跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/03/18 18:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙柏宇
研究生(外文):Kumail Abbas
論文名稱:萊克多巴胺對斑馬魚幼魚心血管、呼吸和運動生理的評價
論文名稱(外文):Evaluation of Ractopamine on Cardiovascular, Respiratory and Locomotory Physiology in Zebrafish Larvae
指導教授:蕭崇德
指導教授(外文):Chong-Der Hsiao
口試委員:陳皇州黃鐘慶
口試委員(外文):Kelvin ChenJong-Chin Huang
口試日期:2021-12-16
學位類別:碩士
校院名稱:中原大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:英文
論文頁數:43
中文關鍵詞:萊克多巴胺斑馬魚心血管生理學運動分子對接同源建模
外文關鍵詞:ractopaminezebrafishcardiovascular physiologylocomotionmolecular dockinghomology modelingpropranololrescue effect
DOI:10.6840/cycu202101037
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
萊克多巴胺 (Ractopamine, RAC) 是一種 β-腎上腺素受體激動劑,用於促進牲畜的瘦肉和提高食物轉化效率。這種化合物被認為會導致家畜(如豬)的行為和生理發生改變。很少有研究探討 RAC 在水生動物中的潛在非目標效應。在本研究中,我們通過評估運動活力、耗氧量和心血管功能等多個參數,探索斑馬魚急性暴露RAC後的生理反應。斑馬魚幼魚在 0.1、1、2、4 或 8 ppm 的RAC 暴露 24 小時,並監測和量化相對應的心血管、呼吸和運動活力。此外,我們還對 RAC 與 10 種斑馬魚內源性 β-腎上腺素受體進行了分子對接,以闡明 RAC 的作用機制。結果表明,RAC 可以顯著提高運動活力、心臟性能、耗氧量和血流量,但不會影響斑馬魚胚胎的心律規律。基於結構的分子對接,RAC 對所有 10 種內源性 β-腎上腺素受體亞型(從 adra1aa 到 adra2db)都表現出相似的結合親和力,與人類相同。這一結果表明 RAC 可作為高效、廣譜的 β-腎上腺素受體激動劑,促進斑馬魚的運動活力、心臟功能和耗氧量。為了驗證我們的結果,我們使用β-受體阻滯劑(Propranolol, PROP)與 RAC 共同培養。 PROP 暴露可以減少斑馬魚幼魚的運動過度活躍、高耗氧量和高心率。基於計算機結構的分子模擬和結合親和力測試表明,PROP 的結合親和力總體上低於 RAC。總之,我們的研究提供了可靠的活體證據,支持 RAC可以調節斑馬魚的心血管、呼吸和運動生理。
Ractopamine (RAC) is a beta-adrenoceptor agonist that is used to promote lean and increased food conversion efficiency in livestock. This compound has been considered to be causing behavioral and physiological alterations in livestock like pig. Few studies have addressed the potential non-target effect of RAC in aquatic animals. In this study, we aimed to explore the potential physiological response after acute RAC exposure in zebrafish by evaluating multiple end-points like locomotor activity, oxygen consumption, and cardiovascular performance. Zebrafish larvae were subjected to waterborne RAC exposure at 0.1, 1, 2, 4, or 8 ppm for 24 h, and the corresponding cardiovascular, respiratory, and locomotion activities were monitored and quantified. In addition, we also performed in silico molecular docking for RAC with 10 zebrafish endogenous β-adrenergic receptors to elucidate the potential acting mechanism of RAC. Results show RAC administration can significantly boost locomotor activity, cardiac performance, oxy-gen consumption, and blood flow rate, but without affecting the cardiac rhythm regularity in zebrafish embryos. Based on structure-based flexible molecular docking, RAC display similar binding affinity to all ten subtypes of endogenous β-adrenergic receptors, from adra1aa to adra2db, which are equivalent to the human one. This result suggests RAC might act as high potency and broad spectrum β-adrenergic receptors agonist on boosting the locomotor activity, cardiac performance, and oxygen consumption in zebrafish. To validate our results, we co-incubated a well-known β-blocker of propranolol (PROP) with RAC. PROP exposure tends to minimize the locomotor hyperactivity, high oxygen consumption, and cardiac rate in zebrafish larvae. In silico structure-based molecular simulation and binding affinity tests show PROP has an overall lower binding affinity than RAC. Taken together, our studies provide solid in vivo evidence to support that RAC plays crucial roles on modulating cardiovascular, respiratory, and locomotory physiology in zebrafish for the first time. In addition, the versatile functions of RAC as β-agonist possibly mediated via receptor competition with PROP as β-antagonist.
CONTENTS

中文摘要 ……………………………………………………………………………………..I
ABSTRACT II
ACKNOWLEDGEMENTS III
CONTENTS IV
LIST OF FIGURES V
LIST OF TABLES V
Evaluation of Ractopamine on Cardiovascular, Respiratory and Locomotory Physiology in Zebrafish Larvae………………………………………………………..1-24

INTRODUCTION 1
MATERIALS AND METHODS 3
RESULTS 7
DISCUSSION 14
REFERENCES 32


LIST OF FIGURES
Evaluation of Ractopamine on Cardiovascular, Respiratory and Locomotory Physiology in Zebrafish Larvae…………………………………………………………18-27

Figure 1 18
Figure 2 19
Figure 3. 20
Figure 4 21
Figure 5 22
Figure 6 23
Figure 7.. 24
Figure 8 25
Figure 9. 26
Figure 10.. 27


LIST OF TABLES

Evaluation of Ractopamine on Cardiovascular, Respiratory and Locomotory Physiology in Zebrafish Larvae………………......……………………………….28-30
Table 1. 28
Table 2 29
Table 3 30
1.Mennigen, J.A., et al., Pharmaceuticals as neuroendocrine disruptors: lessons learned from fish on Prozac. 2011. 14(5-7): p. 387-412.
2.Houtman, C.J.J.J.o.I.E.S., Emerging contaminants in surface waters and their relevance for the production of drinking water in Europe. 2010. 7(4): p. 271-295.
3.Brumovský, M., et al., Contaminants of emerging concern in the open sea waters of the Western Mediterranean. 2017. 229: p. 976-983.
4.Hakk, H., W.L. Shelver, and F.X.J.J.o.E.S. Casey, Fate and transport of the β-adrenergic agonist ractopamine hydrochloride in soil–water systems. 2016. 45: p. 40-48.
5.Kriewald, R.D., Effects of Ractopamine HCl on Physical and Reproductive Parameters in the Horse. 2010, Texas A & M University.
6.Ali, D.C., et al., β-Adrenergic receptor, an essential target in cardiovascular diseases. Heart failure reviews, 2020. 25(2): p. 343-354.
7.Fent, K., A.A. Weston, and D. Caminada, Ecotoxicology of human pharmaceuticals. Aquatic toxicology, 2006. 76(2): p. 122-159.
8.Massarsky, A., et al., β‐blockers as endocrine disruptors: the potential effects of human β‐blockers on aquatic organisms. 2011. 315(5): p. 251-265.
9.Almeida, V.V.d., A.J.C. Nuñez, and V.S. Miyada, Ractopamine as a metabolic modifier feed additive for finishing pigs: a review. Brazilian Archives of Biology Technology, 2012. 55(3): p. 445-456.
10.Liu, X., et al., Ractopamine, a livestock feed additive, is a full agonist at trace amine–associated receptor 1. 2014. 350(1): p. 124-129.
11.Centner, T.J., J.C. Alvey, and A.M. Stelzleni, Beta agonists in livestock feed: status, health concerns, and international trade. Journal of animal science, 2014. 92(9): p. 4234-4240.
12.Lee, H.-C., et al., Analysis of veterinary drug residue monitoring results for commercial livestock products in Taiwan between 2011 and 2015. 2018. 26(2): p. 565-571.
13.Anderson, D.B., D.E. Moody, and D.L. Hancock, Beta adrenergic agonists. Encycl. of Anim. Sci, 2004: p. 104-108.
14.Dalidowicz, J., T. Thomson, and G. Babbitt, Ractopamine hydrochloride, a phenethanolamine repartitioning agent: metabolism and tissue residues. 1992, ACS Publications.
15.Bartelt-Hunt, S., et al., Occurrence of steroid hormones and antibiotics in shallow groundwater impacted by livestock waste control facilities. Journal of contaminant hydrology, 2011. 123(3-4): p. 94-103.
16.Jaimes-Correa, J.C., D.D. Snow, and S.L.J.E.P. Bartelt-Hunt, Seasonal occurrence of antibiotics and a beta agonist in an agriculturally-intensive watershed. 2015. 205: p. 87-96.
17.Sakai, N., et al., Beta-agonist residues in cattle, chicken and swine livers at the wet market and the environmental impacts of wastewater from livestock farms in Selangor State, Malaysia. Chemosphere, 2016. 165: p. 183-190.
18.Yu, T.-H., et al., Occurrence of β-blockers and β-agonists in hospital effluents and their receiving rivers in southern Taiwan. Desalination Water Treatment, 2011. 32(1-3): p. 49-56.
19.Catalano, D., et al., Physiopathological changes related to the use of ractopamine in swine: Clinical and pathological investigations. Livestock Science, 2012. 144(1-2): p. 74-81.
20.Yaeger, M., et al., Myocardial toxicity in a group of greyhounds administered ractopamine. Veterinary pathology, 2012. 49(3): p. 569-573.
21.Sun, L., et al., Early life exposure to ractopamine causes endocrine-disrupting effects in Japanese medaka (Oryzias latipes). Bulletin of environmental contamination and toxicology 2016. 96(2): p. 150-155.
22.Sachett, A., et al., Ractopamine hydrochloride induces behavioral alterations and oxidative status imbalance in zebrafish. Journal of Toxicology Environmental Health, Part A, 2018. 81(7): p. 194-201.
23.Garbinato, C., et al., Exposure to ractopamine hydrochloride induces changes in heart rate and behavior in zebrafish embryos and larvae. Environmental Science and Pollution Research, 2020. 27(17): p. 21468-21475.
24.Ferreira, L.G., et al., Molecular docking and structure-based drug design strategies. Molecules, 2015. 20(7): p. 13384-421.
25.Li, J., A. Fu, and L.J.I.S.C.L.S. Zhang, An Overview of Scoring Functions Used for Protein–Ligand Interactions in Molecular Docking. 2019. 11(2): p. 320-328.
26.Lohning, A.E., et al., A Practical Guide to Molecular Docking and Homology Modelling for Medicinal Chemists. Curr Top Med Chem, 2017. 17(18): p. 2023-2040.
27.He, J.-H., et al., Zebrafish models for assessing developmental and reproductive toxicity. Neurotoxicology teratology, 2014. 42: p. 35-42.
28.Waterhouse, A., et al., SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res, 2018. 46(W1): p. W296-W303.
29.Webb, B. and A. Sali, Comparative Protein Structure Modeling Using MODELLER. Curr Protoc Bioinformatics, 2016. 54: p. 5 6 1-5 6 37.
30.Koska, J., et al., Fully automated molecular mechanics based induced fit protein-ligand docking method. J Chem Inf Model, 2008. 48(10): p. 1965-73.
31.Gagnon, J.K., S.M. Law, and C.L. Brooks, 3rd, Flexible CDOCKER: Development and application of a pseudo-explicit structure-based docking method within CHARMM. J Comput Chem, 2016. 37(8): p. 753-62.
32.Shen, M.Y. and A. Sali, Statistical potential for assessment and prediction of protein structures. Protein Sci, 2006. 15(11): p. 2507-24.
33.John, B. and A. Sali, Comparative protein structure modeling by iterative alignment, model building and model assessment. Nucleic Acids Res, 2003. 31(14): p. 3982-92.
34.Yuan, Y., J. Pei, and L. Lai, Binding site detection and druggability prediction of protein targets for structure-based drug design. Curr Pharm Des, 2013. 19(12): p. 2326-33.
35.Brooks, B.R., et al., CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry, 1983. 4(2): p. 187-217.
36.Ding et al., Oxidative stress and structure-activity relationship in the zebrafish (Danio rerio) under exposure to paclobutrazol. Journal of Environmental Science and Health, Part B, 2008. 44(1): p. 44-50.
37.Hussain, A., et al., Multiple Screening of Pesticides Toxicity in Zebrafish and Daphnia Based on Locomotor Activity Alterations. 2020. 10(9): p. 1224.
38.Suryanto, M.E., et al., Antidepressant Screening Demonstrated Non-Monotonic Responses to Amitriptyline, Amoxapine and Sertraline in Locomotor Activity Assay in Larval Zebrafish. Cells, 2021. 10(4): p. 738.
39.Bownik, A., N. Sokołowska, and B.J.S.o.t.T.E. Ślaska, Effects of apomorphine, a dopamine agonist, on Daphnia magna: imaging of swimming track density as a novel tool in the assessment of swimming activity. 2018. 635: p. 249-258.
40.Mendes, J., J. Pereira, and T. Pereira, Variability of heart rate in athletes and non athletes. European Journal of Public Health, 2019. 29(Supplement_1): p. ckz034. 098.
41.Chaswal, M., et al., Heart rate variability and cardiovascular reflex tests for assessment of autonomic functions in preeclampsia. International journal of hypertension, 2018. 2018.
42.Hsiao, C.-D., et al., Expression and Purification of Recombinant GHK Tripeptides Are Able to Protect against Acute Cardiotoxicity from Exposure to Waterborne-Copper in Zebrafish. Biomolecules, 2020. 10(9): p. 1202.
43.Cikes, M. and S.D. Solomon, Beyond ejection fraction: an integrative approach for assessment of cardiac structure and function in heart failure. European heart journal, 2016. 37(21): p. 1642-1650.
44.van Dalen, E.C., et al., Anthracycline-induced cardiotoxicity: comparison of recommendations for monitoring cardiac function during therapy in paediatric oncology trials. European Journal of Cancer, 2006. 42(18): p. 3199-3205.
45.Chengode, S., Left ventricular global systolic function assessment by echocardiography. Annals of cardiac anaesthesia, 2016. 19(Suppl 1): p. S26.
46.Santoso, F., et al., Development of a simple imagej-based method for dynamic blood flow tracking in zebrafish embryos and its application in drug toxicity evaluation. Inventions, 2019. 4(4): p. 65.
47.Tyrer, P. and M.J.B.M.J. Lader, Response to propranolol and diazepam in somatic and psychic anxiety. 1974. 2(5909): p. 14-16.
48.Gebauer, D.L., et al., Effects of anxiolytics in zebrafish: similarities and differences between benzodiazepines, buspirone and ethanol. 2011. 99(3): p. 480-486.
49.Finn, J., et al., Effects of propranolol on heart rate and development in Japanese medaka (Oryzias latipes) and zebrafish (Danio rerio). 2012. 122: p. 214-221.
50.Huggett, D., et al., Toxicity of select beta adrenergic receptor-blocking pharmaceuticals (B-blockers) on aquatic organisms. 2002. 43(2): p. 229-235.
51.Sweetman, S. and I.J.L. Martindale, UK, The Complete Drug Reference Pharmaceutical Press. 2002.
52.Jozefowski, S.J., B.J.D. Plytycz, and C. Immunology, Characterization of β β β-ADRENERGIC receptors in fish and amphibian lymphoid organs. 1998. 22(5-6): p. 587-603.
53.Fraysse, B., et al., Development of a zebrafish 4-day embryo-larval bioassay to assess toxicity of chemicals. 2006. 63(2): p. 253-267.
54.Owen, S.F., et al., Comparative physiology, pharmacology and toxicology of β-blockers: mammals versus fish. 2007. 82(3): p. 145-162.
55.Ternes, T.A.J.W.r., Occurrence of drugs in German sewage treatment plants and rivers. 1998. 32(11): p. 3245-3260.
56.Santos, L.H., et al., Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. 2010. 175(1-3): p. 45-95.
57.JW, B., S. LH, and D.J.L. AC, A new adrenergic betareceptor antagonist. 1964. 1(7342): p. 1080-1081.
58.Margiotta-Casaluci, L., et al., Testing the translational power of the zebrafish: an interspecies analysis of responses to cardiovascular drugs. 2019. 10: p. 893.
59.Yaeger, M., et al., Myocardial toxicity in a group of greyhounds administered ractopamine. 2012. 49(3): p. 569-573.
60.Almeida, V.V.d., et al., Ractopamine as a metabolic modifier feed additive for finishing pigs: a review. 2012. 55(3): p. 445-456.
61.Marchant-Forde, J., et al., The effects of ractopamine on the behavior and physiology of finishing pigs. Journal of Animal Science, 2003. 81(2): p. 416-422.
62.Lonare, S., S. Sole, and S.J.T.I. Umap, Exposure to Ractopamine Induces Behavioural and Reproductive Alterations in Zebrafish (Danio rerio). Toxicology International, 2018. 25(3): p. 31-42.
63.Lopes, E., et al., Metabolic and behavioral effects of ractopamine at continuous low levels in rats under stress. Brazilian Archives of Biology and Technology, 2015. 58(3): p. 406-413.
64.Sachett, A., et al., Ractopamine hydrochloride induces behavioral alterations and oxidative status imbalance in zebrafish. 2018. 81(7): p. 194-201.
65.Srinivasan, A.V.J.A.o.I.A.o.N., Propranolol: A 50-year historical perspective. 2019. 22(1): p. 21.
66.Prichard, B.J.B.M.J., Use of propranolol (Inderal) in treatment of hypertension. 1964. 2(5411): p. 725.
67.Hayes, P.E. and S.C.J.J.o.a.d. Schulz, Beta-blockers in anxiety disorders. 1987. 13(2): p. 119-130.
68.Frese, D.A., et al., Effect of ractopamine hydrochloride and zilpaterol hydrochloride on cardiac electrophysiologic and hematologic variables in finishing steers. Journal of the American Veterinary Medical Association, 2016. 249(6): p. 668-677.
69.Schwerte, T., et al., Development of the sympatho-vagal balance in the cardiovascular system in zebrafish (Danio rerio) characterized by power spectrum and classical signal analysis. 2006. 209(6): p. 1093-1100.
70.Brown, D., et al., The Beta-adrenergic agonist, Ractopamine, increases skeletal muscle expression of Asparagine Synthetase as part of an integrated stress response gene program. Scientific reports, 2018. 8(1): p. 1-10.
71.Finn, J., et al., Effects of propranolol on heart rate and development in Japanese medaka (Oryzias latipes) and zebrafish (Danio rerio). Aquatic toxicology, 2012. 122: p. 214-221.
72.Kim, H., et al., Ractopamine Influences Muscle Proteome Profile of Postmortem Beef Longissimus Lumborum. Meat and Muscle Biology, 2019. 1(3).
73.Lopes, E., et al., Metabolic and behavioral effects of ractopamine at continuous low levels in rats under stress. Brazilian Archives of Biology and Technology, 2015. 58: p. 406-413.
74.Barrett, A. and V.A.J.B.j.o.p. Cullum, The biological properties of the optical isomers of propranolol and their effects on cardiac arrhythmias. 1968. 34(1): p. 43-55.
75.Ruuskanen, J.O., et al., Identification of duplicated fourth α2-adrenergic receptor subtype by cloning and mapping of five receptor genes in zebrafish. Molecular biology and evolution, 2004. 21(1): p. 14-28.
76.Wang, Z., et al., Zebrafish β-adrenergic receptor mRNA expression and control of pigmentation. Gene, 2009. 446(1): p. 18-27.
77.Johnston, S., et al., A targeted genome association study examining transient receptor potential ion channels, acetylcholine receptors, and adrenergic receptors in chronic fatigue syndrome/myalgic encephalomyelitis. 2016. 17(1): p. 1-7.
78.Shappell, N., et al., Response of C2C12 mouse and turkey skeletal muscle cells to the β-adrenergic agonist ractopamine. Journal of animal science, 2000. 78(3): p. 699-708.
79.Maltin, C., et al., Propranolol apparently separates the physical and compositional characteristics of muscle growth induced by clenbuterol. Bioscience reports, 1987. 7(1): p. 51-57.
80.FUTAKI, S., et al., Denopamine (beta1-selective adrenergic receptor agonist) and isoproterenol (non-selective beta-adrenergic receptor agonist) equally increase heart rate and myocardial oxygen consumption in dog heart. Japanese circulation journal, 1991. 55(10): p. 972-982.
81.Kossack, M., et al., Induction of cardiac dysfunction in developing and adult zebrafish by chronic isoproterenol stimulation. Journal of molecular and cellular cardiology, 2017. 108: p. 95-105.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊