .2003. Coagulation by hydrolysing metal salts, Adv. Colloid Interface Sci. 100–102 475–502. [28]R.J.S. Palacios, D.G. Kim, S.O. Ko, .2016. Humic acid removal by electrocoagulation: characterization of aluminum species and humic acid, Desalin. Water Treat. 57 10969–10979. [29]S. Zhang, J. Su, S. Ma, H. Wang, X. Wang, K. He, H. Wang, D.E. Canfield, .2021. Eukaryotic red and green algae populated the tropical ocean 1400 million years ago, Precambrian Res. 357 106166. [30]B.L. Townhill, J. Tinker, M. Jones, S. Pitois, V. Creach, S.D. Simpson, S. Dye, E. Bear, J.K. Pinnegar, .2018. Harmful algal blooms and climate change: exploring future distribution changes, ICES J. Mar. Sci. 75 1882–1893. [31]Cronodon, .2021. Cyanobacteria,. https://cronodon.com/BioTech/Cyanobacteria.html (accessed May 30, 2022). [32]H. Thuret-Benoist, V. Pallier, G. Feuillade-Cathalifaud, .2022. Monitoring of the impact of the proliferations of cyanobacteria on the characteristics of Natural Organic Matter in a eutrophic water resource: Comparison between 2012–2013 and 2017–2018, Chemosphere. 291 132834. [33]J. Yin, W. Fan, J. Du, W. Feng, Z. Dong, Y. Liu, T. Zhou, .2020. The toxicity of graphene oxide affected by algal physiological characteristics: A comparative study in cyanobacterial, green algae, diatom, Environ. Pollut. 260. [34]H. Zhang, Z. Yu, Q. Huang, X. Xiao, X. Wang, F. Zhang, X. Wang, Y. Liu, C. Hu, .2011. Isolation, identification and characterization of phytoplankton-lytic bacterium CH-22 against Microcystis aeruginosa, Limnologica. 41 70–77. [35]A. Pugazhendhi, S. Arvindnarayan, S. Shobana, J. Dharmaraja, M. Vadivel, A.E. Atabani, S.W. Chang, D.D. Nguyen, G. Kumar, .2020. Biodiesel from Scenedesmus species: Engine performance, emission characteristics, corrosion inhibition and bioanalysis, Fuel. 276. [36]M. Yu, M.P. Ashworth, N.H. Hajrah, M.A. Khiyami, M.J. Sabir, A.M. Alhebshi, A.L. Al-Malki, J.S.M. Sabir, E.C. Theriot, R.K. Jansen, .2018. Evolution of the Plastid Genomes in Diatoms, Adv. Bot. Res. 85 129–155. [37]R.G. Sheath, J.D. Wehr, Introduction to Freshwater Algae, in: Freshw. Algae North Am., Elsevier, 2003: pp. 1–9. [38]B. Zaheri, D. Morse, .2022. An overview of transcription in dinoflagellates, Gene. 829 146505. [39]L. Li, N. Gao, Y. Deng, J. Yao, K. Zhang, .2012. Characterization of intracellular & extracellular algae organic matters (AOM) of Microcystic aeruginosa and formation of AOM-associated disinfection byproducts and odor & taste compounds, Water Res. 46 1233–1240. [40]N. Her, G. Amy, H.R. Park, M. Song, .2004. Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling, Water Res. 38 1427–1438. [41]A. Tomlinson, M. Drikas, J.D. Brookes, .2016. The role of phytoplankton as pre-cursors for disinfection by-product formation upon chlorination, Water Res. 102 229–240. [42]L.G.A.N. Danielsson, .1982. On the use of filters for distinguishing between dissolved and particulate fractions in natural waters, 16 179–182. [43]R. Albrektiene, M. Rimeika, E. Zalieckiene, V. Šaulys, A. Zagorskis, .2012. Determination of organic matter by UV absorption in the ground water, J. Environ. Eng. Landsc. Manag. 20 163–167. [44]H.C. Hong, F.Q. Huang, F.Y. Wang, L.X. Ding, H.J. Lin, Y. Liang, .2013. Properties of sediment NOM collected from a drinking water reservoir in South China, and its association with THMs and HAAs formation, J. Hydrol. 476 274–279. [45]W. Becker, .2016. Fluorescence Lifetime Imaging – Applications and Instrumental Principles, Encycl. Cell Biol. 2 107–120. [46]R.H. Peiris, C. Hallé, H. Budman, C. Moresoli, S. Peldszus, P.M. Huck, R.L. Legge, .2010. Identifying fouling events in a membrane-based drinking water treatment process using principal component analysis of fluorescence excitation-emission matrices, Water Res. 44 185–194. [47]L.-C. Hua, J.-L. Lin, P.-C. Chen, C.-P. Huang, .2017. Chemical structures of extra- and intra-cellular algogenic organic matters as precursors to the formation of carbonaceous disinfection byproducts, Chem. Eng. J. 328. [48]A. Matilainen, E.T. Gjessing, T. Lahtinen, L. Hed, A. Bhatnagar, M. Sillanpää, .2011. An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment, Chemosphere. 83 1431–1442. [49]A.T. Chow, S. Gao, R.A. Dahlgren, .2005. Physical and chemical fractionation of dissolved organic matter and trihalomethane precursors: A review, J. Water Supply Res. Technol. - AQUA. 54 475–507. [50]L.C. Hua, C.-H. Lai, G.-S. Wang, T.F. Lin, C. Huang, .2019. Algogenic organic matter derived DBPs: Precursor characterization, formation, and future perspectives – A review, Crit. Rev. Environ. Sci. Technol. 49 1803–1834. [51]J. Leenher, J.-P. Croue, .2003. Characterizing dissolved aquatic organic matter,. [52]J.L. Lin, A.R. Ika, .2022. Pre-oxidation of Microcystis aeruginosa-laden water by intensified chlorination: Impact of growth phase on cell degradation and in-situ formation of carbonaceous disinfection by-products, Sci. Total Environ. 805 150285. [53]J.L. Lin, A.R. Ika, C.C. Tseng, .2020. Effect of in-situ formed Al hydrates through long-term aging on enhanced particle destabilization by PACl coagulation, J. Environ. Sci. (China). 92 200–210. [54]Y. Zhao, H. Lian, C. Tian, H. Li, W. Xu, S. Phuntsho, K. Shih, .2021. Surface water treatment benefits from the presence of algae: Influence of algae on the coagulation behavior of polytitanium chloride, Front. Environ. Sci. Eng. 15 1–13. [55]M. Yan, D. Wang, J. Qu, W. He, C.W.K. Chow, .2007. Relative importance of hydrolyzed Al(III) species (Ala, Alb, and Alc) during coagulation with polyaluminum chloride: A case study with the typical micro-polluted source waters, J. Colloid Interface Sci. 316 482–489. [56]M. Sillanpää, M. Shestakova, Emerging and Combined Electrochemical Methods, 2017. [57]M. Vepsäläinen, M. Sillanpää, Electrocoagulation in the treatment of industrial waters and wastewaters, 2020. [58]D. Ghernaout, N. Elboughdiri, S. Ghareba, A. Salih, .2020. Coagulation Process for Removing Algae and Algal Organic Matter—An Overview, OALib. 07 1–21. [59]D. Parmentier, D. Manhaeghe, L. Baccini, R. Van Meirhaeghe, D.P.L. Rousseau, S. Van Hulle, .2020. A new reactor design for harvesting algae through electrocoagulation-flotation in a continuous mode, Algal Res. 47. [60]F. Bleeke, G. Quante, D. Winckelmann, G. Klöck, .2015. Effect of voltage and electrode material on electroflocculation of Scenedesmus acuminatus, Bioresour. Bioprocess. 2 36. [61]M. Sillanpää, M.C. Ncibi, A. Matilainen, M. Vepsäläinen, .2018. Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review, Chemosphere. 190 54–71. [62]Syam B. D., Nidheesh P. V., .2019. Electrode Materials ELECTROOXIDATION OF ORGANIC, APCBEE Procedia. 1–21. [63]M.L. Davis, Water and Wastewater Engineering: Design Principles and Practice, Fourth Edi, McGraw-Hill, New York, 2010. https://www.accessengineeringlibrary.com/content/book/9780071713849. [64]M. Tir, N. Moulai-Mostefa, .2008. Optimization of oil removal from oily wastewater by electrocoagulation using response surface method, J. Hazard. Mater. 158 107–115. [65]P. Taylor, D. Ghernaout, M. Naceur, B. Ghernaout, .2012. Desalination and Water Treatment : A review of electrocoagulation as a promising coagulation process for improved organic and inorganic matters removal by electrophoresis and electroflotation Review article A review of electrocoagulation as a promising co, 37–41. [66]Z. Zhao, W. Sun, M.B. Ray, A.K. Ray, T. Huang, J. Chen, .2019. Optimization and modeling of coagulation-flocculation to remove algae and organic matter from surface water by response surface methodology, Front. Environ. Sci. Eng. 13. [67]S. Oliveira, A. Clemente, I. Menezes, A. Gois, I. Carloto, L. Lawton, J. Capelo-Neto, .2021. Hazardous cyanobacteria integrity response to velocity gradient and powdered activated carbon in water treatment plants, Sci. Total Environ. 773 145110. [68]H. Zhang, L. Yang, X. Zang, S. Cheng, X. Zhang, .2019. Effect of shear rate on floc characteristics and concentration factors for the harvesting of Chlorella vulgaris using coagulation-flocculation-sedimentation, Sci. Total Environ. 688 811–817. [69]J.M. Ebeling, P.L. Sibrell, S.R. Ogden, S.T. Summerfelt, .2003. Evaluation of chemical coagulation-flocculation aids for the removal of suspended solids and phosphorus from intensive recirculating aquaculture effluent discharge, Aquac. Eng. 29 23–42. [70]S. Supriyono, D.T. Nurrohman, .2020. Floating oil skimmer design using rotary disc method, J. Phys. Conf. Ser. 1450 012046. [71]K. de Souza Torres, O.C. Winter, .2018. The When and Where of Water in the History of the Universe, Habitability of the Universe Before Earth. 47–73. [72]R. V. Pearsall, R.L. Connelly, M.E. Fountain, C.S. Hearn, M.D. Werst, R.E. Hebner, E.F. Kelley, .2011. Electrically dewatering microalgae, IEEE Trans. Dielectr. Electr. Insul. 18 1578–1583. [73]S. Gao, J. Yang, J. Tian, F. Ma, G. Tu, M. Du, .2010. Electro-coagulation-flotation process for algae removal, J. Hazard. Mater. 177 336–343. [74]S. Gao, M. Du, J. Tian, J. Yang, J. Yang, F. Ma, J. Nan, .2010. Effects of chloride ions on electro-coagulation-flotation process with aluminum electrodes for algae removal, J. Hazard. Mater. 182 827–834. [75]N. Uduman, Y. Qi, M.K. Danquah, G.M. Forde, A. Hoadley, .2010. Dewatering of microalgal cultures: A major bottleneck to algae-based fuels, J. Renew. Sustain. Energy. 2 012701. [76]L. Xu, F. Wang, H.Z. Li, Z.M. Hu, C. Guo, C.Z. Liu, .2010. Development of an efficient electroflocculation technology integrated with dispersed-air flotation for harvesting microalgae, J. Chem. Technol. Biotechnol. 85 1504–1507. [77]D. Tibebe, Y. Kassa, A.N. Bhaskarwar, .2019. Treatment and characterization of phosphorus from synthetic wastewater using aluminum plate electrodes in the electrocoagulation process, BMC Chem. 13 1–14. [78]K.S. Hashim, R. Al Khaddar, N. Jasim, A. Shaw, D. Phipps, P. Kot, M.O. Pedrola, A.W. Alattabi, M. Abdulredha, R. Alawsh, .2019. Electrocoagulation as a green technology for phosphate removal from river water, Sep. Purif. Technol. 210 135–144. [79]P. Maha Lakshmi, P. Sivashanmugam, .2013. Treatment of oil tanning effluent by electrocoagulation: Influence of ultrasound and hybrid electrode on COD removal, Sep. Purif. Technol. 116 378–384. [80]J. Zeng, M. Ji, Y. Zhao, T.H. Pedersen, H. Wang, .2021. Optimization of electrocoagulation process parameters for enhancing phosphate removal in a biofilm-electrocoagulation system, Water Sci. Technol. 83 2560–2574. [81]V. Dashkova, E. Segev, D. Malashenkov, R. Kolter, I. Vorobjev, N.S. Barteneva, .2016. Microalgal cytometric analysis in the presence of endogenous autofluorescent pigments, Algal Res. 19 370–380. [82]H. Zhang, M. Taxipalati, L. Yu, F. Que, F. Feng, .2013. Structure-Activity Relationship of a U-Type Antimicrobial Microemulsion System, PLoS One. 8 e76245. [83]S.C. Jagdale, G.K. Deore, A.R. Chabukswar, .2018. Development of Microemulsion Based Nabumetone Transdermal Delivery for Treatment of Arthritis, Recent Pat. Drug Deliv. Formul. 12 130–149. [84]X. He, A.A. de la Cruz, A. Hiskia, T. Kaloudis, K. O’Shea, D.D. Dionysiou, .2015. Destruction of microcystins (cyanotoxins) by UV-254 nm-based direct photolysis and advanced oxidation processes (AOPs): Influence of variable amino acids on the degradation kinetics and reaction mechanisms, Water Res. 74 227–238. [85]Taiwan EPA, .2010. Phosphorus detection method in water - spectrophotometer/vitamin C method (in chinese),. https://www.epa.gov.tw/niea/2B74ED49B0407E51 (accessed May 29, 2022). [86]Mark W. Williams, .2000. Non-Purgeable Organic Carbon ( NPOC ), Total Inorganic Carbon ( TIC ), and Total Nitrogen ( TN ) in Waters and Aqueous Extracts, Inst. Arct. Alp. Res. https://nral.ualberta.ca/nral/wp-content/uploads/sites/75/2020/05/Total-Organic-Carbon-Nitrogen-Method-Summary-2020.pdf. [87]L.C. Hua, S.J. Chao, C. Huang, .2019. Fluorescent and molecular weight dependence of THM and HAA formation from intracellular algogenic organic matter (IOM), Water Res. 148 231–238. [88]J.R. Lakowicz, .2006. Principles of fluorescence spectroscopy, Princ. Fluoresc. Spectrosc. 1–954. [89]S.A. Baghoth, S.K. Sharma, G.L. Amy, .2011. Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation–emission matrices and PARAFAC, Water Res. 45 797–809. [90]X. Wang, P. Xiang, Y. Zhang, Y. Wan, H. Lian, .2018. The inhibition of Microcystis aeruginos by electrochemical oxidation using boron-doped diamond electrode, Environ. Sci. Pollut. Res. 25 20631–20639. [91]A. Yamaguchi, M. Kobayashi, Y. Adachi, .2019. Yield stress of mixed suspension of silica particles and lysozymes: The effect of zeta potential and adsorbed amount, Colloids Surfaces A Physicochem. Eng. Asp. 578 123575. [92]G. Divyapriya, P. V. Nidheesh, .2021. Electrochemically generated sulfate radicals by boron doped diamond and its environmental applications, Curr. Opin. Solid State Mater. Sci. 25 100921. [93]P. Rodenas, F. Zhu, A. ter Heijne, T. Sleutels, M. Saakes, C. Buisman, .2017. Gas diffusion electrodes improve hydrogen gas mass transfer for a hydrogen oxidizing bioanode, J. Chem. Technol. Biotechnol. 92 2963–2968. [94]I. Menezes, D. Maxwell-McQueeney, J. Capelo-Neto, C.J. Pestana, C. Edwards, L.A. Lawton, .2021. Oxidative stress in the cyanobacterium Microcystis aeruginosa PCC 7813: Comparison of different analytical cell stress detection assays, Chemosphere. 269. [95]D. Ghernaout, .2014. The hydrophilic/hydrophobic ratio vs. dissolved organics removal by coagulation - A review, J. King Saud Univ. - Sci. 26 169–180. [96]N. Ates, M. Kitis, U. Yetis, .2007. Formation of chlorination by-products in waters with low SUVA—correlations with SUVA and differential UV spectroscopy, Water Res. 41 4139–4148. [97]L.C. Hua, J.L. Lin, S.J. Chao, C. Huang, .2018. Probing algogenic organic matter (AOM) by size-exclusion chromatography to predict AOM-derived disinfection by-product formation, Sci. Total Environ. 645 71–78. [98]D. Ghernaout, B. Ghernaout, .2012. Sweep flocculation as a second form of charge neutralisation-A review, Desalin. Water Treat. 44 15–28. [99]S. Chellam, M.A. Sari, .2016. Aluminum electrocoagulation as pretreatment during microfiltration of surface water containing NOM: A review of fouling, NOM, DBP, and virus control, J. Hazard. Mater. 304 490–501. [100]J. Roostaei, Y. Zhang, K. Gopalakrishnan, A.J. Ochocki, .2018. Mixotrophic Microalgae Biofilm: A Novel Algae Cultivation Strategy for Improved Productivity and Cost-efficiency of Biofuel Feedstock Production, Sci. Rep. 8 1–10. [101]G. Mouedhen, M. Feki, M.D.P. Wery, H.F. Ayedi, .2008. Behavior of aluminum electrodes in electrocoagulation process, J. Hazard. Mater. 150 124–135. [102]H. Zhao, C. Hu, H. Liu, X. Zhao, J. Qu, .2008. Role of aluminum speciation in the removal of disinfection byproduct precursors by a coagulation process, Environ. Sci. Technol. 42 5752–5758. [103]S. Chellam, .2014. Aluminum Electrocoagulation and Electroflotation Pretreatment for Microfiltration: Fouling Reduction and Improvements in Filtered Water Quality, Desalin. Water Purif. Res. Dev. Progr. 1–114. https://www.usbr.gov/research/dwpr/DWPR_Reports.html. [104]L.C. Hua, S.J. Chao, K. Huang, C. Huang, .2020. Characteristics of low and high SUVA precursors: Relationships among molecular weight, fluorescence, and chemical composition with DBP formation, Sci. Total Environ. 727 138638. [105]T. Guo, Y. Yang, R. Liu, X. Li, .2017. Enhanced removal of intracellular organic matters (IOM) from Microcystic aeruginosa by aluminum coagulation, Sep. Purif. Technol. 189 279–287. [106]H. Xu, W. Jiang, F. Xiao, D.S. Wang, .2014. The characteristics of flocs and zeta potential in nano-TiO2 system under different coagulation conditions, Colloids Surfaces A Physicochem. Eng. Asp. 452 181–188. [107]C. Hu, S. Wang, J. Sun, H. Liu, J. Qu, .2016. An effective method for improving electrocoagulation process: Optimization of Al13 polymer formation, Colloids Surfaces A Physicochem. Eng. Asp. 489 234–240. [108]Y. Liu, X. Zhang, W.M. Jiang, M.R. Wu, Z.H. Li, .2021. Comprehensive review of floc growth and structure using electrocoagulation: Characterization, measurement, and influencing factors, Chem. Eng. J. 417 129310. [109]Y. Kong, Y. Ma, L. Ding, J. Ma, H. Zhang, Z. Chen, J. Shen, .2021. Coagulation behaviors of aluminum salts towards humic acid: Detailed analysis of aluminum speciation and transformation, Sep. Purif. Technol. 259 118137. [110]T. Priya, B.K. Mishra, M.N.V. Prasad, Physico-chemical techniques for the removal of disinfection by-products precursors from water, LTD, 2020. [111]J.L. Lin, A.R. Ika, .2020. Minimization of halogenated DBP precursors by enhanced PACl coagulation: The impact of organic molecule fraction changes on DBP precursors destabilization with Al hydrates, Sci. Total Environ. 703 134936. [112]E. Valero, X. Álvarez, Á. Cancela, Á. Sánchez, .2015. Harvesting green algae from eutrophic reservoir by electroflocculation and post-use for biodiesel production, Bioresour. Technol. 187 255–262. [113]D. Vandamme, S.C.V. Pontes, K. Goiris, I. Foubert, L.J.J. Pinoy, K. Muylaert, .2011. Evaluation of electro-coagulation-flocculation for harvesting marine and freshwater microalgae, Biotechnol. Bioeng. 108 2320–2329. [114]N. Fayad, T. Yehya, F. Audonnet, C. Vial, .2017. Harvesting of microalgae Chlorella vulgaris using electro-coagulation-flocculation in the batch mode, Algal Res. 25 1–11. [115]B. An, S. Lee, H.G. Kim, D. Zhao, J.A. Park, J.W. Choi, .2019. Organic/inorganic hybrid adsorbent for efficient phosphate removal from a reservoir affected by algae bloom, J. Ind. Eng. Chem. 69 211–216. [116]A.M. Costa, E.F. Zanoelo, C. Benincá, F.B. Freire, .2021. A kinetic model for electrocoagulation and its application for the electrochemical removal of phosphate ions from brewery wastewater, Chem. Eng. Sci. 243 116755. [117]T.A.O.K. Meetiyagoda, T. Fujino, .2020. Comparison of Different Anode Materials to Remove Microcystis aeruginosa Cells Using Electro-Coagulation–Flotation Process at Low Current Inputs, Water 2020, Vol. 12, Page 3528. 12 3528. [118]F. Qu, H. Liang, J. He, J. Ma, Z. Wang, H. Yu, G. Li, .2012. Characterization of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) of Microcystis aeruginosa and their impacts on UF membrane fouling, Water Res. 46 2881–2890. [119]S.D. Rosan, C.A. Silva, H.J.G.M. Maluf, .2018. Humic acid-phosphate fertilizer interaction and extractable phosphorus in soils of contrasting texture, Rev. Cienc. Agron. 49 32–42. [120]Z. Su, T. Liu, W. Yu, X. Li, N.J.D. Graham, .2017. Coagulation of surface water: Observations on the significance of biopolymers, Water Res. 126 144–152. [121]J. Nan, M. Yao, T. Chen, S. Li, Z. Wang, G. Feng, .2016. Breakage and regrowth of flocs formed by sweep coagulation using additional coagulant of poly aluminium chloride and non-ionic polyacrylamide, Environ. Sci. Pollut. Res. 23 16336–16348. [122]Y. Han, Z. Jiang, X. Zhou, D. Peng, .2011. The effect of dissolved organic matter on Zeta potential during the coagulation process, Proc. - Int. Conf. Comput. Distrib. Control Intell. Environ. Monit. CDCIEM 2011. 1402–1405. [123]T. Duricic, B.N. Malinovic, D. Bijelic, .2016. The phosphate removal efficiency electrocoagulation wastewater using iron and aluminum electrodes, Bull. Chem. Technol. Bosnnia Herzegovina. 47 33–38. [124]J. Kotyńska, Z.A. Figaszewski, .2018. Binding of trivalent metal ions (Al3+, In3+, La3+) with phosphatidylcholine liposomal membranes investigated by microelectrophoresis, Eur. Phys. J. E. 41. [125]J.L. Lin, M.S. Nugrayanti, A.R. Ika, A. Karangan, .2021. Removal of Microcystis Aeruginosa by oxidation-assisted coagulation: Effect of algogenic organic matter fraction changes on algae destabilization with Al hydrates, J. Water Process Eng. 42 102142. [126]S. Chen, Y. Shi, W. Wang, Z. Li, J. Gao, K. Bao, R. Han, R. Zhang, .2014. Phosphorus Removal from Continuous Phosphate-Contaminated Water by Electrocoagulation using Aluminum and Iron Plates Alternately as Electrodes, Sep. Sci. Technol. 49 939–945. [127]P. Du, X. Li, Y. Yang, Z. Su, H. Li, N. Wang, T. Guo, T. Zhang, Z. Zhou, .2019. Optimized coagulation pretreatment alleviates ultrafiltration membrane fouling: The role of floc properties and slow-mixing speed on mechanisms of chitosan-assisted coagulation, J. Environ. Sci. (China). 82 82–92.
|