跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/18 11:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾子芯
研究生(外文):Tzu-Hsin Tseng
論文名稱:利用電漿輔助化學沉積提升鋰離子電池中富鎳三元正極材料電化學性能之應用
論文名稱(外文):Improved Electrochemical Performance of Nickel-rich Ternary Cathode Materials for Li ion Batteries via Plasma-assisted Chemical Vapor Deposition
指導教授:劉偉仁劉偉仁引用關係
指導教授(外文):Wei-Ren Liu
口試委員:張仍奎楊純誠
口試委員(外文):Jeng-Kuei ChangChun-Chen Yang
口試日期:2022-01-20
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:126
中文關鍵詞:鋰離子電池富鎳三元正極材料電漿改質濺鍍TiN 披覆TiO2 披覆
外文關鍵詞:Lithium-ion batteriesRich-nickel ternary cathode materialNCM811SputteringTiN coatingTiO2 coating
DOI:10.6840/cycu202200069
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鋰離子電池作為一種新型的綠色能源,且具有多方面的優點,被廣泛應用於手機和筆記型電腦等數碼電子產品,純電動及混合動力新能源汽車,以及能源儲能系統之中。正極材料是鋰離子電池的關鍵組成,其不僅作為電極材料參與電化學反應,同時還要充當鋰離子源。理想的正極材料首先要有較高的化學穩定性和熱穩定性以保證充放電的安全,同時要有良好的電化學性能,具備較大的電容量與工作電壓、優良的循環和倍率性能。
本實驗以廠商提供的商用富鎳正極材料粉末LiNi0.8Co0.1Mn0.1O2(NCM811)在經過混漿塗佈後,再利用電漿濺鍍的方式進行表面改質,其中我們選擇了氮化鈦以及氧化鈦作為改質材料,而在電漿處理上因應不同改質材料的性質需選擇直流或射頻濺鍍。在電漿改質後,由於TiN良好的導電性與導熱性使其提升初始電容量至218.3 mAh/g,並且高溫下的循環穩定性在40圈以前依然維持在200 mAh/g,而後才漸漸有下降的趨勢,以及透過DSC可以看到放熱峰後移了53oC,安全性能也得到改善;TiO2因為是絕緣體,相對導電性沒有像TiN來的好,因此我們著重討論TiN改質。將TiN改質後的極片放在大氣環境下五天後,透過XPS可以明顯看出因TiN披覆而有效保護極片,使NCM811不與空氣中的CO2反應產生Li2CO3。將極片進行充放電50圈後,從SEM可以看出改質後的NCM顆粒被完整的保護,而原始的NCM811出現巨大的裂痕,進而影響電化學表現。經由一系列改質後的極片之結構分析與電化學分析,認為電漿濺鍍能有效控制改質膜厚以及品質穩定性,並且在正極材料的安全性與循環穩定性皆有提升,值得注意的是電漿改質的方式是有望一次生產大量,因此是具有發展潛力的改質方式應用於正極材料。
With the demand of human society for energy, the supply of green, clean and efficient energy has become one of the serious and urgent issue faced by today's science. Lithium-ion batteries (LIBs) are the novel green energy due to their high capacity, low self-discharge, high open circuit voltage, non-memory effect, long cycling life and low pollution. Therefore, they have been widely used in cell phone, laptop, electric or hybrid electric vehicles, grid energy storage, etc. The cathode serves as a key component in LIB, it not only participates in electrochemical reaction as an electrode material but also at as a source of lithium ions. As an ideal cathode material, the first it needs to have high chemical and thermal stability to ensure the safety of charging and discharging; meanwhile, it needs to have good electrochemical performance, large specific capacity, large working voltage, excellent cycle and multiplier performance. Furthermore, it should be easier to prepare, more friendly to the environment and cheaper than other material.
In the experiment, we used the commercial rich nickel cathode material, provided by the manufacturer. After dispersing mixture, we modified surface by sputtering. We took titanium nitride and titanium oxide as modification materials, and we would choose DC or RF sputtering depending on the nature of the modification materials. We could observe the improvement of initial capacity, cyclic life, C-rate and safety by the good thermal and electrical conductivity of TiN. Next, we were going to discussed the modification of TiN because TiO2 was an insulator and its conductivity was not as good as that of TiN. After TiN-modification, we kept the electrode in air for five days. It was obvious from XPS that TiN effectively protects the electrode so NCM811 would not react with the CO2 and produce Li2CO3 in air. After charging and discharging for 50 cycles, SEM show that after TiN-modified, NCM particles were completely protected. Pristine NCM811, by contrast, had huge cracks, which would affect the electrochemical performance. After a series of structure and electrochemical analysis of the TiN-modified, conformed that sputtering can effectively control the modified film thickness and stability, the safety and cyclic stability of the cathode material have been improved by TiN- modification. Furthermore, the method of modification can be able to mass-produce by sputtering. In conclusion, it is a cathode material with great potential development.
摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 xii
第一章
緒論 1
1.1 前言 1
1.2 研究背景及動機 2
第二章
文獻回顧 3
2.1 鋰離子電池基礎簡介 3
2.1.1 鋰離子電池歷史 3
2.1.2 鋰離子電池特性 6
2.1.3 鋰離子電池組成與工作原理 7
2.2 正極材料 8
2.2.1 正極材料性質與介紹 8
2.2.2 三元正極材料改質方法 11
2.3 電漿簡介 23
2.3.1 濺射原理 23
2.3.2 濺射材料選擇 24
第三章
實驗步驟和方法 26
3.1 實驗藥品與溶劑 26
3.2 實驗流程 27
3.2.1 正極極板製備 27
3.2.2 極板進行電漿表面改質 TiN 29
3.2.3 極板進行電漿改質極板進行電漿改質TiO2 30
3.2.4 鋰離子電池組裝鋰離子電池組裝 31
3.3 濺鍍設備介紹濺鍍設備介紹 32
3.3.1 直流式濺鍍機直流式濺鍍機(DC sputter) 32
3.3.2 射頻射頻濺鍍機濺鍍機(RF sputter) 33
3.4 材料分析儀器材料分析儀器 34
3.4.1 X光粉末繞射儀光粉末繞射儀 (XRD) 34
3.4.2 場發掃描式電子顯微鏡場發掃描式電子顯微鏡 (FE-SEM) 36
3.4.3 穿透式電子顯微鏡穿透式電子顯微鏡 (TEM) 38
3.4.4 X射線光電子光譜儀射線光電子光譜儀 (XPS) 39
3.4.5 四點探針四點探針 40
3.4.6 微示差掃描熱卡分析儀微示差掃描熱卡分析儀 (DSC) 41
3.4.7 熱重分析儀熱重分析儀(TGA) 43
3.4.8 電性測試儀電性測試儀(外接烘箱外接烘箱) 44
3.4.9 電化學阻抗頻譜法電化學阻抗頻譜法 45
3.4.10 循環伏安法循環伏安法 47
第四章
第四章 研究結果與討論研究結果與討論 48
4.1 高鎳三元正極材料特性分析高鎳三元正極材料特性分析 48
4.1.1 粉體結構分析及形貌檢粉體結構分析及形貌檢測測 48
4.1.2 電化學反應機制電化學反應機制 52
4.2 高鎳三元正極材料濺鍍高鎳三元正極材料濺鍍TiN之特性分析之特性分析 55
4.2.1 NCM811與與NCM811-TiN結構分析及形貌檢測結構分析及形貌檢測 55
4.2.2 NCM811與與NCM811-TiN之電化學性質分析之電化學性質分析 62
4.2.3 NCM811與與NCM811-TiN之熱穩定性分析之熱穩定性分析 76
4.2.4 TiN膜在正極材料中的特性分析膜在正極材料中的特性分析 78

4.3 高鎳三元正極材料濺鍍高鎳三元正極材料濺鍍TiO2之特性分析之特性分析 87
4.3.1 極板改質前後之結構分析及形貌檢測極板改質前後之結構分析及形貌檢測 87
4.3.2 極板改質前後之電化學性質分析極板改質前後之電化學性質分析 91
4.3.3 極板改質前後極板改質前後之熱穩定性分析之熱穩定性分析 98
第五章
第五章 結論 99
參考文獻 101


圖目錄
圖 2-1 電池種類分類表。[8]........................................................................................5
圖 2-2 鋰離子電池發展史。[9]....................................................................................5
圖 2-3 三元正極材料不同陽離子比例對應的理論電容量及高溫穩定性比較圖。
[28]...................................................................................................................10
圖 2-4 NCM111 與不同 Al 含量摻雜的 NCM111 之(a) 倍率性能,(b) 循環性能。
[36]...................................................................................................................12
圖 2-5 (a) F 摻雜的 NCM 結構,(b) 改質後大幅提升之循環性能表現。[39]......13
圖 2-6 雙層塗層保護 NCM622 顆粒之示意圖。[48] ..............................................14
圖 2-7 (a) 經過表面改質後移了放熱峰的位置,(b) 且提升了循環穩定性。[49] 15
圖 2-8 LZO-NCM811 正極材料示意圖,包覆在 NCM811 顆粒表面上的非晶層 LiZr-O。[51].......................................................................................................15
圖 2-9 (a) NCM/MCMB 與 (b) NCM-LFP/MCMB 軟 包 電 池 擠 壓 測 試 ,(c)
NCM/MCMB 與 (d) NCM-LFP/MCMB 軟包電池充飽至 4.5 V 後進行金屬
穿刺實驗;(e) NCM/MCMB 與 (f) NCM-LFP/MCMB 之 TGA 曲線。[53]
..........................................................................................................................17
圖 2-10 在 (a) NCM 和(b) LiNbO3@NCM 薄膜電極上形成 CEI 膜的示意圖。[63]
..........................................................................................................................18
圖 2-11 (a) ALD-10@NCM622 與 (b) NCM622 全電池配置下循環 1400 次循環後
的 BF-STEM 圖像,將重疊圖像串起以重建兩個相鄰次級粒子的表面。
[65]...................................................................................................................19
圖 2-12 LiCoO2和 TiO2 塗層 LiCoO2 的 (a) 初始充/放電曲線,插圖為初始庫侖效
率;(b) 第一個循環的 dQ/dV ;(c) 在 3-4.5 V 範圍內的 1 C 循環性能;(d)
第 100 次循環的容量保持率。[66]...............................................................20
圖 2-13 LCO-bare 和 LCO/TO5 在 1C 下循環 10 次後的 XPS 光譜。[67]............20
圖 2-14 NCM/AZO-120s 的 TEM 橫截面圖像,(b) NCM 薄膜、(c) AZO 薄膜、(d)
NCM/AZO 界面與 (e) AZO/不鏽鋼界面的 HRTEM 橫截面圖像,(f) (104)
晶面與基板的位置關係示意圖。[68]...........................................................21
圖 2-15 LiFePO4 與經由 TiN 改質五分鐘、十分鐘與 Al2O3 改質五分鐘的正極材
料 (a) 循環性能,(b) 倍率性能。[69]...........................................................22
圖 3-1 極板製備流程示意圖 ......................................................................................28
圖 3-2 電漿處理 TiN 薄膜長成在 NCM811 極板之上實驗流程示意圖。.............29
圖 3-3 電漿處理 TiO2 薄膜長成在 NCM811 極板之上實驗流程示意圖。............30
圖 3-4 組裝電池示意圖。 ..........................................................................................31
圖 3-5 (a) 濺鍍系統之腔體,(b) DC 直流電源供應器。.........................................32
圖 3-6 射頻交流 (RF) 電源供應器。.........................................................................33
圖 3-7 桌上型 X 光繞射儀。 .....................................................................................35
圖 3-8 (a) 粉體載台、 (b) 零背景載台。..................................................................35
圖 3-9 台灣大學所有超高解析場發射掃描式電子顯微鏡。 ..................................37
圖 3-10 中原大學所有超高解析場發射掃描式電子顯微鏡。 ................................37
圖 3-11 (a) 雙束型聚焦離子束系統 (FIB)、 (b) 穿透式電子顯微鏡 (TEM)。 .....38
圖 3-12 X 光光電子能譜儀 (XPS)。 .........................................................................39
圖 3-13 四點探針。 ....................................................................................................40
圖 3-14 DSC Q20 掃描式熱差分析儀。....................................................................42
圖 3-15 (a) DSC 六角形高密閉性模具,(b) 固定器。 ............................................42
圖 3-16 熱重分析儀。 ................................................................................................43
圖 3-17 充放電儀外接烘箱。 ....................................................................................44
圖 3-18 交流阻抗示意圖。[80]..................................................................................45
圖 3-19 SP200 電化學分析儀。.................................................................................46
圖 3-20 (a) 未經充放電之等效電路圖,(b) 經過三圈活化後之等效電路圖。.....46
圖 4-1 商用高鎳三元正極材料 NCM811 之 XRD 圖譜。.......................................48
圖 4-2 NCM811 之晶體結構。 ..................................................................................49
圖 4-3 (a)-(c) NCM811 正極材料粉體的 SEM 表面形貌。.....................................50
圖 4-4(a) NCM811 正極材料粉體的 SEM 表面形貌, (b)-(f)為 NCM81 粉體的 EDS
mapping,依序為 (b) Ni、Co、Mn, (c) O, (d) Ni, (e) Co, (f) Mn。 ...............50
圖 4-5 NCM811 粉末在空氣的環境下以升溫速率 10oC/min 之 TGA 曲線。.......51
圖 4-6 NCM811 在未經充放電前與充放電完成後的 XRD 圖譜。.......................53
圖 4-7 NCM811 在 3-4.3 V 下進行充放電的 In-situ XRD (a) 1D , (b) 2D 圖譜,充
放電之電流密度為 0.2 C。............................................................................54
圖 4-8 NCM811, NCM-TiN7, NCM-TiN10 極片的 XRD 圖譜。 ............................55
圖 4-9 NCM811, NCM-TiN7 之 XRD 透過 TOPAS 擬和圖譜。.............................57
圖 4-10 (a, b) NCM811 與 (c, d) NCM-TiN7 極板不同倍率下的 SEM。................58
圖 4-11 (a)-(f) 為 NCM-TiN7 極板的 EDS mapping ,依序為 (a) NCM-TiN7 極板的
SEM 表面形貌, (b) Ti (c) F (d) Ni, (e )Co, (f) Mn。......................................59
圖 4-12 (a, b) 為 NCM-TiN7 極板不同倍率下的 TEM ,(c) 為做線掃描放大之 TEM
圖,(d) 為線掃描所得之元素分布圖。........................................................60
圖 4-13 NCM, NCM-TiN7, NCM-TiN10 放在大氣環境下五天後之 XPS 圖譜,其
中(a) Ti 譜, (b) N 譜, (c) C 譜, (d) O 譜。 ......................................................61
圖 4-14 (a)NCM, (b) NCM-TiN7 室溫下前三圈的充放電曲線 ...............................62
圖 4-15 (a, b) 為 NCM811, NCM-TiN7, NCM-TiN10 之循環性能,(c, d) 為庫侖效
率,其右下插圖為局部放大之庫侖效率。..................................................64
圖 4-16 在 0.5 C 下不同圈數的充放電曲線,(a, c, e) 室溫下依序為 NCM811,
NCM-TiN7, NCM-TiN10,(b, d, f) 55OC 下依序為 NCM811, NCM-TiN7,
NCM-TiN10。.................................................................................................66
圖 4-17 在高溫下循環 (a) 第 20 圈與 (b) 第 40 圈的 dQ/dV 曲線圖。...................68
x
doi:10.6840/cycu202200069
圖 4-18 (a) 為 NCM811, NCM-TiN7, NCM-TiN10 在室溫下的倍率性能, (b, c, d)
依序分別為 NCM811、NCM-TiN7、NCM-TiN10 在每個電流密度下第五
圈的充放電曲線。..........................................................................................69
圖 4-19 (a) 未經過充放電前與 (b) 經過前三圈 0.1 C 充放電後 NCM811, NCM-TiN7,
NCM-TiN10 的 EIS 阻抗頻譜圖。................................................................71
圖 4-20 (a) NCM811 與 (b) NCM-TiN7 前三圈的 CV 測試圖。 .............................72
圖 4-21 (a) NCM811 和 (b) NCM-TiN7 不同掃描速率 CV 曲線, (c) NCM811 與 (d)
NCM-TiN7 透過每個氧化還原峰之 Ip-v
1/2 圖和計算出的鋰離子擴散係數
(DLi+)。.............................................................................................................73
圖 4-22 (a, c) NCM811 與 (b, d) NCM-TiN7 在 20 分鐘內以 0.1 C 進行充電的恆流
間歇滴定 (GITT) 曲線圖。............................................................................75
圖 4-23 (a) NCM811 與 (b) NCM-TiN7 以 0.1 C 進行充電的充電曲線。..............76
圖 4-24 NCM 與 NCM-TiN7 在空氣環境下以升溫速率 10oC/min 之 DSC 曲線。
..........................................................................................................................77
圖 4-25 (a) NCM811 與(b) NCM-TiN7 經過充放電 50 次後的 XRD。..................78
圖 4-26 NCM811 , NCM-TiN7 室溫下充放電 50 圈後之 XRD 透過 TOPAS 擬和圖
譜。..................................................................................................................80
圖 4-27 (a) NCM811 與 (b) NCM-TiN7 經過充放電 50 次後的 SEM。 .................81
圖 4-28 (a) NCM811 表面形貌與 (b)-(c) 元素分析, (b) 為碳譜, (c) 為氟譜。 .81
圖 4-29 正極材料充放電 50 圈後之離子轟擊 0 次、1 次、2 次之 XPS (a) NCM811
之 F 譜, (b) NCM-TiN7 之 F 譜, (c) NCM811 之 O 譜, (d) NCM-TiN7
之 O 譜, (e) NCM811 之 N 譜, (f) NCM-TiN7 之 N 譜。....................83
圖 4-30 NCM, NCM-TiN7, NCM-TiN10 以及鋁箔透過四點探針測得表面片電阻及
電導率。..........................................................................................................84
圖 4-31 (a) NCM811 與 (b) NCM-TiN7 極板的保護機制示意圖。.........................85
圖 4-32 NCM811 與 NCM-TiO7 極版的 XRD 圖譜。.............................................87
圖 4-33 NCM811, NCM-TiO7 之 XRD 透過 TOPAS 擬和圖譜。...........................88
圖 4-34 (a, b) NCM811 與(c, d) NCM-TiO7 極板不同倍率下的 SEM 。 ...............90
圖 4-35 (a)-(f) 為 NCM-TiN7 極板的 EDS mapping ,依序為 (a) NCM-TiN7 極板的
SEM 表面形貌, (b) Ti (c) F (d) Ni, (e) Co, (f) Mn。......................................90
圖 4-36 NCM, NCM-TiO7 之 XPS 圖譜,其中(a) Ti 譜, (b) O 譜。 .......................91
圖 4-37 (a, b) 為 NCM811, NCM-TiO7 之循環性能,(c, d)為庫侖效率,其右下插
圖為局部放大之庫侖效率。..........................................................................92
圖 4-38 在 0.5 C 下不同圈數的充放電曲線,(a,b)室溫下分別為 NCM811, NCMTiO7,(c, d) 55oC 下分別為 NCM811 , NCM-TiO7。 .................................94
圖 4-39 為 NCM811 , NCM-TiN7, NCM-TiN10 在室溫下的倍率性能。...............95
圖 4-40 分別為 (a) NCM811 與 (b) NCM-TiO7 在每個電流密度下第五圈的充放電
曲線。..............................................................................................................95
圖 4-41 (a) 未經充放電與 (b) 前三圈 0.1 C 充放電後 NCM811, NCM-TiO7 的 EIS
阻抗頻譜圖。..................................................................................................97
圖 4-42 NCM 與 NCM-TiO7 在空氣環境下以升溫速率 10oC/min 之 DSC 曲線。
..........................................................................................................................98

表目錄
表 1 一般常見的鋰離子電池正極材料比較。[18].....................................................9
表 2 混漿配方比..........................................................................................................28
表 3 NCM811, NCM-TiN7, NCMTiN10 之(003)與(104)衍射峰強度計算之比值。
............................................................................................................................56
表 4 XRD refinement 所得晶格參數。......................................................................57
表 5 NCM811, NCM-TiN7 之 XRD 計算陽離子混排程度佔比。...........................57
表 6 (a) 未經過充放電前與(b)三圈 0.1C 充放電後 NCM811, NCM-TiN7, NCMTiN10 之阻抗比較。.........................................................................................71
表 7 NCM 與 NCM-TiN7 未經充放電與充放電 50 圈後之(003)與(104)衍射峰強度
計算之比值。....................................................................................................79
表 8 NCM811, NCM-TiN7 室溫下充放電 50 圈後之 XRD refinement 所得晶格參
數。....................................................................................................................80
表 9 NCM811, NCM-TiN7 室溫下充放電 50 圈後之 XRD 計算陽離子混排程度佔
比。....................................................................................................................80
表 10 NCM, NCM-TiN7, NCM-TiN10 以及鋁箔透過四點探針測得電阻、表面片電
阻及電導率。....................................................................................................84
表 11 NCM811, NCM-TiO7 之(003)與(104)衍射峰強度計算之比值。..................88
表 12 NCM811, NCM-TiO7 之 XRD refinement 所得晶格參數。 ..........................89
表 13 NCM811, NCM-TiO7 之 XRD 計算陽離子混排程度佔比。.........................89
表 14 (a) 未經過充放電前與(b)三圈 0.1C 充放電後 NCM811, NCM-TiO7 之阻抗比
較。....................................................................................................................97
[1] G. Hu, Y. Tao, Y. Lu, J. Fan, L. Li, J. Xia, Y. Huang, Z. Zhang, H. Su, Y. Cao. Enhanced Electrochemical Properties of LiNi0.8Co0.1Mn0.1O2 Cathode Materials Modified with Lithium‐Ion Conductive Coating LiNbO3. ChemElectroChem, 2019, 6(18), 4773-4780.
[2] H. Yu, S. Wang, Y. Hu, G. He, I.P. Parkin, H. Jiang. Lithium-conductive LiNbO3 coated high-voltage LiNi0.5Co0.2Mn0.3O2 cathode with enhanced rate and cyclability. Green Energy Environ., 2020.
[3] Q. Guo, J. Huang, Z. Liang, H. Potapenko, M. Zhou, X. Tang, S. Zhong. The use of a single-crystal nickel-rich layered NCM cathode for excellent cycle performance of lithium-ion batteries. New J. Chem., 2021, 45(7), 3652-3659.
[4] S. Maiti, H. Sclar, R. Sharma, N. Vishkin, M. Fayena‐Greenstein, J. Grinblat, M. Talianker, L. Burstein, N. Solomatin, O. Tiurin. Understanding the Role of Alumina (Al2O3), Pentalithium Aluminate (Li5AlO4), and Pentasodium Aluminate (Na5AlO4) Coatings on the Li and Mn‐Rich NCM Cathode Material 0.33 Li2MnO3· 0.67 Li (Ni0.4Co0.2Mn0.4)O2 for Enhanced Electrochemical Performance. Adv. Funct. Mater., 2021, 31(8), 2008083.
[5] D. Becker, M. Börner, R. Nölle, M. Diehl, S. Klein, U. Rodehorst, R. Schmuch, M. Winter, T. Placke. Surface modification of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material by tungsten oxide coating for improved electrochemical performance in lithium-ion batteries. ACS Appl. Mater. Interfaces, 2019, 11(20), 18404-18414.
[6] J. Li, L.E. Downie, L. Ma, W. Qiu, J. Dahn. Study of the failure mechanisms of LiNi0. 8Mn0. 1Co0. 1O2 cathode material for lithium ion batteries. J. Electrochem. Soc., 2015, 162(7), A1401.
[7] Y. Lu, X. Rong, Y.-S. Hu, L. Chen, H. Li. Research and development of advanced battery materials in China. Energy Stor. Mater., 2019, 23, 144-153.
[8] T. Li, X.-Z. Yuan, L. Zhang, D. Song, K. Shi, C. Bock. Degradation mechanisms and mitigation strategies of nickel-rich NMC-based lithium-ion batteries. Electrochem. Energ. Rev., 2020, 3(1), 43-80.
[9] M.S. Whittingham, Chalcogenide battery. Google Patents, 1977.
[10] M.S. Whittingham, Electrical energy storage and intercalation chemistry. 1976, 192(4244) 1126-1127.
[11] J.-H. Kim, K.-J. Park, S.J. Kim, C.S. Yoon, Y.-K. Sun. A method of increasing the energy density of layered Ni-rich Li [Ni1− 2xCoxMnx]O2 cathodes (x= 0.05, 0.1, 0.2). J. Mater. Chem. A, 2019, 7(6), 2694-2701.
[12] J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough, P. Khalifah, Q. Li, B.Y. Liaw, P. Liu, A. Manthiram. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy, 2019, 4(3), 180-186.
[13] D. Murphy, F. Di Salvo, J. Carides, J. Waszczak. Topochemical reactions of rutile related structures with lithium. Mater. Res. Bull., 1978, 13(12), 1395-1402.
[14] M. Wakihara, O. Yamamoto. Lithium ion batteries: fundamentals and performance. JWS., 2008.
[15] Z. Yang, W. Yang, D.G. Evans, G. Li, Y. Zhao. Enhanced overcharge behavior and thermal stability of commercial LiCoO2 by coating with a novel material. Electrochem commun, 2008, 10(8), 1136-1139.
[16] C.-X. Zu, H. Li. Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci., 2011, 4(8), 2614-2624.
[17] R.S. Carmichael. Practical handbook of physical properties of rocks and minerals, 1988, CRC press 2017.
[18] X. Dong, J. Yao, W. Zhu, X. Huang, X. Kuai, J. Tang, X. Li, S. Dai, L. Shen, R. Yang. Enhanced high-voltage cycling stability of Ni-rich cathode materials via the self-assembly of Mn-rich shells. J. Mater. Chem. A, 2019, 7(35), 20262-20273.
[19] J. Dahn, U. Von Sacken, M. Juzkow, H. Al‐Janaby. Rechargeable LiNiO2/carbon cells. J. Electrochem. Soc., 1991, 138(8), 2207.
[20] S.S. Zhang. Problems and their origins of Ni-rich layered oxide cathode materials. Energy Stor. Mater., 2020, 24, 247-254.
[21] M. Tuccillo, O. Palumbo, M. Pavone, A.B. Muñoz-García, A. Paolone, S. Brutti. Analysis of the Phase Stability of LiMO2 Layered Oxides (M= Co, Mn, Ni). Crystals, 2020, 10(6), 526.
[22] J. Kim, H. Lee, H. Cha, M. Yoon, M. Park, J. Cho. Prospect and reality of Ni‐Rich cathode for commercialization. Adv. Energy Mater., 2018, 8(6), 1702028.
[23] R. Jung, M. Metzger, F. Maglia, C. Stinner, H.A. Gasteiger. Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries. Meeting abstr., 2017, 164(7), A1361.
[24] H.H. Ryu, G.T. Park, C.S. Yoon, Y.K. Sun. Microstructural degradation of Ni‐rich Li [NixCoyMn1−x−y]O2 cathodes during accelerated calendar aging. Small, 2018, 14(45), 1803179.
[25] F. Wang, Y. Zhang, J. Zou, W. Liu, Y. Chen. The structural mechanism of the improved electrochemical performances resulted from sintering atmosphere for LiNi0.5Co0.2Mn0.3O2 cathode material. J. Alloys Compd., 2013, 558, 172-178.
[26] C.-H. Jo, D.-H. Cho, H.-J. Noh, H. Yashiro, Y.-K. Sun, S.T. Myung. An effective method to reduce residual lithium compounds on Ni-rich Li [Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer. Nano Res., 2015, 8(5), 1464-1479.
[27] W. Li, E.M. Erickson, A. Manthiram. High-nickel layered oxide cathodes for lithium-based automotive batteries, Nat. Energy, 2020, 5(1), 26-34.
[28] P. Guan, L. Zhou, Z. Yu, Y. Sun, Y. Liu, F. Wu, Y. Jiang, D. Chu. Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries. J. Energy Chem., 2020, 43, 220-235.
[29] S.S. Zhang, X. Fan, C. Wang. Enhanced Electrochemical Performance of Ni‐Rich Layered Cathode Materials by using LiPF6 as a Cathode Additive. ChemElectroChem, 2019, 6(5), 1536-1541.
[30] B. Han, B. Key, S.H. Lapidus, J.C. Garcia, H. Iddir, J.T. Vaughey, F. Dogan. From coating to dopant: how the transition metal composition affects alumina coatings on Ni-rich cathodes. ACS Appl. Mater. Interfaces, 2017, 9(47), 41291-41302.
[31] X. Li, K. Zhang, M. Wang, Y. Liu, M. Qu, W. Zhao, J. Zheng. Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2. Sustain. Energy Fuels, 2018, 2(2), 413-421.
[32] B. Xiangtao, B. Liqing, Z. Weidong. Research progress on coating and doping modification of nickel rich ternary cathode materials. J INORG MATER, 2020, 35(9), 972-986.
[33] S. Liu, Z. Dang, D. Liu, C. Zhang, T. Huang, A. Yu. Comparative studies of zirconium doping and coating on LiNi0.6Co0.2Mn0.2O2 cathode material at elevated temperatures. J. Power Sources, 2018, 396, 288-296.
[34] G. Li, Z. Zhang, R. Wang, Z. Huang, Z. Zuo, H. Zhou. Effect of trace Al surface doping on the structure, surface chemistry and low temperature performance of LiNi0.5Co0.2Mn0.3O2 cathode. Electrochim. Acta, 2016, 212, 399-407.
[35] F. Schipper, H. Bouzaglo, M. Dixit, E.M. Erickson, T. Weigel, M. Talianker, J. Grinblat, L. Burstein, M. Schmidt, J. Lampert. From surface ZrO2 coating to bulk Zr doping by high temperature annealing of nickel‐rich lithiated oxides and their enhanced electrochemical performance in lithium ion batteries. Adv. Energy Mater., 2018, 8(4), 1701682.
[36] S. Yanxia, H. Chunxi, S. Yue, Z. Jinbo, Z. Lijuan, L. Xiang, R. Xiufeng, D. Shengde, Z. Guotai, S. Chao. Improved lithium ion diffusion and stability of a LiNi0.8Co0.1Mn0.1O2 cathode via the synergistic effect of Na and Mg dual-metal cations for lithium ion battery. J. Electrochem. Soc., 2020, 167(2), 020522.
[37] X. Liu, S. Wang, L. Wang, K. Wang, X. Wu, P. Zhou, Z. Miao, J. Zhou, Y. Zhao, S. Zhuo. Stabilizing the high-voltage cycle performance of LiNi0.8Co0.1Mn0.1O2 cathode material by Mg doping. J. Power Sources, 2019, 438, 227017.
[38] Z.-Y. Li, H.-L. Zhang. The improvement for the electrochemical performances of LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium-ion batteries by both the Al-doping and an advanced synthetic method. Int. J. Electrochem. Sci, 2019, 14, 3524-3534.
[39] G. Li, Z. Huang, Z. Zuo, Z. Zhang, H. Zhou. Understanding the trace Ti surface doping on promoting the low temperature performance of LiNi1/3Co1/3Mn1/3O2 cathode. J. Power Sources, 2015, 281, 69-76.
[40] L. Yv, J. Wang, X. Li, L. Dai, Z. Shao. Preparation and electrochemical properties of Ti-doped LiNi1/3Co1/3Mn1/3O2 cathode materials via co-precipitation route. Ionics, 2021, 27(9), 3769-3776.
[41] H. Kim, S.-B. Kim, D.-H. Park, K.-W. Park. Fluorine-Doped LiNi0.8Mn0.1Co0.1O2 Cathode for High-Performance Lithium-Ion Batteries. Energies, 2020, 13(18), 4808.
[42] J. Kim, H. Kim, K. Kang. Surface-modified spinel LiNi0.5Mn1.5O4 for Li-ion batteries. J. Korean Ceram. Soc., 2018, 55(1), 21-35.
[43] Z. Chen, Y. Qin, K. Amine, Y.-K. Sun. Role of surface coating on cathode materials for lithium-ion batteries. J. Mater. Chem., 2010, 20(36), 7606-7612.
[44] R. Zhao, J. Liang, J. Huang, R. Zeng, J. Zhang, H. Chen, G. Shi. Improving the Ni-rich LiNi0.5Co0.2Mn0.3O2 cathode properties at high operating voltage by double coating layer of Al2O3 and AlPO4. J. Alloys Compd.,2017, 724, 1109-1116.
[45] C.M. Julien, A. Mauger, Functional behavior of AlF3 coatings for high-performance cathode materials for lithium-ion batteries, AIMS Mater Sci, 2019, 6(3), 406-440.
[46] H. Yuan, W. Song, M. Wang, Y. Gu, Y. Chen. Lithium-ion conductive coating layer on nickel rich layered oxide cathode material with improved electrochemical properties for Li-ion battery. J. Alloys Compd., 2019, 784, 1311-1322.
[47] J.W. Kim, D.H. Kim, D.Y. Oh, H. Lee, J.H. Kim, J.H. Lee, Y.S. Jung. Surface chemistry of LiNi0.5Mn1.5O4 particles coated by Al2O3 using atomic layer deposition for lithium-ion batteries. J. Power Sources, 2015, 274, 1254-1262.
[48] S.-H. Lee, G.-J. Park, S.-J. Sim, B.-S. Jin, H.-S. Kim. Improved electrochemical performances of LiNi0.8Co0.1Mn0.1O2 cathode via SiO2 coating. J. Alloys Compd., 2019, 791, 193-199.
[49] S. Oh, J.K. Lee, D. Byun, W.I. Cho, B.W. Cho. Effect of Al2O3 coating on electrochemical performance of LiCoO2 as cathode materials for secondary lithium batteries. J. Power Sources, 2004, 132(1-2), 249-255.
[50] Y.-S. Lee, W.-K. Shin, A.G. Kannan, S.M. Koo, D.-W. Kim. Improvement of the cycling performance and thermal stability of lithium-ion cells by double-layer coating of cathode materials with Al2O3 nanoparticles and conductive polymer, ACS Appl. Mater. Interfaces, 2015, 7(25), 13944-13951.
[51] J. Zheng, J. Li, Z. Zhang, X. Guo, Y. Yang. The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery. Solid State Ion, 2008, 179(27-32), 1794-1799.
[52] Y.J. Lim, S.-M. Lee, H. Lim, B. Moon, K.-S. Han, J.-H. Kim, J.-H. Song, J.-S. Yu, W. Cho, M.-S. Park. Amorphous Li-Zr-O layer coating on the surface of high-Ni cathode materials for lithium ion batteries, Electrochim. Acta, 2018, 282, 311-316.
[53] Q. Gan, N. Qin, Y. Zhu, Z. Huang, F. Zhang, S. Gu, J. Xie, K. Zhang, L. Lu, Z. Lu, Polyvinylpyrrolidone-induced uniform surface-conductive polymer coating endows Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced cyclability for lithium-ion batteries. ACS Appl. Mater. Interfaces, 2019, 11(13), 12594-12604.
[54] J. Wang, Y. Yu, B. Li, T. Fu, D. Xie, J. Cai, J. Zhao, Improving the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 at 4.6 V cutoff potential by surface coating with Li2TiO3 for lithium-ion batteries, Phys. Chem. Chem. Phys., 2015, 17(47), 32033-32043.
[55] J.H. Kim, H. Kim, W. Choi, M.-S. Park. Bifunctional Surface Coating of LiNbO3 on High-Ni Layered Cathode Materials for Lithium-Ion Batteries, ACS Appl. Mater. Interfaces, 2020, 12(31) , 35098-35104.
[56] Z. Feng, R. Rajagopalan, D. Sun, Y. Tang, H. Wang. In-situ formation of hybrid Li3PO4-AlPO4-Al(PO3)3 coating layer on LiNi0.8Co0.1Mn0.1O2 cathode with enhanced electrochemical properties for lithium-ion battery. Chem. Eng., 2020, 382, 122959.
[57] E. Zhao, M. Chen, Z. Hu, D. Chen, L. Yang, X. Xiao. Improved cycle stability of high-capacity Ni-rich LiNi0.8Mn0.1Co0.1O2 at high cut-off voltage by Li2SiO3 coating. J. Power Sources, 2017, 343, 345-353.
[58] X. Liu, J. Liu, T. Huang, A. Yu. CaF2-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries. Electrochim. Acta, 2013, 109, 52-58.
[59] S. Xu, R.M. Jacobs, H.M. Nguyen, S. Hao, M. Mahanthappa, C. Wolverton, D. Morgan. Lithium transport through lithium-ion battery cathode coatings. J. Mater. Chem. A, 2015, 3(33), 17248-17272.
[60] X. Zeng, T. Jian, Y. Lu, L. Yang, W. Ma, Y. Yang, J. Zhu, C. Huang, S. Dai, X. Xi. Enhancing high-temperature and high-voltage performances of single-crystal LiNi0.5Co0.2Mn0.3O2 cathodes through a LiBO2/LiAlO2 dual-modification strategy. ACS Sustain. Chem. Eng., 2020, 8(16), 6293-6304.
[61] H.Q. Pham, J. Lee, H.M. Jung, S.-W. Song, Non-flammable LiNi0. 8Co0. 1Mn0. 1O2 cathode via functional binder; stabilizing high-voltage interface and performance for safer and high-energy lithium rechargeable batteries, Electrochim. Acta, 2019, 317, 711-721.
[62] Z. Chen, Y. Liu, Z. Lu, R. Hu, J. Cui, H. Xu, Y. Ouyang, Y. Zhang, M. Zhu. Plasma-assisted coating of nanosized SnO2 on LiNi0.5Co0.2Mn0.3O2 cathodes for enhanced cyclic stability of lithium-ion batteries, J. Alloys Compd., 2019, 803, 71-79.
[63] T. Weigel, F. Schipper, E.M. Erickson, F.A. Susai, B. Markovsky, D. Aurbach. Structural and electrochemical aspects of LiNi0.8Co0.1Mn0.1O2 cathode materials doped by various cations. ACS Energy Lett., 2019, 4(2), 508-516.
[64] M. Jiang, X. Wu, Q. Zhang, D.L. Danilov, R.-A. Eichel, P.H. Notten. Fabrication and interfacial characterization of Ni-rich thin-film cathodes for stable Li-ion batteries. Electrochim. Acta,, 2021, 398, 139316.
[65] W. Cho, S.-M. Kim, K.-W. Lee, J.H. Song, Y.N. Jo, T. Yim, H. Kim, J.-S. Kim, Y.-J. Kim. Investigation of new manganese orthophosphate Mn3(PO4)2 coating for nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode and improvement of its thermal properties. Electrochim. Acta, 2016, 198, 77-83.
[66] S. Neudeck, A. Mazilkin, C. Reitz, P. Hartmann, J. Janek, T. Brezesinski. Effect of low-temperature Al2O3 ALD coating on Ni-rich layered oxide composite cathode on the long-term cycling performance of lithium-ion batteries. Scientific reports, 2019, 9(1), 1-11.
[67] A. Zhou, Y. Lu, Q. Wang, J. Xu, W. Wang, X. Dai, J. Li. Sputtering TiO2 on LiCoO2 composite electrodes as a simple and effective coating to enhance high-voltage cathode performance. J. Power Sources, 2017, 346, 24-30.
[68] Z. Hu, Z. Deng, Q. Wei, T. Zhao, Y. Wang, Z. Yu, L. Ma, K. Zhou. Roles of Al-doped ZnO (AZO) modification layer on improving electrochemical performance of LiNi1/3Co1/3Mn1/3O2 thin film cathode. Ionics, 23(11), 2017, 2981-2992.
[69] Y. Gao, J. Park, X. Liang. Synergic titanium nitride coating and titanium doping by atomic layer deposition for stable-and high-performance Li-Ion battery. J. Electrochem. Soc., 2018, 165(16), A3871.
[70] Y.-L. Kuo, K.-H. Chang. Atmospheric pressure plasma enhanced chemical vapor deposition of SiOx films for improved corrosion resistant properties of AZ31 magnesium alloys. Surf. Coat. Technol., 2015, 283, 194-200.
[71] N. Circelli, G. Queirolo, A stable TiN reactive sputtering deposition process. Appl. Surf. Sci., 1989, 38(1-4), 304-311.
[72] F. Kurdesau, G. Khripunov, A. Da Cunha, M. Kaelin, A. Tiwari. Comparative study of ITO layers deposited by DC and RF magnetron sputtering at room temperature. J Non Cryst Solids, 2006, 352(9-20), 1466-1470.
[73] Y.-M. Su, Y.-L. Kuo, C.-M. Lin, S.-F. Lee. One-step fabrication of tetragonal ZrO2 particles by atmospheric pressure plasma jet. Powder Technol., 2014, 267, 74-79.
[74] Y.-L. Kuo, Y.-M. Su, J.-Y. Chang. A facile method for the deposition of Gd2O3-doped ceria films by atmospheric pressure plasma jet. Thin solid films, 2014, 570, 215-220.
[75] M. Ali, E. Hamzah, I. Qazi, M. Toff. Effect of cathodic arc PVD parameters on roughness of TiN coating on steel substrate. Curr Appl Phys, 2010, 10(2), 471-474.
[76] R. Ramaseshan, F. Jose, S. Rajagopalan, S. Dash. Preferentially oriented electron beam deposited TiN thin films using focused jet of nitrogen gas. Surf. Eng., 2016, 32(11), 834-839.
[77] A. Mumtaz, W. Class. Color of titanium nitride prepared by reactive dc magnetron sputtering. J. Vac. Sci. Technol., 1982, 20(3), 345-348.
[78] .A. Kozlovskiy, I. Shlimas, K. Dukenbayev, M. Zdorovets. Structure and corrosion properties of thin TiO2 films obtained by magnetron sputtering. Vacuum, 2019, 164, 224-232.
[79] D. Yoo, I. Kim, S. Kim, C.H. Hahn, C. Lee, S. Cho. Effects of annealing temperature and method on structural and optical properties of TiO2 films prepared by RF magnetron sputtering at room temperature. Appl. Surf. Sci., 2007, 253(8), 3888-3892.
[80] S. Polaki, R. Ramaseshan, F. Jose, N. Ravi, S. Dash, A.K. Tyagi. Evolution of Structural and Mechanical Properties of TiN Films on SS 304 LN. Int. J. Appl. Ceram. Technol., 2013, 10(1), 45-50.
[81] X. Cheng, J. Zheng, J. Lu, Y. Li, P. Yan, Y. Zhang. Realizing superior cycling stability of Ni-Rich layered cathode by combination of grain boundary engineering and surface coating. Nano Energy, 2019, 62, 30-37.
[82] Q. Xie, W. Li, A. Manthiram. A Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density Li-ion batteries. Chem. Mater., 2019, 31(3), 938-946.
[83] S. Venkatraman, J. Choi, A. Manthiram. Factors influencing the chemical lithium extraction rate from layered LiNi1−y−zCoyMnzO2 cathodes. Electrochem commun, 2004, 6(8), 832-837.
[84] H.-J. Noh, S. Youn, C.S. Yoon, Y.-K. Sun. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x= 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. Journal of power sources, 2013, 233, 121-130.
[85] Y. Zhang, T. Ren, J. Zhang, J. Duan, X. Li, Z. Zhou, P. Dong, D. Wang. The role of boracic polyanion substitution on structure and high voltage electrochemical performance of Ni-Rich cathode materials for lithium ion batteries. J. Alloys Compd., 2019, 805, 1288-1296.
[86] S. Li, W. Zhang, Q. Wu, L. Fan, X. Wang, X. Wang, Z. Shen, Y. He, Y. Lu. Synergistic dual‐additive electrolyte enables practical lithium‐metal batteries. Angew. Chem. Int. Ed., 2020, 59(35), 14935-14941.
[87] C. Ghanty, B. Markovsky, E.M. Erickson, M. Talianker, O. Haik, Y. Tal-Yossef, A. Mor, D. Aurbach, J. Lampert, A. Volkov. Li+-ion extraction/insertion of Ni-rich Li1+x (NiyCozMnz)wO2 (0.005< x< 0.03; y: z= 8: 1, w≈ 1) electrodes: in situ XRD and Raman spectroscopy study. ChemElectroChem, 2015, 2(10), 1479-1486.
[88] W.-J. Liu, X.-Z. Sun, X. Zhang, C. Li, K. Wang, W. Wen, Y.-W. Ma. Structural evolution of mesoporous graphene/LiNi1/3Co1/3Mn1/3O2 composite cathode for Li–ion battery. Rare Metals, 2021, 40, 521-528.
[89] S.-J. Kwon, S.-E. Lee, J.-H. Lim, J. Choi, J. Kim. Performance and life degradation characteristics analysis of NCM LIB for BESS. Electronics, 2018, 7(12), 406.
[90] S.A. Han, H. Qutaish, M.S. Park, J. Moon, J.H. Kim. Strategic approaches to the dendritic growth and interfacial reaction of lithium metal anode. Chem Asian J, 2021, 16(24), 4010-4017.
[91] Y. Qian, P. Niehoff, M. Börner, M. Grützke, X. Mönnighoff, P. Behrends, S. Nowak, M. Winter, F.M. Schappacher. Influence of electrolyte additives on the cathode electrolyte interphase (CEI) formation on LiNi1/3Mn1/3Co1/3O2 in half cells with Li metal counter electrode. J. Power Sources, 2016, 329, 31-40.
[92] F.F. Bazito, R.M. Torresi. Cathodes for lithium ion batteries: the benefits of using nanostructured materials, J. Braz. Chem. Soc., 2006, 17, 627-642.
[93] M. Wang, Y. Gong, Y. Gu, Y. Chen, L. Chen, H. Shi. Effects of fast lithium-ion conductive coating layer on the nickel rich layered oxide cathode material. Ceram. Int., 2019, 45(3), 3177-3185.
[94] S. Tao, F. Kong, C. Wu, X. Su, T. Xiang, S. Chen, H. Hou, L. Zhang, Y. Fang, Z. Wang. Nanoscale TiO2 membrane coating spinel LiNi0.5Mn1.5O4 cathode material for advanced lithium-ion batteries. J. Alloys Compd., 2017, 705, 413-419.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊