跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/07 02:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉建志
研究生(外文):LIU, CHIEN-CHIH
論文名稱:記憶體中運算應用的誤差修正研究
論文名稱(外文):Study of Error Compensation for In-Memory Computing Applications
指導教授:鄭湘原
指導教授(外文):JENG, SYANG YWAN ERIK
口試委員:陳原逢周武清
口試委員(外文):CHEN, YUAN FENGCHOU, WU CHING
口試日期:2022-07-30
學位類別:碩士
校院名稱:中原大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:54
中文關鍵詞:非重疊離子佈植元件深度神經網路遷移式學習監督式學習記憶體內運算誤差修正
外文關鍵詞:Non-Overlapped ImplantationDeep Neuron NetworkTransfer LearningSupervised LearningIn-Memory ComputingError Adjustment
DOI:10.6840/cycu202201422
相關次數:
  • 被引用被引用:1
  • 點閱點閱:64
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目錄
中文摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 V
表目錄 VI
第一章 緒論 1
1-1前言 2
1-2研究背景與目的 2
1-3深度神經網路 3
1-3-1監督式學習 4
1-3-2遷移式學習 6
1-3-3神經網路的傳遞 7
1-3-4優化器介紹 8
1-3-5神經網路的激活函式 9
1-3-6批量性標準化 11
第二章 記憶體中運算實現硬體式神經網路運算 12
2-1 記憶體中運算實現硬體式神經網路運算 13
2-2非重疊離子佈植元件之突觸元件介紹 18
2-2-1非重疊離子佈植電晶體之運算模型建立 20
2-2-2 非重疊離子佈植電晶體之運算電路實現 22
2-2-3 非重疊離子佈植記憶體實現硬體式神經網路運算 23
第三章 軟體平台訓練以及硬體式遷移式學習之辨識 25
3-1 資料庫介紹與處理 26
3-2 純軟體網路訓練與比較 27
3-3 神經網路載入非重疊離子佈植元件運算模型之模擬 29
3-4 非重疊離子佈植記憶體辨識電路 31
第四章 平行式誤差修正網路之設計及驗證 34
4-1 平行式誤差修正網路系統介紹以及資料庫的準備 35
4-2 硬體式遷移式學習之誤差分析 36
4-3 網路架構設計及實驗數據分析與討論 37
第五章 結論 41
5-1結論 41
5-2未來展望 42
參考文獻 43

圖目錄
圖1- 1 量化運算示意圖 3
圖1- 2 深度學習蓋括之領域 4
圖1- 3 監督式學習在深度神經網路之意義 5
圖1- 4 監督式學習實際訓練圖 5
圖1- 5 遷移式學習以及其網路應用示意圖 6
圖1- 6 神經網路的前向/倒傳遞模式 7
圖1- 7 隨機梯度下降法 8
圖1- 8 Linear 激活函式 9
圖1- 9 Sigmoid 激活函式 10
圖1- 10 ReLU 激活函式 10
圖1- 11 批量性標準化後之訓練示意圖 11
圖2- 1 馮紐曼架構示意圖 13
圖2- 2 ReRAM 2T2M架構示意圖 15
圖2- 3 MRAM 2T1M 架構示意圖 15
圖2- 4 FeRAM 2T2C架構示意圖 15
圖2- 5 SRAM 12T架構示意圖 16
圖2- 6 ReRAM數位CIM架構示意圖 16
圖2- 7 MRAM數位CIM架構示意圖 17
圖2- 8 NAND-Flash類比CIM架構示意圖 17
圖2- 9 MRAM類比CIM架構示意圖 18
圖2- 10 NOI元件進行熱電子注入示意 19
圖2- 11 NOI元件進行熱電洞抹除示意 20
圖2- 12 生物神經元示意 21
圖2- 13 代表神經元運作的等效模型 21
圖2- 14 NOI矩陣電路 22
圖2- 15 NOI神經網路運算晶片電路區塊圖 23
圖2- 16 NOI矩陣運算電路等校神經網路運算示意圖 24
圖3- 1 MNIST手寫資料庫的範例 26
圖3- 2 圖片標準化示意圖 26
圖3- 3 監督式學習架構 27
圖3- 4 監督式網路輸出神經元數量及時序關係 27
圖3- 5 監督式學習之模型訓練情況 29
圖3- 6 差動對電路 30
圖3- 7 NOI元件ID-VG曲線 30
圖3- 8 NOI元件ISA-VSA曲線 31
圖4- 1 本論文之系統架構 35
圖4- 2 硬硬硬誤差修正網路架構 38
圖4- 3 硬硬硬誤差修正網路時序關係 39

表目錄
表3- 1 監督式學習網路條件 28
表3- 2 監督式學習之辨識率表現 29
表3- 3 遷移式學習之辨識率 32
表3- 4 各層進行硬體遷移式學習之辨識率情形 33
表4- 1 各層網路經遷移後之權重偏移情況 36
表4- 2 硬硬硬誤差修正網路條件表 39
表4- 3 硬硬硬誤差修正網路實驗結果 40
表5- 1 修正網路於不同層進行修正後之結果 41
參考文獻
第一章
[1-1]W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders and K. -R. Müller, "Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications," in Proceedings of the IEEE, vol. 109, no. 3, pp. 247-278, March 2021.
[1-2]R. Y. Choi et al., "Introduction to Machine Learning, Neural Networks, and Deep Learning," Translational Vision Science & Technology, vol. 9, no. 2, pp. 14, Feb. 2020.
[1-3]O. Costilla-Reyes, P. Scully and K. B. Ozanyan, "Deep Neural Networks for Learning Spatio-Temporal Features From Tomography Sensors," in IEEE Transactions on Industrial Electronics, vol. 65, no. 1, pp. 645-653, Jan. 2018.
[1-4]R. Nash et al., "An Introduction to Convolutional Neural Networks," ArXiv, vol. abs/1511.08458, 2015.
[1-5]L. Deng, G. Hinton and B. Kingsbury, "New types of deep neural network learning for speech recognition and related applications: an overview," 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 2013, pp. 8599-8603.
[1-6]L. M. Q. d. Santana, R. M. Santos, L. N. Matos and H. T. Macedo, "Deep Neural Networks for Acoustic Modeling in the Presence of Noise," in IEEE Latin America Transactions, vol. 16, no. 3, pp. 918-925, March 2018.
[1-7]Z. Yan et al., "Automatic Photo Adjustment Using Deep Neural Networks," Association for Computing Machinery, vol. 35, no. 2, pp. 15, May 2016.
[1-8]B. Liang, H. Li, M. Su, X. Li, W. Shi and X. Wang, "Detecting Adversarial Image Examples in Deep Neural Networks with Adaptive Noise Reduction," in IEEE Transactions on Dependable and Secure Computing, vol. 18, no. 1, pp. 72-85, 1 Jan.-Feb. 2021.
[1-9]G. J. Scott, M. R. England, W. A. Starms, R. A. Marcum and C. H. Davis, "Training Deep Convolutional Neural Networks for Land–Cover Classification of High-Resolution Imagery," in IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 4, pp. 549-553, April 2017.
[1-10]D. C. Cireşan, U. Meier and J. Schmidhuber, "Transfer learning for Latin and Chinese characters with Deep Neural Networks," The 2012 International Joint Conference on Neural Networks (IJCNN), 2012, pp. 1-6.
[1-11]A. Kaya et al., "Analysis of transfer learning for deep neural network based plant classification models," Computers and Electronics in Agriculture, Volume 158, Pages 20-29, 2019.
[1-12]M. H. Sazli, "A brief review of feed-forward neural networks", Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, vol. 50, no. 01, pp. 0-0, Jan. 2006.
[1-13]N. Rajput and S. K. Verma, "Back propagation feed forward neural network approach for Speech Recognition," Proceedings of 3rd International Conference on Reliability, Infocom Technologies and Optimization, 2014, pp. 1-6.
[1-14]F. F. Alkhalid, "The effect of optimizers in fingerprint classification model utilizing deep learning," Indonesian Journal of Electrical Engineering and Computer Science, vol. 20, pp. 1098-1102, 2020.
[1-15]F. Schneider et al., "DeepOBS: A Deep Learning Optimizer Benchmark Suite," ArXiv, March. 2019.
[1-16]X. Jin et al., "Deep Learning with S-Shaped Rectified Linear Activation Units," Thirtieth AAAI Conference on Artificial Intelligence, Vol. 30, no. 1, 2016.
[1-17]V. Thakkar, S. Tewary and C. Chakraborty, "Batch Normalization in Convolutional Neural Networks — A comparative study with CIFAR-10 data," 2018 Fifth International Conference on Emerging Applications of Information Technology (EAIT), 2018, pp. 1-5.
[1-18]O. Fagbohungbe, L. Qian, "Effect of Batch Normalization on Noise Resistant Property of Deep Learning Models," ArXiv, 2022.
第二章
[2-1]Merolla, Paul et al. “A million spiking-neuron integrated circuit with a scalable communication network and interface.” Science 345 (2014): 668 - 673.
[2-2]J. Kim and J. Park, "A Charge-domain 10T SRAM based In-Memory-Computing Macro for Low Energy and Highly Accurate DNN inference," 2021 18th International SoC Design Conference (ISOCC), 2021, pp. 89-90.
[2-3]S. Kim, W. Lee, S. Kim, S. Park and D. Jeon, "An In-Memory Computing SRAM Macro for Memory-Augmented Neural Network," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 3, pp. 1687-1691, March 2022.
[2-4]Y. Pan et al., "A Multilevel Cell STT-MRAM-Based Computing In-Memory Accelerator for Binary Convolutional Neural Network," in IEEE Transactions on Magnetics, vol. 54, no. 11, pp. 1-5, Nov. 2018, Art no. 9401305.
[2-5]M. Natsui et al., "Dual-Port SOT-MRAM Achieving 90-MHz Read and 60-MHz Write Operations Under Field-Assistance-Free Condition," in IEEE Journal of Solid-State Circuits, vol. 56, no. 4, pp. 1116-1128, April 2021.
[2-6]W. S. Zhao et al., "Embedded MRAM for high-speed computing," 2011 IEEE/IFIP 19th International Conference on VLSI and System-on-Chip, 2011, pp. 37-42.
[2-7]Q. Wu et al., "A Non-volatile Computing-in-Memory ReRAM Macro using Two-bit Current-Mode Sensing Amplifier," 2021 IEEE 10th Non-Volatile Memory Systems and Applications Symposium (NVMSA), 2021, pp. 1-6.
[2-8]J. Li, Y. Cui, C. Gu, C. Wang and W. Liu, "Dynamically Configurable Physical Unclonable Function based on RRAM Crossbar," 2021 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), 2021, pp. 1-6.
[2-9]C. -C. Chou et al., "An N40 256K×44 embedded RRAM macro with SL-precharge SA and low-voltage current limiter to improve read and write performance," 2018 IEEE International Solid - State Circuits Conference - (ISSCC), 2018, pp. 478-480.
[2-10]D. Bankman, J. Messner, A. Gural and B. Murmann, "RRAM-Based In-Memory Computing for Embedded Deep Neural Networks," 2019 53rd Asilomar Conference on Signals, Systems, and Computers, 2019, pp. 1511-1515.
[2-11]S. Slesazeck, T. Ravsher, V. Havel, E. T. Breyer, H. Mulaosmanovic and T. Mikolajick, "A 2TnC ferroelectric memory gain cell suitable for compute-in-memory and neuromorphic application," 2019 IEEE International Electron Devices Meeting (IEDM), 2019, pp. 38.6.1-38.6.4.
[2-12]Y. Luo, Y. -C. Luo and S. Yu, "A Ferroelectric-based Volatile/Non-volatile Dual-mode Buffer Memory for Deep Neural Network Accelerators," in IEEE Transactions on Computers, 2021.
[2-13]Y. Luo, Y. -C. Luc and S. Yu, "A FeRAM based Volatile/Non-volatile Dual-mode Buffer Memory for Deep Neural Network Training," 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2021, pp. 1871-1876.
[2-14]L. Zhang et al., "A high-reliability and low-power computing-in-memory implementation within STT-MRAM," Microelectronics Journal, Volume 81, 2018, Pages 69-75.
[2-15]Y. Luo et al., "Performance Benchmarking of Spin-Orbit Torque Magnetic RAM (SOT-MRAM) for Deep Neural Network (DNN) Accelerators," 2022 IEEE International Memory Workshop (IMW), 2022, pp. 1-4.
[2-16]L. Wang et al., "Efficient and Robust Nonvolatile Computing-In-Memory Based on Voltage Division in 2T2R RRAM With Input-Dependent Sensing Control," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 5, pp. 1640-1644, May 2021.
[2-17]F. Tan et al., "A ReRAM-Based Computing-in-Memory Convolutional-Macro With Customized 2T2R Bit-Cell for AIoT Chip IP Applications," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 9, pp. 1534-1538, Sept. 2020.
[2-18]Z. Jing, B. Yan, Y. Yang and R. Huang, "VSDCA: A Voltage Sensing Differential Column Architecture Based on 1T2R RRAM Array for Computing-in-Memory Accelerators," in IEEE Transactions on Circuits and Systems I: Regular Papers, 2022.
[2-19]T. Ravsher, H. Mulaosmanovic, E. T. Breyer, V. Havel, T. Mikolajick and S. Slesazeck, "Adoption of 2T2C ferroelectric memory cells for logic operation," 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 2019, pp. 791-794.
[2-20]X. Si et al., "A Twin-8T SRAM Computation-in-Memory Unit-Macro for Multibit CNN-Based AI Edge Processors," in IEEE Journal of Solid-State Circuits, vol. 55, no. 1, pp. 189-202, Jan. 2020.
[2-21]C. -H. Lee, Y. -T. Hsu, T. -T. Liu and T. -D. Chiueh, "Design of an 45nm NCFET Based Compute-in-SRAM for Energy-Efficient Machine Learning Applications," 2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), 2020, pp. 193-196.
[2-22]H. Fujiwara et al., "A 5-nm 254-TOPS/W 221-TOPS/mm2 Fully-Digital Computing-in-Memory Macro Supporting Wide-Range Dynamic-Voltage-Frequency Scaling and Simultaneous MAC and Write Operations," 2022 IEEE International Solid- State Circuits Conference (ISSCC), 2022, pp. 1-3.
[2-23]Z. Jiang, S. Yin, M. Seok and J. Seo, "XNOR-SRAM: In-Memory Computing SRAM Macro for Binary/Ternary Deep Neural Networks," 2018 IEEE Symposium on VLSI Technology, 2018, pp. 173-174.
[2-24]Y. Pan et al., "A Multilevel Cell STT-MRAM-Based Computing In-Memory Accelerator for Binary Convolutional Neural Network," in IEEE Transactions on Magnetics, vol. 54, no. 11, pp. 1-5, Nov. 2018.
[2-25]E. Giacomin, T. Greenberg-Toledo, S. Kvatinsky and P. Gaillardon, "A Robust Digital RRAM-Based Convolutional Block for Low-Power Image Processing and Learning Applications," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 2, pp. 643-654, Feb. 2019.
[2-26]L. Wang et al., "Efficient and Robust Nonvolatile Computing-In-Memory Based on Voltage Division in 2T2R RRAM With Input-Dependent Sensing Control," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 5, pp. 1640-1644, May 2021.
[2-27]M. Kim, M. Liu, L. R. Everson and C. H. Kim, "An Embedded nand Flash-Based Compute-In-Memory Array Demonstrated in a Standard Logic Process," in IEEE Journal of Solid-State Circuits, vol. 57, no. 2, pp. 625-638, Feb. 2022.
[2-28]Z. Hao et al., "A Computing-in-memory Scheme with Series Bit-cell in STT-MRAM for Efficient Multi-bit Analog Multiplication," 2021 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), 2021, pp. 1-6.
[2-29]C. S. Hsieh et al., "NVM Characteristics of Single-MOSFET Cells Using Nitride Spacers with Gate-to-Drain NOI," IEEE Trans. Electron Device, vol. 51, no. 11, pp. 1811-1817, Nov. 2004
[2-30]Erik S. Jeng et al., "Investigation of Programming Charge Distribution in Non-overlapped Implantation nMOSFETs," IEEE Trans. Electron Device, vol. 53, no. 10, pp. 2517-2524, Oct. 2006.
[2-31]E. S. Jeng, C. S. Chiu, C. H. Hon, P. C. Kuo, C. C. Fan, C. S. Hsieh, H. C. Hsu, and Y. F. Chen, “Performance improvement and scalability of nonoverlapped implantation nMOSFETs with charge-trapping spacers as nonvolatile memories,” IEEE Trans. Electron Device, vol. 54, no. 12, pp. 3299-3307, Dec. 2007.
[2-32]E. S. Jeng, K. M. Peng, S. W. Chou, H. X. Chen, and Y. L. Chiang, "Non-overlapped implantation (NOI) MOSFET synapse and its implementation on supervised neural network," Neurocomputing, vol. 167, pp. 290-298, Nov. 2015.
第三章
[3-1]F. Chen et al., " Assessing four Neural Networks on Handwritten Digit Recognition Dataset (MNIST)," ArXiv. 2018.
[3-2]E.S. Jeng, H. X. Chen, Y. L. Chiang, J. H. Chang and J. Y. Chen, "A non-overlapped implantation MOSFET differential pair implementation of bidirectional weight update synapse for neuromorphic computing," Microelectronics Journal, Volume:90, pp. 306-314, 2019.
第四章
[4-1]H. Deng et al., "An efficient background calibration technique for analog-to-digital converters based on neural network," Integration, Vol. 74, pp. 63-70, 2020.
[4-2]D. Pedamonti, " Comparison of non-linear activation functions for deep neural networks on MNIST classification task," ArXiv. 2018.


電子全文 電子全文(網際網路公開日期:20270825)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊