|
[1] G. Hu, Y. Tao, Y. Lu, J. Fan, L. Li, J. Xia, Y. Huang, Z. Zhang, H. Su, Y. Cao. Enhanced Electrochemical Properties of LiNi0.8Co0.1Mn0.1O2 Cathode Materials Modified with Lithium‐Ion Conductive Coating LiNbO3. ChemElectroChem, 2019, 6(18), 4773-4780. [2] H. Yu, S. Wang, Y. Hu, G. He, I.P. Parkin, H. Jiang. Lithium-conductive LiNbO3 coated high-voltage LiNi0.5Co0.2Mn0.3O2 cathode with enhanced rate and cyclability. Green Energy Environ., 2020. [3] Q. Guo, J. Huang, Z. Liang, H. Potapenko, M. Zhou, X. Tang, S. Zhong. The use of a single-crystal nickel-rich layered NCM cathode for excellent cycle performance of lithium-ion batteries. New J. Chem., 2021, 45(7), 3652-3659. [4] S. Maiti, H. Sclar, R. Sharma, N. Vishkin, M. Fayena‐Greenstein, J. Grinblat, M. Talianker, L. Burstein, N. Solomatin, O. Tiurin. Understanding the Role of Alumina (Al2O3), Pentalithium Aluminate (Li5AlO4), and Pentasodium Aluminate (Na5AlO4) Coatings on the Li and Mn‐Rich NCM Cathode Material 0.33 Li2MnO3· 0.67 Li (Ni0.4Co0.2Mn0.4)O2 for Enhanced Electrochemical Performance. Adv. Funct. Mater., 2021, 31(8), 2008083. [5] D. Becker, M. Börner, R. Nölle, M. Diehl, S. Klein, U. Rodehorst, R. Schmuch, M. Winter, T. Placke. Surface modification of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material by tungsten oxide coating for improved electrochemical performance in lithium-ion batteries. ACS Appl. Mater. Interfaces, 2019, 11(20), 18404-18414. [6] J. Li, L.E. Downie, L. Ma, W. Qiu, J. Dahn. Study of the failure mechanisms of LiNi0. 8Mn0. 1Co0. 1O2 cathode material for lithium ion batteries. J. Electrochem. Soc., 2015, 162(7), A1401. [7] Y. Lu, X. Rong, Y.-S. Hu, L. Chen, H. Li. Research and development of advanced battery materials in China. Energy Stor. Mater., 2019, 23, 144-153. [8] T. Li, X.-Z. Yuan, L. Zhang, D. Song, K. Shi, C. Bock. Degradation mechanisms and mitigation strategies of nickel-rich NMC-based lithium-ion batteries. Electrochem. Energ. Rev., 2020, 3(1), 43-80. [9] M.S. Whittingham, Chalcogenide battery. Google Patents, 1977. [10] M.S. Whittingham, Electrical energy storage and intercalation chemistry. 1976, 192(4244) 1126-1127. [11] J.-H. Kim, K.-J. Park, S.J. Kim, C.S. Yoon, Y.-K. Sun. A method of increasing the energy density of layered Ni-rich Li [Ni1− 2xCoxMnx]O2 cathodes (x= 0.05, 0.1, 0.2). J. Mater. Chem. A, 2019, 7(6), 2694-2701. [12] J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough, P. Khalifah, Q. Li, B.Y. Liaw, P. Liu, A. Manthiram. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy, 2019, 4(3), 180-186. [13] D. Murphy, F. Di Salvo, J. Carides, J. Waszczak. Topochemical reactions of rutile related structures with lithium. Mater. Res. Bull., 1978, 13(12), 1395-1402. [14] M. Wakihara, O. Yamamoto. Lithium ion batteries: fundamentals and performance. JWS., 2008. [15] Z. Yang, W. Yang, D.G. Evans, G. Li, Y. Zhao. Enhanced overcharge behavior and thermal stability of commercial LiCoO2 by coating with a novel material. Electrochem commun, 2008, 10(8), 1136-1139. [16] C.-X. Zu, H. Li. Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci., 2011, 4(8), 2614-2624. [17] R.S. Carmichael. Practical handbook of physical properties of rocks and minerals, 1988, CRC press 2017. [18] X. Dong, J. Yao, W. Zhu, X. Huang, X. Kuai, J. Tang, X. Li, S. Dai, L. Shen, R. Yang. Enhanced high-voltage cycling stability of Ni-rich cathode materials via the self-assembly of Mn-rich shells. J. Mater. Chem. A, 2019, 7(35), 20262-20273. [19] J. Dahn, U. Von Sacken, M. Juzkow, H. Al‐Janaby. Rechargeable LiNiO2/carbon cells. J. Electrochem. Soc., 1991, 138(8), 2207. [20] S.S. Zhang. Problems and their origins of Ni-rich layered oxide cathode materials. Energy Stor. Mater., 2020, 24, 247-254. [21] M. Tuccillo, O. Palumbo, M. Pavone, A.B. Muñoz-García, A. Paolone, S. Brutti. Analysis of the Phase Stability of LiMO2 Layered Oxides (M= Co, Mn, Ni). Crystals, 2020, 10(6), 526. [22] J. Kim, H. Lee, H. Cha, M. Yoon, M. Park, J. Cho. Prospect and reality of Ni‐Rich cathode for commercialization. Adv. Energy Mater., 2018, 8(6), 1702028. [23] R. Jung, M. Metzger, F. Maglia, C. Stinner, H.A. Gasteiger. Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries. Meeting abstr., 2017, 164(7), A1361. [24] H.H. Ryu, G.T. Park, C.S. Yoon, Y.K. Sun. Microstructural degradation of Ni‐rich Li [NixCoyMn1−x−y]O2 cathodes during accelerated calendar aging. Small, 2018, 14(45), 1803179. [25] F. Wang, Y. Zhang, J. Zou, W. Liu, Y. Chen. The structural mechanism of the improved electrochemical performances resulted from sintering atmosphere for LiNi0.5Co0.2Mn0.3O2 cathode material. J. Alloys Compd., 2013, 558, 172-178. [26] C.-H. Jo, D.-H. Cho, H.-J. Noh, H. Yashiro, Y.-K. Sun, S.T. Myung. An effective method to reduce residual lithium compounds on Ni-rich Li [Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer. Nano Res., 2015, 8(5), 1464-1479. [27] W. Li, E.M. Erickson, A. Manthiram. High-nickel layered oxide cathodes for lithium-based automotive batteries, Nat. Energy, 2020, 5(1), 26-34. [28] P. Guan, L. Zhou, Z. Yu, Y. Sun, Y. Liu, F. Wu, Y. Jiang, D. Chu. Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries. J. Energy Chem., 2020, 43, 220-235. [29] S.S. Zhang, X. Fan, C. Wang. Enhanced Electrochemical Performance of Ni‐Rich Layered Cathode Materials by using LiPF6 as a Cathode Additive. ChemElectroChem, 2019, 6(5), 1536-1541. [30] B. Han, B. Key, S.H. Lapidus, J.C. Garcia, H. Iddir, J.T. Vaughey, F. Dogan. From coating to dopant: how the transition metal composition affects alumina coatings on Ni-rich cathodes. ACS Appl. Mater. Interfaces, 2017, 9(47), 41291-41302. [31] X. Li, K. Zhang, M. Wang, Y. Liu, M. Qu, W. Zhao, J. Zheng. Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2. Sustain. Energy Fuels, 2018, 2(2), 413-421. [32] B. Xiangtao, B. Liqing, Z. Weidong. Research progress on coating and doping modification of nickel rich ternary cathode materials. J INORG MATER, 2020, 35(9), 972-986. [33] S. Liu, Z. Dang, D. Liu, C. Zhang, T. Huang, A. Yu. Comparative studies of zirconium doping and coating on LiNi0.6Co0.2Mn0.2O2 cathode material at elevated temperatures. J. Power Sources, 2018, 396, 288-296. [34] G. Li, Z. Zhang, R. Wang, Z. Huang, Z. Zuo, H. Zhou. Effect of trace Al surface doping on the structure, surface chemistry and low temperature performance of LiNi0.5Co0.2Mn0.3O2 cathode. Electrochim. Acta, 2016, 212, 399-407. [35] F. Schipper, H. Bouzaglo, M. Dixit, E.M. Erickson, T. Weigel, M. Talianker, J. Grinblat, L. Burstein, M. Schmidt, J. Lampert. From surface ZrO2 coating to bulk Zr doping by high temperature annealing of nickel‐rich lithiated oxides and their enhanced electrochemical performance in lithium ion batteries. Adv. Energy Mater., 2018, 8(4), 1701682. [36] S. Yanxia, H. Chunxi, S. Yue, Z. Jinbo, Z. Lijuan, L. Xiang, R. Xiufeng, D. Shengde, Z. Guotai, S. Chao. Improved lithium ion diffusion and stability of a LiNi0.8Co0.1Mn0.1O2 cathode via the synergistic effect of Na and Mg dual-metal cations for lithium ion battery. J. Electrochem. Soc., 2020, 167(2), 020522. [37] X. Liu, S. Wang, L. Wang, K. Wang, X. Wu, P. Zhou, Z. Miao, J. Zhou, Y. Zhao, S. Zhuo. Stabilizing the high-voltage cycle performance of LiNi0.8Co0.1Mn0.1O2 cathode material by Mg doping. J. Power Sources, 2019, 438, 227017. [38] Z.-Y. Li, H.-L. Zhang. The improvement for the electrochemical performances of LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium-ion batteries by both the Al-doping and an advanced synthetic method. Int. J. Electrochem. Sci, 2019, 14, 3524-3534. [39] G. Li, Z. Huang, Z. Zuo, Z. Zhang, H. Zhou. Understanding the trace Ti surface doping on promoting the low temperature performance of LiNi1/3Co1/3Mn1/3O2 cathode. J. Power Sources, 2015, 281, 69-76. [40] L. Yv, J. Wang, X. Li, L. Dai, Z. Shao. Preparation and electrochemical properties of Ti-doped LiNi1/3Co1/3Mn1/3O2 cathode materials via co-precipitation route. Ionics, 2021, 27(9), 3769-3776. [41] H. Kim, S.-B. Kim, D.-H. Park, K.-W. Park. Fluorine-Doped LiNi0.8Mn0.1Co0.1O2 Cathode for High-Performance Lithium-Ion Batteries. Energies, 2020, 13(18), 4808. [42] J. Kim, H. Kim, K. Kang. Surface-modified spinel LiNi0.5Mn1.5O4 for Li-ion batteries. J. Korean Ceram. Soc., 2018, 55(1), 21-35. [43] Z. Chen, Y. Qin, K. Amine, Y.-K. Sun. Role of surface coating on cathode materials for lithium-ion batteries. J. Mater. Chem., 2010, 20(36), 7606-7612. [44] R. Zhao, J. Liang, J. Huang, R. Zeng, J. Zhang, H. Chen, G. Shi. Improving the Ni-rich LiNi0.5Co0.2Mn0.3O2 cathode properties at high operating voltage by double coating layer of Al2O3 and AlPO4. J. Alloys Compd.,2017, 724, 1109-1116. [45] C.M. Julien, A. Mauger, Functional behavior of AlF3 coatings for high-performance cathode materials for lithium-ion batteries, AIMS Mater Sci, 2019, 6(3), 406-440. [46] H. Yuan, W. Song, M. Wang, Y. Gu, Y. Chen. Lithium-ion conductive coating layer on nickel rich layered oxide cathode material with improved electrochemical properties for Li-ion battery. J. Alloys Compd., 2019, 784, 1311-1322. [47] J.W. Kim, D.H. Kim, D.Y. Oh, H. Lee, J.H. Kim, J.H. Lee, Y.S. Jung. Surface chemistry of LiNi0.5Mn1.5O4 particles coated by Al2O3 using atomic layer deposition for lithium-ion batteries. J. Power Sources, 2015, 274, 1254-1262. [48] S.-H. Lee, G.-J. Park, S.-J. Sim, B.-S. Jin, H.-S. Kim. Improved electrochemical performances of LiNi0.8Co0.1Mn0.1O2 cathode via SiO2 coating. J. Alloys Compd., 2019, 791, 193-199. [49] S. Oh, J.K. Lee, D. Byun, W.I. Cho, B.W. Cho. Effect of Al2O3 coating on electrochemical performance of LiCoO2 as cathode materials for secondary lithium batteries. J. Power Sources, 2004, 132(1-2), 249-255. [50] Y.-S. Lee, W.-K. Shin, A.G. Kannan, S.M. Koo, D.-W. Kim. Improvement of the cycling performance and thermal stability of lithium-ion cells by double-layer coating of cathode materials with Al2O3 nanoparticles and conductive polymer, ACS Appl. Mater. Interfaces, 2015, 7(25), 13944-13951. [51] J. Zheng, J. Li, Z. Zhang, X. Guo, Y. Yang. The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery. Solid State Ion, 2008, 179(27-32), 1794-1799. [52] Y.J. Lim, S.-M. Lee, H. Lim, B. Moon, K.-S. Han, J.-H. Kim, J.-H. Song, J.-S. Yu, W. Cho, M.-S. Park. Amorphous Li-Zr-O layer coating on the surface of high-Ni cathode materials for lithium ion batteries, Electrochim. Acta, 2018, 282, 311-316. [53] Q. Gan, N. Qin, Y. Zhu, Z. Huang, F. Zhang, S. Gu, J. Xie, K. Zhang, L. Lu, Z. Lu, Polyvinylpyrrolidone-induced uniform surface-conductive polymer coating endows Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced cyclability for lithium-ion batteries. ACS Appl. Mater. Interfaces, 2019, 11(13), 12594-12604. [54] J. Wang, Y. Yu, B. Li, T. Fu, D. Xie, J. Cai, J. Zhao, Improving the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 at 4.6 V cutoff potential by surface coating with Li2TiO3 for lithium-ion batteries, Phys. Chem. Chem. Phys., 2015, 17(47), 32033-32043. [55] J.H. Kim, H. Kim, W. Choi, M.-S. Park. Bifunctional Surface Coating of LiNbO3 on High-Ni Layered Cathode Materials for Lithium-Ion Batteries, ACS Appl. Mater. Interfaces, 2020, 12(31) , 35098-35104. [56] Z. Feng, R. Rajagopalan, D. Sun, Y. Tang, H. Wang. In-situ formation of hybrid Li3PO4-AlPO4-Al(PO3)3 coating layer on LiNi0.8Co0.1Mn0.1O2 cathode with enhanced electrochemical properties for lithium-ion battery. Chem. Eng., 2020, 382, 122959. [57] E. Zhao, M. Chen, Z. Hu, D. Chen, L. Yang, X. Xiao. Improved cycle stability of high-capacity Ni-rich LiNi0.8Mn0.1Co0.1O2 at high cut-off voltage by Li2SiO3 coating. J. Power Sources, 2017, 343, 345-353. [58] X. Liu, J. Liu, T. Huang, A. Yu. CaF2-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries. Electrochim. Acta, 2013, 109, 52-58. [59] S. Xu, R.M. Jacobs, H.M. Nguyen, S. Hao, M. Mahanthappa, C. Wolverton, D. Morgan. Lithium transport through lithium-ion battery cathode coatings. J. Mater. Chem. A, 2015, 3(33), 17248-17272. [60] X. Zeng, T. Jian, Y. Lu, L. Yang, W. Ma, Y. Yang, J. Zhu, C. Huang, S. Dai, X. Xi. Enhancing high-temperature and high-voltage performances of single-crystal LiNi0.5Co0.2Mn0.3O2 cathodes through a LiBO2/LiAlO2 dual-modification strategy. ACS Sustain. Chem. Eng., 2020, 8(16), 6293-6304. [61] H.Q. Pham, J. Lee, H.M. Jung, S.-W. Song, Non-flammable LiNi0. 8Co0. 1Mn0. 1O2 cathode via functional binder; stabilizing high-voltage interface and performance for safer and high-energy lithium rechargeable batteries, Electrochim. Acta, 2019, 317, 711-721. [62] Z. Chen, Y. Liu, Z. Lu, R. Hu, J. Cui, H. Xu, Y. Ouyang, Y. Zhang, M. Zhu. Plasma-assisted coating of nanosized SnO2 on LiNi0.5Co0.2Mn0.3O2 cathodes for enhanced cyclic stability of lithium-ion batteries, J. Alloys Compd., 2019, 803, 71-79. [63] T. Weigel, F. Schipper, E.M. Erickson, F.A. Susai, B. Markovsky, D. Aurbach. Structural and electrochemical aspects of LiNi0.8Co0.1Mn0.1O2 cathode materials doped by various cations. ACS Energy Lett., 2019, 4(2), 508-516. [64] M. Jiang, X. Wu, Q. Zhang, D.L. Danilov, R.-A. Eichel, P.H. Notten. Fabrication and interfacial characterization of Ni-rich thin-film cathodes for stable Li-ion batteries. Electrochim. Acta,, 2021, 398, 139316. [65] W. Cho, S.-M. Kim, K.-W. Lee, J.H. Song, Y.N. Jo, T. Yim, H. Kim, J.-S. Kim, Y.-J. Kim. Investigation of new manganese orthophosphate Mn3(PO4)2 coating for nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode and improvement of its thermal properties. Electrochim. Acta, 2016, 198, 77-83. [66] S. Neudeck, A. Mazilkin, C. Reitz, P. Hartmann, J. Janek, T. Brezesinski. Effect of low-temperature Al2O3 ALD coating on Ni-rich layered oxide composite cathode on the long-term cycling performance of lithium-ion batteries. Scientific reports, 2019, 9(1), 1-11. [67] A. Zhou, Y. Lu, Q. Wang, J. Xu, W. Wang, X. Dai, J. Li. Sputtering TiO2 on LiCoO2 composite electrodes as a simple and effective coating to enhance high-voltage cathode performance. J. Power Sources, 2017, 346, 24-30. [68] Z. Hu, Z. Deng, Q. Wei, T. Zhao, Y. Wang, Z. Yu, L. Ma, K. Zhou. Roles of Al-doped ZnO (AZO) modification layer on improving electrochemical performance of LiNi1/3Co1/3Mn1/3O2 thin film cathode. Ionics, 23(11), 2017, 2981-2992. [69] Y. Gao, J. Park, X. Liang. Synergic titanium nitride coating and titanium doping by atomic layer deposition for stable-and high-performance Li-Ion battery. J. Electrochem. Soc., 2018, 165(16), A3871. [70] Y.-L. Kuo, K.-H. Chang. Atmospheric pressure plasma enhanced chemical vapor deposition of SiOx films for improved corrosion resistant properties of AZ31 magnesium alloys. Surf. Coat. Technol., 2015, 283, 194-200. [71] N. Circelli, G. Queirolo, A stable TiN reactive sputtering deposition process. Appl. Surf. Sci., 1989, 38(1-4), 304-311. [72] F. Kurdesau, G. Khripunov, A. Da Cunha, M. Kaelin, A. Tiwari. Comparative study of ITO layers deposited by DC and RF magnetron sputtering at room temperature. J Non Cryst Solids, 2006, 352(9-20), 1466-1470. [73] Y.-M. Su, Y.-L. Kuo, C.-M. Lin, S.-F. Lee. One-step fabrication of tetragonal ZrO2 particles by atmospheric pressure plasma jet. Powder Technol., 2014, 267, 74-79. [74] Y.-L. Kuo, Y.-M. Su, J.-Y. Chang. A facile method for the deposition of Gd2O3-doped ceria films by atmospheric pressure plasma jet. Thin solid films, 2014, 570, 215-220. [75] M. Ali, E. Hamzah, I. Qazi, M. Toff. Effect of cathodic arc PVD parameters on roughness of TiN coating on steel substrate. Curr Appl Phys, 2010, 10(2), 471-474. [76] R. Ramaseshan, F. Jose, S. Rajagopalan, S. Dash. Preferentially oriented electron beam deposited TiN thin films using focused jet of nitrogen gas. Surf. Eng., 2016, 32(11), 834-839. [77] A. Mumtaz, W. Class. Color of titanium nitride prepared by reactive dc magnetron sputtering. J. Vac. Sci. Technol., 1982, 20(3), 345-348. [78] .A. Kozlovskiy, I. Shlimas, K. Dukenbayev, M. Zdorovets. Structure and corrosion properties of thin TiO2 films obtained by magnetron sputtering. Vacuum, 2019, 164, 224-232. [79] D. Yoo, I. Kim, S. Kim, C.H. Hahn, C. Lee, S. Cho. Effects of annealing temperature and method on structural and optical properties of TiO2 films prepared by RF magnetron sputtering at room temperature. Appl. Surf. Sci., 2007, 253(8), 3888-3892. [80] S. Polaki, R. Ramaseshan, F. Jose, N. Ravi, S. Dash, A.K. Tyagi. Evolution of Structural and Mechanical Properties of TiN Films on SS 304 LN. Int. J. Appl. Ceram. Technol., 2013, 10(1), 45-50. [81] X. Cheng, J. Zheng, J. Lu, Y. Li, P. Yan, Y. Zhang. Realizing superior cycling stability of Ni-Rich layered cathode by combination of grain boundary engineering and surface coating. Nano Energy, 2019, 62, 30-37. [82] Q. Xie, W. Li, A. Manthiram. A Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density Li-ion batteries. Chem. Mater., 2019, 31(3), 938-946. [83] S. Venkatraman, J. Choi, A. Manthiram. Factors influencing the chemical lithium extraction rate from layered LiNi1−y−zCoyMnzO2 cathodes. Electrochem commun, 2004, 6(8), 832-837. [84] H.-J. Noh, S. Youn, C.S. Yoon, Y.-K. Sun. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x= 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. Journal of power sources, 2013, 233, 121-130. [85] Y. Zhang, T. Ren, J. Zhang, J. Duan, X. Li, Z. Zhou, P. Dong, D. Wang. The role of boracic polyanion substitution on structure and high voltage electrochemical performance of Ni-Rich cathode materials for lithium ion batteries. J. Alloys Compd., 2019, 805, 1288-1296. [86] S. Li, W. Zhang, Q. Wu, L. Fan, X. Wang, X. Wang, Z. Shen, Y. He, Y. Lu. Synergistic dual‐additive electrolyte enables practical lithium‐metal batteries. Angew. Chem. Int. Ed., 2020, 59(35), 14935-14941. [87] C. Ghanty, B. Markovsky, E.M. Erickson, M. Talianker, O. Haik, Y. Tal-Yossef, A. Mor, D. Aurbach, J. Lampert, A. Volkov. Li+-ion extraction/insertion of Ni-rich Li1+x (NiyCozMnz)wO2 (0.005< x< 0.03; y: z= 8: 1, w≈ 1) electrodes: in situ XRD and Raman spectroscopy study. ChemElectroChem, 2015, 2(10), 1479-1486. [88] W.-J. Liu, X.-Z. Sun, X. Zhang, C. Li, K. Wang, W. Wen, Y.-W. Ma. Structural evolution of mesoporous graphene/LiNi1/3Co1/3Mn1/3O2 composite cathode for Li–ion battery. Rare Metals, 2021, 40, 521-528. [89] S.-J. Kwon, S.-E. Lee, J.-H. Lim, J. Choi, J. Kim. Performance and life degradation characteristics analysis of NCM LIB for BESS. Electronics, 2018, 7(12), 406. [90] S.A. Han, H. Qutaish, M.S. Park, J. Moon, J.H. Kim. Strategic approaches to the dendritic growth and interfacial reaction of lithium metal anode. Chem Asian J, 2021, 16(24), 4010-4017. [91] Y. Qian, P. Niehoff, M. Börner, M. Grützke, X. Mönnighoff, P. Behrends, S. Nowak, M. Winter, F.M. Schappacher. Influence of electrolyte additives on the cathode electrolyte interphase (CEI) formation on LiNi1/3Mn1/3Co1/3O2 in half cells with Li metal counter electrode. J. Power Sources, 2016, 329, 31-40. [92] F.F. Bazito, R.M. Torresi. Cathodes for lithium ion batteries: the benefits of using nanostructured materials, J. Braz. Chem. Soc., 2006, 17, 627-642. [93] M. Wang, Y. Gong, Y. Gu, Y. Chen, L. Chen, H. Shi. Effects of fast lithium-ion conductive coating layer on the nickel rich layered oxide cathode material. Ceram. Int., 2019, 45(3), 3177-3185. [94] S. Tao, F. Kong, C. Wu, X. Su, T. Xiang, S. Chen, H. Hou, L. Zhang, Y. Fang, Z. Wang. Nanoscale TiO2 membrane coating spinel LiNi0.5Mn1.5O4 cathode material for advanced lithium-ion batteries. J. Alloys Compd., 2017, 705, 413-419.
|