跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/14 10:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪冠文
研究生(外文):HUNG, KUAN-WEN
論文名稱:運用分子動力學研究奈米多孔金之熱粗化機制與機械特性
論文名稱(外文):Study on Thermal Coarsening Mechanism and Mechanical Properties of Nanoporous Gold Using Molecular Dynamics
指導教授:吳政達吳政達引用關係
指導教授(外文):WU, CHENG-DA
口試委員:李玟頡楊安正
口試委員(外文):LEE, WEN-JAYYANG, AN-CHENG
口試日期:2022-07-21
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:88
中文關鍵詞:奈米多孔金屬分子動力學升溫速率熱粗化機械特性變形機制
外文關鍵詞:nanoporous metalsgoldmolecular dynamicsheating ratethermal coarseningmechanical propertiesdeformation mechanism
DOI:10.6840/cycu202201571
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
奈米多孔金屬在多方領域都擁有不小的應用潛力,如隔熱、導熱、電化學、抗衝擊、能量吸收和感測器等。奈米多孔金屬受熱時原子會震盪加速,互相吸引而導致韌帶粗化和整體孔隙率下降,因此奈米多孔金屬在製備上常使用此熱粗化的方式來達到控制韌帶尺寸和孔隙率的目的。本文主要聚焦於升溫速率效應對奈米多孔金之熱粗化機制和其機械特性的影響。在奈米多孔金的模型建構上,首先使用耗散粒子動力學模擬旋節線分離現象以得到其基本的構型,並轉換回分子動力學模擬系統,於NPT系綜(等溫等壓)進行常溫能量釋放。在熱粗化的模擬上,先以六種不同的升溫速率從室溫個別加熱至溫度800 K,然後再以統一的冷卻速率降至常溫,觀察過程中韌帶的發展和其內部結構的變化。模擬結果顯示原子在粗化過程主要會往韌帶的質心方向流動,其流動方式也會受到鄰近韌帶的分布影響而變化。升溫速率存在著一個臨界值,低於此臨界值後粗化程度會減緩,升溫速率低於此臨界值的粗化程度則會繼續增加。先前的文獻已顯示韌帶尺寸越大則強度越低,但在熱粗化下後韌帶會成長,其強度卻反而變得越高。造成熱粗化前後的機械強度和韌帶尺寸的關聯性改變可能的原因是因為熱粗化也會使整體的孔隙率下降,當升溫速率越慢,孔隙率下降的越多,所以其拉伸和壓縮的強度因而增加。在承受衝擊負載下,低孔隙率的多孔金因為其密度較接近實心塊體而會出現衝擊波造成的裂紋,而高孔隙率則是隨著衝擊波而崩塌成實心結構。隨著衝擊波行進,崩塌的部分會持續增加,直到衝擊波完全被轉化為塑形能,這也暗示著高孔隙率受到衝擊後的應變率會明顯高於低孔隙率。對高孔隙率的多孔金進行短時間的熱粗化可以明顯提升其抗衝擊能力以及能量吸收能力。
Nanoporous metals have potential applications in various fields, such as thermal insulation, thermal conductivity, electrochemistry, impact resistance, energy absorption, and sensors. When the nanoporous metal is heated, the atoms will oscillate and accelerate, attracting each other, which leads to the coarsening of the ligament and the decrease of the overall porosity. Therefore, the thermal coarsening method is often used in the preparation of nanoporous metal to achieve the purpose of controlling the size and porosity of the ligament. . This paper mainly focuses on the effect of heating rate on the thermal coarsening mechanism and mechanical properties of nanoporous gold. In the model construction of nanoporous gold, dissipative particle dynamics are used to simulate the spinodal separation phenomenon to obtain its basic configuration, and the energy release at room temperature is carried out in the NPT ensemble (isothermal isobaric). In the simulation of thermal coarsening, the ligaments were individually heated from room temperature to a temperature of 800 K at six different heating rates, and then cooled to room temperature at the same cooling rate to observe the development of the ligament and the changes in its internal structure during the process. The simulation results show that atoms mainly flow towards the centroid of the ligament during the coarsening process, and the flow pattern is also affected by the distribution of adjacent ligaments. There is a critical value of the heating rate between 0.25 and 0.625 K/ps, and the coarsening degree will slow down when approaching this critical value, and the coarsening degree will continue to increase when the heating rate is lower than this critical value. Previous literature has shown that the larger the ligament size, the lower the strength, but after thermal coarsening the ligament grows and becomes stronger. The possible reason for the change in the correlation between mechanical strength and ligament size before and after thermal coarsening is that thermal coarsening also reduces the overall porosity. When the heating rate is slower, the porosity decreases more, so its tensile and The strength of the compression will be increased. Under shock loading, porous gold with low porosity will experience cracks caused by shock waves because its density is closer to that of a solid block, while high porosity will collapse into a solid structure with shock waves. As the shock wave travels, the collapsed part will continue to increase until the shock wave is completely converted into plastic energy, which also means that the strain rate of high porosity after shock is significantly higher than that of low porosity. Short-term thermal coarsening of porous gold with high porosity can significantly improve its impact resistance and energy absorption.
目次
摘要 i
Abstract ii
致謝 iv
目次 v
圖目次 viii
表目次 x
符號表 xi
第1章 序論 1
1-1 前言 1
1-2 文獻回顧 4
(1). 分子動力學文獻回顧 4
(2). 多孔材料文獻回顧 5
1-3 研究動機 7
第2章 研究理論 9
2-1 分子動力學基本理論 9
2-2 原子間作用力與勢能函數 10
2-3 嵌入式原子模型(Embedded atom model, EAM) 11
2-4 系綜 12
2-5 初始速度設定與速度修正 12
2-6 溫度修正與壓力修正 13
2-7 截斷半徑法 13
2-8 表列法 14
(1). Verlet表列法 14
(2). Cell link表列法 16
(3). Cell link表列法與Verlet表列法結合 17
2-9 週期性邊界條件 18
2-10 最小映像法則(Minimum image criterion) 20
2-11 原子級應力 21
(1). Virial stress 21
(2). von-Mises stress 22
2-12 旋節線分離(Spinodal decomposition) 23
2-13 耗散粒子動力學(Dissipative particle dynamics, DPD) 24
2-14 晶體結構分析 25
2-15 表面網格建立 25
第3章 物理模型與參數設定 26
3-1 物理模型 26
3-2 熱處理與熱粗化 30
3-3 拉伸與壓縮模型 34
3-4 衝擊試驗模型 35
第4章 結果與討論 38
4-1 粗化變形機制 38
4-2 粗化過程的結構分析 41
(1). 粗化過程的孔隙率 41
(2). 粗化過程的表面原子數 42
(3). 升溫速率與粗化程度的關係 43
4-3 粗化過程的內部原子結構轉變 46
4-4 拉伸與壓縮試驗 48
4-5 衝擊試驗 56
(1). 孔隙率於衝擊試驗之影響 56
(2). 粗化對衝擊試驗之影響 56
第5章 結論 70
參考文獻 71



圖目次
圖 1 1.奈米多孔金薄膜於燃料電池示意圖 [7] 2
圖 1 2.多孔材料示意圖 [12] 3
圖 1 3.開孔型多孔鋁 [12] 6
圖 1 4.閉孔型多孔鋁 [12] 7
圖 2 1.原子座標向量 [44] 10
圖 2 2.截斷半徑示意圖 14
圖 2 3.Verlet鄰近表列半徑示意圖 15
圖 2 4.時間複雜度比較圖 16
圖 2 5.Cell link表列法晶胞劃分示意圖 17
圖 2 6.Verlet表列法結合Cell link表列法示意圖 18
圖 2 7.二維雙方向週期性邊界之映象示意圖 19
圖 2 8.一維單方向週期性邊界支映像示意圖 19
圖 2 9.最小映像法則示意圖 20
圖 2 10.原子運動對平面m的衝量變化示意圖 21
圖 2 11.原子間作用力對平面m造成的衝量變化示意圖 22
圖 2 12.von-Mises應力示意圖 [53] 23
圖 2 13.旋節線分離示意圖 24
圖 2 14.奈米多孔金模擬模型(a)四面體元素網格(b)網格平滑化 [60] 25
圖 3 1. 控制旋結線分離演化時間韌帶演化圖 27
圖 3 2.FCC結構多孔奈米金成型流程圖 28
圖 3 3.奈米多孔金300 K平衡後圖 28
圖 3 4.韌帶與比表面積關係 29
圖 3 5.升溫速率0.192 K/ps粗化動態圖 31
圖 3 6. 升溫速率0.25 K/ps粗化動態圖 31
圖 3 7. 升溫速率0.357 K/ps粗化動態圖 32
圖 3 8. 升溫速率0.625 K/ps粗化動態圖 32
圖 3 9. 升溫速率2.5 K/ps粗化動態圖 33
圖 3 10. 升溫速率25 K/ps粗化動態圖 33
圖 3 11.拉伸/壓縮示意圖 34
圖 3 12.衝擊模型複製示意圖 36
圖 3 13.衝擊示意圖 37
圖 4 1. ZY方向中心切片原子流向圖 39
圖 4 2.外側局部原子流向圖 40
圖 4 3. (a)粗化前韌帶。(b)粗化後韌帶與韌帶成長方向。(c)韌帶與節點原子流向。 40
圖 4 4.孔隙率與時間關係圖 41
圖 4 5.升溫過程中孔隙率與溫度關係圖 42
圖 4 6.升溫過程表面原子數與溫度關係圖 43
圖 4 7.溫度與時間單位躍階圖 44
圖 4 8.升溫速率與孔隙率變化量關係圖 45
圖 4 9.各升溫速率於800 K時的平均每秒孔隙率變化量 45
圖 4 10.升溫速率與HCP比例圖 46
圖 4 11.HCP比例與溫度關係圖 47
圖 4 12.升溫速率0.192 K/ps拉伸動態圖 48
圖 4 13. 升溫速率0.25 K/ps拉伸動態圖 49
圖 4 14.升溫速率0.357 K/ps拉伸動態圖 49
圖 4 15. 升溫速率0.625 K/ps拉伸動態圖 50
圖 4 16. 升溫速率2.5 K/ps拉伸動態圖 50
圖 4 17. 升溫速率25 K/ps拉伸動態圖 51
圖 4 18.升溫速率0.192 K/ps壓縮動態圖 51
圖 4 19.升溫速率0.25 K/ps壓縮動態圖 52
圖 4 20.升溫速率0.357 K/ps壓縮動態圖 52
圖 4 21.升溫速率0.625 K/ps壓縮動態圖 53
圖 4 22.升溫速率2.5 K/ps壓縮動態圖 53
圖 4 23.升溫速率25 K/ps壓縮動態圖 54
圖 4 24.拉伸應力應變圖 54
圖 4 25.壓縮應力應變圖 55
圖 4 26.平均韌帶直徑與升溫速率關係圖 55
圖 4 27.孔隙率70 %無粗化動能分布動態圖 57
圖 4 28.孔隙率50 %無粗化動能分布動態圖 57
圖 4 29.孔隙率30 %無粗化動能分布動態圖 58
圖 4 30.孔隙率70 %有粗化動能分布動態圖(使用25 K/ps升溫速率粗化後) 58
圖 4 31. 孔隙率50 %有粗化動能分布動態圖(使用25 K/ps升溫速率粗化後) 58
圖 4 32. 孔隙率30 %有粗化動能分布動態圖(使用25 K/ps升溫速率粗化後) 59
圖 4 33. 孔隙率50 %有粗化動能分布動態圖(使用0.625 K/ps升溫速率粗化後) 59
圖 4 34. 孔隙率30 %有粗化動能分布動態圖(使用0.192 K/ps升溫速率粗化後) 59
圖 4 35. 實心金衝擊試驗動能分布動態圖 60
圖 4 36.變型區域分布圖。 60
圖 4 37.孔隙率30 %(無粗化)衝擊波受孔隙影響圖。(a)動能集中於孔隙處。(b)衝擊波經過孔隙後變得不一致。 61
圖 4 38.孔隙率30 %(無粗化)體積應變分布與裂紋圖 61
圖 4 39. 孔隙率30 %(無粗化) 體積應變分布與裂紋剖面圖 62
圖 4 40.衝擊距離與平均原子動能關係圖。(a)70 % (b)50 % (c)30 % (d)70’ % (e)50’% (f)30 ’% (g)0 % (h)50 %升溫速率0.625 K/ps (i)30 %升溫速率0.192 K/ps。其中70’ %、50’ %與30’ %代表經過25 K/ps升溫速率粗化。 63
圖 4 41.衝擊距離與平均原子溫度關係圖。(a)70 % (b)50 % (c)30 % (d)70’ % (e)50’ % (f)30’ % (g)0 % (h)50 %升溫速率0.625 K/ps (i)30 %升溫速率0.192 K/ps。其中70’ %、50’ %與30’ %代表經過25 K/ps升溫速率粗化。 64
圖 4 42.衝擊距離與平均原子位能關係圖。(a)70 % (b)50 % (c)30 % (d)70’ % (e)50’ % (f)30 ’ % (g)0 % (h)50 %升溫速率0.625 K/ps (i)30 %升溫速率0.192 K/ps。其中70’ %、50’ %與30’ %代表經過25 K/ps升溫速率粗化。 65
圖 4 43. 衝擊距離與平均原子速度關係圖。(a)70 % (b)50 % (c)30 % (d)70’ % (e)50’ % (f)30 ’ % (g)0 % (h)50 %升溫速率0.625 K/ps (i)30 %升溫速率0.192 K/ps。其中70’ %、50’ %與30’ %代表經過25 K/ps升溫速率粗化。 66
圖 4 44.各孔隙率(無粗化)應變時間關係圖 67
圖 4 45.各孔隙率(無粗化)應力時間關係圖 67
圖 4 46.各孔隙率衝擊前HCP結構比例圖 68
圖 4 47.各孔隙率衝擊前總差排長度圖 68
圖 4 48.應變時間關係圖 69
圖 4 49.應力時間關係圖 69

表目次
表 1. 各升溫速率粗化後尺寸表 30


[1] G. Pia , F. Delogu, "Surface stresses and Young’s modulus in nanoporous Au foams," Scripta Materialia, Vols. 84-85, pp. 55-58, 01 08 2014.
[2] G. Pia, M. Carta, F. Delogu, "Nanoporous Au foams: Variation of effective Young's modulus with ligament size," Scripta Materialia, vol. 144, pp. 22-26, 01 02 2018.
[3] J.T. Zhang and C.M. Li, "Nanoporous metals: fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems," Chemical Society Reviews, vol. 41, pp. 7016-7031, 2012.
[4] X.Y. Lang, A. Hirata, T. Fujita and M.W. Chen, "Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors," Nature Nanotech, vol. 6, p. 232–236, 20 February 2011.
[5] A. N. Koya, X.C. Zhu, N. Ohannesian, A. A. Yanik, A. Alabastri, R.P. Zaccaria, R. Krahne, W.C. Shih and D. Garoli, "Nanoporous Metals: From Plasmonic Properties to Applications in Enhanced Spectroscopy and Photocatalysis," ACS Nano, vol. 15, p. 6038–6060, 2 April 2021.
[6] X. Zhai, Y. Ding, "Nanoporous Metal Electrocatalysts for Oxygen Reduction Reactions," Acta Physica Sinica, vol. 33, p. 1366, 15 07 2017.
[7] K. Wang, Y. Ding, "Carbon-free nanoporous gold based membrane electrocatalysts for fuel cells," Progress in Natural Science: Materials International, vol. 30, pp. 775-786, 01 12 2020.
[8] R.C. Newman, S.G. Corcoran, J. Erlebacher, M.J. Aziz and K. Sieradzki, "Alloy Corrosion," MRS Bulletin 24, p. 24–28, July 1999.
[9] M. Hakamada, M. Mabuchi, "Mechanical strength of nanoporous gold fabricated by dealloying," Scripta Materialia, vol. 56, pp. 1003-1006, June 2007.
[10] M. J. A. Hore and M. Laradji, "Dissipative particle dynamics simulation of the interplay between spinodal decomposition and wetting in thin film binary fluids," The Journal of Chemical Physics, vol. 132, p. 024908, 12 January 2010.
[11] W. Feng, Q. Kong ,X. Zhu, X. Xie, H. Zhou, Y. Qiu, and C. Sun, "Characterization and Thermal Stability Properties of Bulk Hierarchical Porous Pd Prepared by Kirkendall Effect and Dealloying Method," Journal of Nanomaterials, vol. 2018, p. 3532621, 05 April 2018.
[12] K. A. Dannemann, J. Lankford, "High strain rate compression of closed-cell aluminium foams," Materials Science and Engineering: A, vol. 293, pp. 157-164, 30 11 2000.
[13] J. H. Irving and John G. Kirkwood, "The Statistical Mechanical Theory of," The Journal of Chemical Physics, vol. 18, p. 817, 21 November 1949.
[14] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, et al., "Equation of State Calculations by Fast," The Journal of Chemical Physics, vol. 21, p. 1087, 06 March 1953.
[15] L. A. Girifalco and V. G. Weizer, "Application of the Morse Potential Function to Cubic Metals," Physical Review Journals, pp. 114, 687, 1 May 1959.
[16] A. Rahman, "Correlations in the Motion of Atoms in Liquid Argon," Phys. Rev., pp. 136, A405, 19 October 1964.
[17] L. Verlet, "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules," Physical Review Journals, vol. 98, p. 159, 5 July 1967.
[18] B. Quentre and C. Brot, "New method for searching for neighbors in molecular dynamics computations," Journal of Computational Physics, pp. 430-432, November 1973.
[19] D. Rapaport, "Large-scale molecular dynamics simulation using vector and parallel computers," Computer Physics Reports, pp. 1-53, December 1988.
[20] G.S.Grest, B. Dünweg, K. Kremer, "Vectorized link cell Fortran code for molecular dynamics simulations for a large number of particles," Computer Physics Communications, pp. 269-285, October 1989.
[21] M.S. Daw, S. M. Foiles and M. I. Baskes, "The embedded-atom method: a review of theory and applications," Materials Science Reports, pp. 251-310, 4 September 1992.
[22] D. A. Crowson, D. Farkas and S. G. Corcoran, "Geometric relaxation of nanoporous metals: The role of surface relaxation," Scripta Materialia, vol. 56, pp. 919-922, 29 03 2007.
[23] D. A. Crowson, D. Farkas and S. G. Corcoran, "Mechanical stability of nanoporous metals with small ligament sizes," Scripta Materialia, vol. 61, pp. 497-499, 10 05 2009.
[24] Y.H. Xian, J.J. Li, R. Wu, R. Xia , "Softening of nanocrystalline nanoporous platinum: A molecular dynamics simulation," Computational Materials Science, vol. 143, pp. 163-169, 15 02 2018.
[25] N. Beets, D. Farkas, S. Corcoran, "Deformation mechanisms and scaling relations in the mechanical," Acta Materialia, vol. 165, 1 December 2018.
[26] N.V. Priezjev, "Atomistic modeling of heat treatment processes for tuning the mechanical," Journal of Non-Crystalline Solids, vol. 518, pp. 128-133, 15 8 2019.
[27] S. Kumar, S.K. Das, "Characterization of mechanical properties and nano-porous structure of Aluminium-Magnesium alloy during multi-axial tensile deformation: An atomistic investigation," Journal of Alloys and Compounds, vol. 740, pp. 626-638, 05 04 2018.
[28] A. S. Ertürk, Y. O. Yildiz, M. Kirca, "Mechanical performance and morphological evolution of heat-treated nanoporous gold: A molecular dynamics study," Physica E Low-dimensional Systems and Nanostructures, vol. 108, pp. 15-21, 01 04 2019.
[29] G. Li, Y.B. Wang, M.Z. Xiang, Y. Liao, J. Chen, "Shock response of nanoporous magnesium by molecular dynamics simulations," International Journal of Mechanical Sciences, vol. 141, pp. 143-156, 01 06 2018.
[30] P. Smakulski, S. Pietrowicz, "A review of the capabilities of high heat flux removal by porous materials, microchannels and spray cooling techniques," Applied Thermal Engineering, pp. 636-646, 5 July 2016.
[31] X.Y. Sun, G.K. Xu, X.Y. Li, X.Q. Feng, and H.J. Gao, "Mechanical properties and scaling laws of nanoporous gold," Journal of Applied Physics, vol. 113, p. 023505, 21 June 2012.
[32] C. J.Ruestes, D. Farkas, A. Caro, E. M. Bringa, "Hardening under compression in Au foams," Acta Materialia, vol. 108, pp. 1-7, April 2016.
[33] V.S.Deshpande, N.A.Fleck, "High strain rate compressive behaviour of aluminium alloy foams," International Journal of Impact Engineering, pp. 277-298, March 2000.
[34] S.S. Hu, G.W. Wan, Y. Pan, J. Zhou, Y.H. Li, "Strain rate effect on the properties foam materials," Explosion and Shock Waves, pp. 13-18, 12 1 2003.
[35] C. Chen, T.J. Lu, N.A. Fleck, "Effect of imperfections on the yielding of two-dimensional foams," Journal of the Mechanics and Physics of Solids, vol. 47, pp. 2235-2272, 01 09 1999.
[36] K.Y.G McCullough, N.A Fleck, M.F Ashby, "Toughness of aluminium alloy foams," Acta Materialia, vol. 47, pp. 2331-2343, 22 06 1999.
[37] A.G. Hanssen, L. Olovsson, T. Børvik, and M. Langseth, "Close-Range Blast Loading of Aluminium Foam," in IUTAM Symposium on Mechanical Properties of Cellular Materials, Dordrecht, Springer Netherlands, 2009, pp. 169-180.
[38] Z. Xue, J.W. Hutchinson, "A comparative study of impulse-resistant metal sandwich plates," International Journal of Impact Engineering, vol. 30, pp. 1283-1305, 01 11 2004.
[39] B. Roschning, N. Huber, "Scaling laws of nanoporous gold under uniaxial compression: Effects of structural disorder on the solid fraction, elastic Poisson's ratio, Young's modulus and yield strength," Journal of the Mechanics and Physics of Solids, vol. 92, pp. 55-71, 01 07 2016.
[40] D. Ruan, G. Lu, B. Wang, T.X. Yu, "In-plane dynamic crushing of honeycombs—a finite element study," International Journal of Impact Engineering, vol. 28, pp. 161-182, 01 02 2003.
[41] Y. Liu ,H.X. Wu, B. Wang, "Gradient design of metal hollow sphere (MHS) foams with density gradients," Composites Part B: Engineering, vol. 43, pp. 1346-1352, 01 04 2012.
[42] Pia Giorgio, Delogu Francesco, "Coarsening of nanoporous Au: Relationship between structure and," Acta Materialia, vol. 99, pp. 29-38, 15 10 2015.
[43] J. M. Haile, Ian Johnston, A. John Mallinckrodt, et al., "Molecular Dynamics Simulation: Elementary Methods," Computers in Physics, vol. 7, p. 625, 6 November 1993.
[44] J. M. Haile, Ian Johnston, A. John Mallinckrodt, et al., Molecular Dynamics Simulation: Elementary Methods, Clemson, South Carolina: John Wiley & Sons, 1997, p. 625.
[45] R.A. Johnson, "Analytic nearest - neighbor model for FCC metals," Physical Review B, vol. 37, pp. 3924-3931, 1987.
[46] S. M. Foiles, M. I. Baskes, and M. S. Daw, "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys," Physical Review B, vol. 33, p. 7983, 15 06 1986.
[47] D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, Academic Press, 1996.
[48] N. Chandra, S. Namilae, and C. Shet, "Local elastic properties of carbon nanotubes in the presence of Stone-Wales defects," Physical Review B, vol. 69, p. 094101, 2 March 2004.
[49] N. Tokita and M. Hirabayashi, "Voronoi space division of a polymer: Topological effects, free volume, and surface end segregation," J. Chem. Phys., vol. 496, p. 496, 2004.
[50] 吳政達, "多重粒子法與分子動力學應用於奈米轉印製程研究," 博士論文, 國立成功大學, 2008.
[51] W. Mattson ,B. M.Rice, "Near-neighbor calculations using a modified cell-linked list method," Computer Physics Communications, vol. 119, pp. 135-148, 2 June 1999.
[52] R. Clausius, "On a mechanical theorem applicable to heat," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 40, pp. 122-127, 1 8 1870.
[53] R. Patel , G. Riveros , D. Thompson , E. Perkins , J.J. Hoover, J. Peters and A. Tordesillas, "A Transdisciplinary Approach for Analyzing Stress Flow Patterns in Biostructures," Mathematical and Computational Applications, vol. 24, p. 47, 26 04 2019.
[54] C. P. Grant, "Spinodal decomposition for the cahn-hilliard equation," Communications in Partial Differential Equations, vol. 18, pp. 453-490, 1 january 1993.
[55] P.J. HoogerbruggeJ, M.V.A. Koelman, "Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics," Europhysics Letters, vol. 19, p. 155, 25 July 2007.
[56] J.M.V.A. Koelman, P.J. Hoogerbrugge, "Dynamic simulations of hard-sphere suspensions under steady shear," Europhysics Letters, vol. 21, pp. 363-368, 1993.
[57] D. Faken, H. Jónsson, "Systematic analysis of local atomic structure combined with 3D computer graphics," Computational Materials Science, vol. 2, pp. 279-286, March 1994.
[58] A. Stukowski, "Structure identification methods for atomistic simulations of crystalline materials," Modelling and Simulation in Materials Science and Engineering, 28 5 2012.
[59] P. M. Larsen, "Revisiting the Common Neighbour Analysis and the Centrosymmetry Parameter 19 March 2020.," Computational Physics, 19 3 2020.
[60] A. Stukowski, "Computational Analysis Methods in Atomistic Modeling of Crystals," JOM 3, vol. 66, pp. 399-407, 2014.
[61] J. A. Stuckner et al., "AQUAMI: An Open Source Python Package and GUI for the Automatic Quantitative Analysis of Morphologically Complex Multiphase Materials," Computational Materials Science, vol. 139, pp. 320-329, Nov 2017.
[62] N. Gunkelmann, Y.Rosandi, C.J. Ruestes, E. M. Bringa, H.M. Urbassek, "Compaction and plasticity in nanofoams induced by shock waves: A molecular dynamics study," Computational Materials Science, vol. 119, p. 27, 15 June 2016.
[63] M. Guillotte, J. Godet, L. Pizzagalli, "A fully molecular dynamics-based method for modeling nanoporous gold," Computational Materials Science, vol. 161, p. 135–142, 2019.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊