跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/07 12:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高振瑋
研究生(外文):Cheng-Wei Kao
論文名稱:以磁性離子摻雜之磷酸釩鋰與磷酸釩鈉之電池性能提升研究
論文名稱(外文):Enhanced performance of superionic Li3V2(PO4)3 and Na3V2(PO4)3 batteries by insertion of magnetic ions
指導教授:楊仲準
指導教授(外文):Chun-Chuen Yang
口試委員:劉偉仁李文献詹丁山魏百駿
口試委員(外文):Wei-Ren LiuWun-Hsien LiTing-Shan ChanPai-Chun Wei
口試日期:2022-01-11
學位類別:博士
校院名稱:中原大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:126
中文關鍵詞:電池
外文關鍵詞:Battery
DOI:10.6840/cycu202200046
相關次數:
  • 被引用被引用:0
  • 點閱點閱:39
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用檸檬酸表面活性成功合成Li3V2(PO4)3與Na3V2(PO4)3,外表由碳層包覆,並且將5%與10%比例之磁性原子(Mn、Fe、Co、Ni)摻雜至樣品中。10%樣品在XRD實驗中發現有雜質,5%則皆為純相,當中皆無碳的峰值,代表碳為無序,由摻雜後晶格變化與吸收光譜實驗證實摻雜元素確實取代樣品中V之位置並且得知其價數。實驗主要以摻雜5%比例磁性原子之樣品與對照組比較彼此間的物性與電池性能關係。臨場變溫拉曼光譜實驗觀察外層無序的碳,分析D-band、G-band變化與強度比,得知碳層有序程度與V鍵結價數有關。
分別研究樣品在低電壓(銅極片)鋰/鈉離子嵌入能力與高電壓(鋁極片)鋰/鈉離子析出能力。測量變場50 cycle、c-rate實驗以觀察電容量穩定度與快速充放電的衰退度,所有樣品在快速至慢速充放電中皆有良好的回復性。在電池組抗分析趨勢中觀察Rct與V鍵結價數相關,且樣品表面因V鍵結價數影響碳層的電子,與碳層有序度導致表面的電荷轉移能力產生變化。離子擴散速度則與樣品晶格體積互相有些微之影響。在能量功率密度圖中發現,無論是LVP或是NVP,Fe離子是不錯的摻雜選擇。
In this study, Li3V2(PO4)3 and Na3V2(PO4)3 were successfully synthesized using the surface activated method of citric acid. The surface is covered by a carbon layer and doped with 5% and 10% magnetic atoms (Mn, Fe, Co, Ni). XRD experiments showed that impurities were found in 10%-doped samples but not in the 5% ones. No carbon signal was found in XFD experiments, which means the carbon formed disordered. The variation of lattice constants and the X-ray absorption spectra experiments confirmed that the doped elements have partially substituted the vanadium in the samples. This study mainly compares the relationship between the physical properties of the sample doped with 5% magnetic atoms and the pure ones in the battery performance. Varied magnetic fields and temperatures Raman spectra experiments displayed the disordered carbon at the outer layer. The changes of D-band, G-band, and their intensities ratio referred to the order of the carbon layer and correlated with the bond valence of vanadium.
Study the intercalation/deintercalation behaviors of lithium/sodium ions under low voltage (for copper case) and high voltage (for aluminum case). The varied magnetic field, 50 cycles, and C-rate experiments checked conductor stability and charge-discharge decay. In the C-rate experiment, all samples have good response and recovery during difference/charging rate. The electrochemical impedance spectroscopy experiment shows that Rct is related to V bond valence. The electrons of the carbon layer are affected by the V bond valence on the surface of the sample, and crystallization of the carbon layer lead to changes in Rct. The ion diffusion rate and the sample lattice volume slightly influence each other. The energy to power density plot indicates that Fe ions are good doping options for LVP and NVP cases.
目錄
摘要…………………………………………………………………..….I
Abstract………………………………………………………………......II目錄…………………………………………………………………...III圖目錄…………………………………………………………………..VI表目錄……………………………………………………..………….XIV


第一章 簡介……………………………………………………………1
  1.1 電池材料……………………………………………………...1
  1.2 文獻回顧……………………………………………………...3
1.3 實驗目的………………………………………………...…..21
第二章 實驗理論……………………………………………………..23
  2.1 X光粉末繞射理論…………..……………..……………….23
  2.2 拉曼原理…………………………………………………….26
2.3 X光吸收光譜..………………..…………………………….28
2.4 電池原理..……………………..…………………………….31
2.5 電池充放電測量..……………………..…………………….33
    2.5.1 前三次充放電曲線測量…..……………..……….….33
2.5.2 循環充放電測量…..……………………..…….…….35
2.5.3  C-rate測量…..…………………………..………….36
2.6 電化學阻抗譜..………………………..…………………….37
第三章 實驗方法與儀器……………………………………………..42
  3.1 樣品製程…………………………………………………….42
    3.1.1 樣品粉末製成…………………..……………………42
3.1.2 陽極極片製成………………………………..………44
3.1.3 電池製成……………………………………..………44
  3.2 實驗儀器…………………………………………………….46
    3.2.1 X-Ray粉末繞射儀………………………..................46
    3.2.2 拉曼光譜儀…………………..………………………47
    3.2.3 微小電流電池自動化充放電測試主機…..…………48
    3.2.4 阻抗分析儀…………………..………………………49
    3.2.5  BL16A1吸收光譜實驗站…..………………………50
第四章 實驗數據分析……………………………………………..51
  4.1 XRD分析…………...……………………………………….51
  4.2 吸收光譜分析……....……………………………………….63
  4.3 Raman光譜實驗…..……………………..………………….67
  4.4 電池實驗分析………...…………………….……………….73
  4.5 電池阻抗分析………....…………………………………….88
  4.6 電池能量功率密度分析………....………………………….93 
第五章 結論…………………………………………………………..96
參考文獻………………………………………………………………..99 
圖目錄
圖(1.1)  LVP結構圖。………….…………………………2
圖(1.2)  NVP結構圖。……………………………………3
圖(1.3)  Li3V1-xFexP之循環充放電圖。(a)x=0 (b)x=0.01 (c)x=0.02 (d)x=0.04 (e)x=0.06。 3
圖(1.4) CV測量圖(a) Li3V2(PO4)3 (b)Li3Fe0.02V1.98(PO4)3。...4
圖(1.5)  (a)NVP之SEM圖(b)Raman圖(c)TG圖。…………4
圖(1.6)  (a)NVP/C XRD (b)sample1(c)sample2 TEM。 5
圖(1.7)  充放電NVP變化之XRD圖。…………………….5
圖(1.8)  LVP(a)充放電曲線(b)對應之XRD圖。 6
圖(1.9)  LVP充放電曲線。 6
圖(1.10)  NaxV2(PO4)3在不同電壓對應圖。 7
圖(1.11)  NaxV2(PO4)3(a) CV curves (b) 前三次充放電曲線。 7
圖(1.12) (a) NVP (b) NTP CV curves。 8
圖(1.13) (a) NTP(Cu)/NVP (b) NTP(Al)/NVP CV curves。 8
圖(1.14) (a) Na3V2-xMnx(PO4)3 1000次(b) x=0.2,30C 1000次循環充放電測量。…………………………………...9

圖(1.15)  Na3V2-xTix(PO4)3 1000次(a) C-rate (b) 100次循環充放電測量。……………………………………………10
圖(1.16)  NVP不同燒結溫度之 (a) XRD圖 (b) C-rate充放電測量圖。………………………………………..…10
圖(1.17)  NVP不同燒結溫度之 (a) XRD圖 (b) C-rate充放電測量圖。 11
圖(1. 18)  NVP不同Fe比例摻雜C-rate。 11
圖(1. 19)  NVP不同Mo比例摻雜C-rate。 11
圖(1. 20)  NVP不同Zr比例摻雜(a)C-rate (b)1000 cycle。 12
圖(1. 21)  NVP/Ag 100次循環充放電測量。 12
圖(1. 22)  NVP摻雜碳層比較 C-rate。 12
圖(1. 23)  NVP不同N比例摻雜至碳層(a)XRD圖 (b、c、d)SEM圖。 13
圖(1. 24)  NVP不同N比例摻雜至碳層1000次循環充放電測量。 13
圖(1. 25)  XRD、SEM和示意圖(a)(d)(g)NVP/AC(b)(e)(h) NVP/CNT (c)(f)(i) NVP/graphite。 14
圖(1. 26)  NVP/AC、NVP/CNT和NVP/graphite (a)不同充放電速度 (b)200次循環充放電測量。 14
圖(1. 27)  NVP不同溫度下XRD (a)放電前(b)放電後。 15
圖(1. 28)  LVP拉曼實驗擬合圖。 15
圖(1. 29)  LVP之拉曼光譜實驗與理論預測圖。 16
圖(1. 30)  Li3V2(PO4)3-xBrx 100次循環充放電測量。 18
圖(1. 31)  Li3V2(PO4)3-xBrx 與LVP(a)10次(b)20次充放電後EIS測量。 19
圖(1. 32)  NVP(a)變磁場XRD圖(b)Raman實驗變溫變場擬合圖。 20
圖(1. 33) 研究規劃示意圖。 21
圖(2. 1)  布拉格定律示意圖。 23
圖(2. 2)  光干涉示意圖。 24
圖(2. 3)  NVP碳層拉曼擬合圖。 27
圖(2. 4)  能階定義示意圖。 28
圖(2. 5)  V K-edge XANES圖。………………………... 29
圖(2. 6)  CR2032電池組件。 ……………………..……31
圖(2. 7)  電池內部運作示意圖。 …………………..……32
圖(2. 8)  NVP前三次充放電曲線圖。 33
圖(2. 9)  NVP循環充放電圖。……….…………………... 35
圖(2. 10) NVP C-rate實驗圖。……..……………………... 36
圖(2. 11)  LVP_Mn EIS實驗圖。…….…………………... 39
圖(2. 12)  鈕扣電池EIS有效電路圖。……..…………... 41
圖(3. 1)  藥品水溶液烘乾後產物。 43
圖(3. 2)  LVP_Co樣品粉末。 43
圖(3. 3)  CR3023電池組件。 45
圖(3. 4)  X-ray粉末繞射儀之外觀。 46
圖(3. 5)  拉曼光譜儀之外觀。 47
圖(3. 6) 微小電流電池自動化充放電測試主機外觀。 48
圖(3. 7)  阻抗分析儀外觀。 49
圖(3. 8)  BL16A1吸收光譜外觀。 50

圖(4. 1.1)  (a) Li3V2(PO4)3 (b) Na3V2(PO4)3之XRD圖。 51
圖(4. 1.2)  Li3V2(PO4)3 摻雜Mn(a)5% (b)10%;Fe (c)5% (d)10%;Co(a)5% (b)10%;Ni(a)5% (b)10% 之XRD圖。 55
圖(4. 1.3)  Na3V2(PO4)3 摻雜Mn(a)5% (b)10%;Fe (c)5% (d)10%;Co(a)5% (b)10%;Ni(a)5% (b)10% 之XRD圖。 56
圖(4. 1.4)  (a) Li3V2(PO4)3 (b) Na3V2(PO4)3 之存放時間XRD圖。 57
圖(4. 1.5)  LVP與不同元素摻雜(a) a 軸 (b) b軸 (c) c軸(d)體積隨磁場變化圖。 58
圖(4. 1.6)  NVP與不同元素摻雜(a) a 軸 (b) c軸 (c)體積隨磁場變化圖。 60
圖(4. 2.1) 樣品V K-edge XAFS圖。 63
圖(4. 2.2) 對比樣品V K-edge XAFS圖。 64
圖(4. 2.3) 摻雜樣品對(a) Mn K-edge (b) Fe K-edge (c)Co K-edge XAFS圖。 64
圖(4. 2.4) 標準樣品對(a) Mn K-edge (b) Fe K-edge (c)Co K-edge XAFS圖。 65
圖(4. 3.1)  NVP大範圍掃描Raman圖。 67
圖(4. 3.2)  (a)LVP(b) LVP_Mn (c) LVP_Fe (d) LVP_Co (e) LVP_Ni 變溫變場Raman擬合圖。 68
圖(4. 3.3)  (a)NVP(b) NVP_Mn (c) NVP_Fe (d) NVP_Co (e) NVP_Ni 變溫變場Raman擬合圖。 69
圖(4. 3.4) 變磁場碳層G-band(a)LVP系列(b)NVP系列比較圖。 71
圖(4. 4.1) (a)LVP (b) LVP_Mn (c) LVP_Fe (d) LVP_Co (e) LVP_Ni 銅極片電池前三次充放電曲線圖。 74

圖(4. 4.2) (a)NVP (b) NVP_Mn (c) NVP_Fe (d) NVP_Co (e) NVP_Ni 銅極片電池前三次充放電曲線圖。 75
圖(4. 4.3)  (a)LVP (b) LVP_Mn (c) LVP_Fe (d) LVP_Co (e) LVP_Ni 鋁極片電池前三次充放電曲線圖。 76
圖(4. 4.4)  (a)NVP (b) NVP_Mn (c) NVP_Fe (d) NVP_Co (e) NVP_Ni 鋁極片電池前三次充放電曲線圖。 77
圖(4. 4.5) (a)LVP系列 (b) NVP系列銅極片電池50次充放電後變場電容量穩定度圖。 78
圖(4. 4.6) (a)LVP系列 (b) NVP系列銅極片電池50次充放電後變場電容量圖。 79
圖(4. 4.7) (a)LVP (b) LVP_Mn (c) LVP_Fe (d) LVP_Co (e) LVP_Ni (f)NVP (g)NVP_Mn (h)NVP_Fe (i)NVP_Co (j)NVP_Ni 銅極片電池50次充放電電容值圖。 80
圖(4. 4.8) (a)LVP系列 (b) NVP系列鋁極片電池50次充放電後變場電容量穩定度圖。 81
圖(4. 4.9) (a)LVP系列 (b) NVP系列鋁極片電池50次充放電後變場電容量圖。 82
圖(4. 4.10) (a)LVP (b) LVP_Mn (c) LVP_Fe (d) LVP_Co (e) LVP_Ni (f)NVP (g)NVP_Mn (h)NVP_Fe (i)NVP_Co (j)NVP_Ni 鋁極片電池50次充放電電容值圖。 83
圖(4. 4.11) (a)LVP系列 (b) NVP系列銅極片電池不同充放電速度電容量圖。 84
圖(4. 4.12) (a)LVP (b) LVP_Mn (c) LVP_Fe (d) LVP_Co (e) LVP_Ni (f)NVP (g)NVP_Mn (h)NVP_Fe (i)NVP_Co (j)NVP_Ni 銅極片電池C-rate圖。 85
圖(4. 4.13) (a)LVP系列 (b) NVP系列鋁極片電池不同充放電速度電容量圖。 86
圖(4. 4.14) (a)LVP (b) LVP_Mn (c) LVP_Fe (d) LVP_Co (e) LVP_Ni (f)NVP (g)NVP_Mn (h)NVP_Fe (i)NVP_Co (j)NVP_Ni 鋁極片電池C-rate圖。 87
圖(4. 5.1) 銅極片電池(a)LVP系列 (b) NVP系列;鋁極片電池(c) LVP系列 (d) NVP系列EIS圖。 88
圖(4. 5.2) 鋁極片電池(a)LVP系列 (b)NVP系列Rct與V價數比較圖。 91
圖(4. 5.3)  LVP系列晶格體積與銅/鋁極片電池之離子擴散速度比較圖。 91
圖(4. 5.4)  NVP系列(a) 晶格體積與銅極片電池(b) c軸晶格常數與鋁極片電池離子擴散速度比較圖。 92




圖(4. 6.1)  LVP系列(a)銅極片(b)鋁極片電池;NVP系列(c)銅極片(d)鋁極片電池(e)整體比較不同充放電速度(f)文獻電池能量密度與功率密度作圖。 ………………93
圖(4. 6.2)  LVP系列(a)銅極片(b)鋁極片電池;NVP系列(c)銅極片(d)鋁極片電池不同變磁場能量密度與功率密度作圖。 95


表目錄
表(一)  Nasicon結構中(PO4)3-在空間群R-3m之對稱相關性。 17
表(二) 各種Nasicon結構銅磷酸鹽之紅外頻率。 17
表(三) 藥品資訊表。 43
表(四) Li3V2(PO4)3原子位子表。 52
表(五)  Na3V2(PO4)3原子位子表。 52
表(六)  Li3V1.9Fe0.1(PO4)3原子位子表。 54
表(七)  Na3V1.9Fe0.1(PO4)3原子位子表。 54
表(八)  LVP摻雜變場晶格常數與磁致伸縮表。 59
表(九)  NVP摻雜變場晶格常數與磁致伸縮表。 61
表(十)  V鍵結價數表。 62
表(十一) 對應離子價數之離子半徑表。 66
表(十二) ID/IG強度比表。 71
表(十三) 變場阻抗、離子擴散速數表。 89
[1] J. Gaubicher, C. Wurm, G. Goward, C. Masquelier and L. Nazar, Rhombohedral Form of Li3V2(PO4)3 as a Cathode in Li-Ion Batteries, Chem. Mater. (2000) 12,3240-3242.

[2] Yuzhan Li, Zhen Zhou, Manman Ren, Xueping Gao, Jie Yan, Electrochemical performance of nanocrystalline Li3V2(PO4)3/carbon composite material synthesized by a novel sol–gel method, Electrochimica Acta 51 (2006) 6498–6502.

[3] Quanqi Chen, Jianming Wang, Zheng Tang, Weichun He, Haibo Shao, Jianqing Zhang, Electrochemical performance of the carbon coated Li3V2(PO4)3 cathode material synthesized by a sol–gel method, Electrochimica Acta 52 (2007) 5251–5257.

[4] X.H. Rui, C. Li, C.H. Chen, Synthesis and characterization of carbon-coated Li3V2(PO4)3 cathode materials with different carbon sources, Electrochimica Acta 54 (2009) 3374–3380.

[5] X.H. Rui, N. Ding, J. Liu, C. Li, C.H. Chen, Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material, Electrochimica Acta 55 (2010) 2384–2390.

[6] Marcella Bini, Stefania Ferrari, Doretta Capsoni, Vincenzo Massarotti, Mn influence on the electrochemical behaviour of Li3V2(PO4)3 cathode material, Electrochimica Acta 56 (2011) 2648–2655.

[7] Shanshan Jiang, Yuansheng Wang, Phosphorus-doped graphene-improved Na3V2(PO4)3@C nanocomposite possessing high-rate performance for electrochemical energy storage, Ceramics International 45 (2019) 11600–11606.


[8] Anqiang Pan, Jun Liu, Ji-Guang Zhang, Wu Xub, Guozhong Cao, Zimin Nie, Bruce W. Arey, Shuquan Liang, Nano-structured Li3V2(PO4)3/carbon composite for high-rate lithium-ion batteries, Electrochemistry Communications 12 (2010) 1674–1677.

[9] Mineo Sato, Hirokazu Ohkawa, Kenji Yoshida, Mai Saito, Kazuyoshi Uematsu, Kenji Toda, Enhancement of discharge capacity of Li3V2(PO4)3 by stabilizing the orthorhombic phase at room temperature, Solid State Ionics 135 (2000) 137–142.

[10] Sebastien Patoux, Calin Wurm, Mathieu Morcrette, Gwenaelle Rousse, Christian Masquelier, A comparative structural and electrochemical study of monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3, Journal of Power Sources 119–121 (2003) 278–284.

[11] Peng Fu, Yanming Zhao, Youzhong Dong, Xiaoning An, Guopei Shen, Synthesis of Li3V2(PO4)3 with high performance by optimized solid-state synthesis routine, Journal of Power Sources 162 (2006) 651–657.

[12] Jun-Chao Zheng, Xin-Hai Li, Zhi-XingWang, Hua-Jun Guo, Qi-Yang Hu,Wen-Jie Peng, Li3V2(PO4)3 cathode material synthesized by chemical reduction and lithiation method, Journal of Power Sources 189 (2009) 476–479.

[13] L. Zhang, X.L. Wang, J.Y. Xiang, Y. Zhou, S.J. Shi, J.P. Tu, Synthesis and electrochemical performances of Li3V2(PO4)3/(Ag + C) composite cathode, Journal of Power Sources 195 (2010) 5057–5061.

[14]Anqiang Pan, Daiwon Choi, Ji-Guang Zhang, Shuquan Lianga, Guozhong Cao, Zimin Nie, Bruce W. Arey, Jun Liu, High-rate cathodes based on Li3V2(PO4)3 nanobelts prepared via surfactant-assisted fabrication, Journal of Power Sources 196 (2011) 3646–3649.

[15] Bo Pei, Zhongqing Jiang, Weixin Zhang, Zeheng Yang, Arumugam Manthiram, Nanostructured Li3V2(PO4)3 cathode supported on reduced graphene oxide for lithium-ion batteries, Journal of Power Sources 239 (2013) 475-482.
[16] Wenhao Ren, Zhiping Zheng, Chang Xu, Chaojiang Niu, Qiulong Wei, Qinyou An, Kangning Zhao, Mengyu Yan, Mingsheng Qin, Liqiang Mai, Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium–ion full batteries, Nano Energy 25(2016)145–153.

[17]Ze Yang, Guolong Li, Jingying Sun, Lixin Xie, Yan Jiang, Yunhui Huang, Shuo Chen, High performance cathode material based on Na3V2(PO4)2F3 and Na3V2(PO4)3 for sodium-ion batteries, Energy Storage Materials 25 (2020) 724–730.

[18] Sunkyu Park, Ziliang Wang, Zeyu Deng, Iona Moog, Pieremanuele Canepa, François Fauth, Dany Carlier, Laurence Croguennec, Christian Masquelier, and Jean-Noël Chotard, Crystal Structure of Na2V2(PO4)3, an Intriguing Phase Spotted in the Na3V2(PO4)3−Na1V2(PO4)3 System, Chem. Mater. (2022) 34, 451−462.

[19] Jiexin Zhang, Yongjin Fang, Lifen Xiao, Jiangfeng Qian, Yuliang Cao, Xinping Ai, Hanxi Yang, Graphene-Scaffolded Na3V2(PO4)3 Microsphere Cathode with High Rate Capability and Cycling Stability for Sodium Ion Batteries, ACS Appl. Mater. Interfaces (2017) 9, 7177−7184.

[20] Qiao Ni, Lumin Zheng, Ying Bai, Tongchao Liu, Haixia Ren, Huajie Xu, Chuan Wu, Jun Lu, An Extremely Fast Charging Li3V2(PO4)3 Cathode at a 4.8 V Cutoff Voltage for Li-Ion Batteries, ACS Energy Lett. (2020) 5, 1763−1770.

[21] Zelang Jian, Chenchen Yuan, Wenze Han, Xia Lu , Lin Gu, Xuekui Xi , Yong-Sheng Hu, Hong Li, Wen Chen, Dongfeng Chen, Yuichi Ikuhara, Liquan Chen, Atomic Structure and Kinetics of NASICON NaxV2(PO4)3 Cathode for Sodium-Ion Batteries, Adv. Funct. Mater. (2014) 24, 4265–4272.

[22] Kuppan Saravanan, Chad W. Mason, Ashish Rudola, Kim Hai Wong, Palani Balaya, The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries, Adv. Energy Mater. (2013) 3, 444–450.
[23] Yu Jiang , Zhenzhong Yang , Weihan Li , Linchao Zeng , Fusen Pan , Min Wang , Xiang Wei , Guantai Hu , Lin Gu , Yan Yu, Nanoconfi ned Carbon-Coated Na3V2(PO4)3 Particles in Mesoporous Carbon Enabling Ultralong Cycle Life for Sodium-Ion Batteries, Adv. Energy Mater. (2015) 5, 1402104.

[24] Yu Jiang, Xuefeng Zhou, Dongjun Li, Xiaolong Cheng, Fanfan Liu, Yan Yu, Highly Reversible Na Storage in Na3V2(PO4)3 by Optimizing Nanostructure and Rational Surface Engineering, Adv. Energy Mater. (2018) 8, 1800068.

[25] Chenchen Wang, Dongfeng Du, Mingming Song, Yunhai Wang, Fujun Li, A High-Power Na3V2(PO4)3-Bi Sodium-Ion Full Battery in a Wide Temperature Range, Adv. Energy Mater. (2019) 9, 1900022.

[26] Yongjin Fang, Lifen Xiao, Xinping Ai, Yuliang Cao, Hanxi Yang, Hierarchical Carbon Framework Wrapped Na3V2(PO4)3 as a Superior High-Rate and Extended Lifespan Cathode for Sodium-Ion Batteries, Adv. Mater. (2015) 27, 5895–5900.

[27] Xianhong Rui, Wenping Sun, Chao Wu, Yan Yu, Qingyu Yan, An Advanced Sodium-Ion Battery Composed of Carbon Coated Na3V2(PO4)3 in a Porous Graphene Network, Adv. Mater. (2015) 27, 6670–6676.

[28] Chunwen Sun, Shreyas Rajasekhara, Youzhong Dong, John B. Goodenough, Hydrothermal Synthesis and Electrochemical Properties of Li3V2(PO4)3/C-Based Composites for Lithium-Ion Batteries, ACS Appl. Mater. Interfaces (2011) 3, 3772–3776.

[29] Rongyu Zhang, Yongquan Zhang, Kai Zhu, Fei Du, Qiang Fu, Xu Yang, Yuhui Wang, Xiaofei Bie, Gang Chen, Yingjin Wei, Carbon and RuO2 Binary Surface Coating for the Li3V2(PO4)3 Cathode Material for Lithium-Ion Batteries, ACS Appl. Mater. Interfaces (2014) 6, 12523−12530.



[30] Weixin Song, Xiaobo Ji, Yirong Zhu, Hanjun Zhu, Fangqian Li, Jun Chen, Fang Lu, Yinpeng Yao, Craig. E. Banks, Aqueous Sodium-Ion Battery using a Na3V2(PO4)3 Electrode, ChemElectroChem (2014) 1, 871 – 876.

[31] C. Deng, S. Zhang, S. Y. Yang, Y. Gao, B. Wu, L. Ma, B. L. Fu, Q. Wu, F. L. Liu, Effects of Ti and Mg Codoping on the Electrochemical Performance of Li3V2(PO4)3 Cathode Material for Lithium Ion Batteries, J. Phys. Chem. C (2011) 115, 15048–15056.

[32] M. M. Ren, Z. Zhou, X. P. Gao, W. X. Peng, J. P. Wei, Core-Shell Li3V2(PO4)3@C Composites as Cathode Materials for Lithium-Ion Batteries, J. Phys. Chem. C (2008) 112, 5689-5693.

[33] Changbao Zhu, Kepeng Song, Peter A. van Aken, Joachim Maier, Yan Yu, Carbon-Coated Na3V2(PO4)3 Embedded in Porous Carbon Matrix: An Ultrafast Na-Storage Cathode with the Potential of Outperforming Li Cathodes, Nano Lett. (2014) 14, 2175−2180.

[34] Huan Huang, Shieh-Chieh Yin, Tracy Kerr, Nicholas Taylor and Linda F. Nazar, Nanostructured composites: A high capacity fast rate Li3V2(PO4)3/carbon cathode for rechargeable lithium batteries, Adv. Mater. (2002) 14, No. 21.

[35] Manman Ren, Zhen Zhou, Yuzhan Li, X.P. Gao and Jie Yan, Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries, Jour. of Power Sour. 162 (2006) 1357-1362.

[36] Zelang Jian, Liang Zhao, Huilin Pan, Yong-Sheng Hu, Hong Li, Wen Chen, Liquan Chen, Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries, Electrochem. Commun. 14, 86-89 (2012).





[37] Zelang Jian, Wenze Han, Xia Lu, Huaixin Yang, Yong‐Sheng Hu, Jing Zhou, Zhibin Zhou, Jianqi Li, Wen Chen, Dongfeng Chen, Liquan Chen, Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room-Temperature Sodium-Ion Batteries, Adv. Energy Mater. (2013) 3, 156-160.

[38] Zelang Jian, Wenze Han, Yanliang Liang, Yucheng Lan, Zheng Fang, Yong-Sheng Hud and Yan Yao, Carbon-Coated Rhombohedral Li3V2(PO4)3 as Both Cathode and Anode Materials for Lithium-Ion Batteries: Electrochemical Performance and Lithium Storage Mechanism, J. Name.(2014) 00,1-7.

[39] Zelang Jian, Yang Sun and Xiulei Ji, A new low-voltage plateau of Na3V2(PO4)3 as an anode for Na-ion batteries, Chem. Commun. ( 2015) 51, 6381-6383.

[40] Soo Yeon Lim, Heejin Kim, R. A. Shakoor, Yousung Jung, Jang Wook Choi, Electrochemical and Thermal Properties of NASICON Structured Na3V2(PO4)3 as a Sodium Rechargeable Battery Cathode: A Combined Experimental and Theoretical Study, Journal of The Electrochemical Society, (2012) 159 (9) A1393-A1397.

[41] Huang Zhang, Bingsheng Qin, Daniel Buchholz, and Stefano Passerini, High-Efficiency Sodium-Ion Battery Based on NASICON Electrodes with High Power and Long Lifespan, ACS Appl. Energy Mater. (2018) 1, 6425−6432.

[42] Junqi Fang, Suqing Wang, Xiang Yao, Xinchao Hu, Ying Wang, Haihui Wang, Ration design of porous Mn-doped Na3V2(PO4)3 cathode for high rate and super stable sodium-ion batteries, Electrochim. Acta. (2019) 295, 262-269.




[43] Wei Shen, Cong Wang, Haimei Liu, Wensheng Yang, Towards Highly Stable Storage of Sodium Ions: A Porous Na3V2(PO4)3/C Cathode Material for Sodium-Ion Batteries, Chem. Eur. J. ( 2013) 19, 14712 – 14718.

[44] Wei Shen, Hui Li, Ziyang Guo, Zhihong Li, Qunjie Xu, Haimei Liu, Yonggang Wang, Improvement on the high-rate performance of Mn-doped Na3V2(PO4)3/C as a cathode material for sodium ion batteries, RSC Adv.(2016) 6, 71581–71588.

[45]Bao Zhang, Tao Zeng, Yi Liub and Jia-feng Zhang, Effect of Ti-doping on the electrochemical performance of sodium vanadium(III) phosphate, RSC Adv.( 2018) 8,5523-5531.

[46] Yangyang Huang, Xiang Li, Jinsong Wang, Lin Miao, Chang Li, Jiantao Han, Yunhui Huang, Superior Na-ion storage achieved by Ti substitution in Na3V2(PO4)3, Energy Storage Materials 15 (2018) 108–115.

[47] Lina Zhao, Hailei Zhao, Xuanyou Long, Zhaolin Li, Zhihong Du, Superior High-Rate and Ultralong-Lifespan Na3V2(PO4)3@C Cathode by Enhancing the Conductivity Both in Bulk and on Surface, ACS Appl. Mater. Interfaces (2018) 10, 35963−35971.

[48] Qiong Zhenga, Hongming Yia, Wanqiu Liua, Xianfeng Lia, Huamin Zhang, Improving the electrochemical performance of Na3V2(PO4)3 cathode in sodium ion batteries through Ce/V substitution based on rational design and synthesis optimization, Electrochimica Acta 238 (2017) 288–297.

[49] Tian Wu, Jianguo Sun, Zu Quan Jeremy Yap, Meilu Ke, Christina Y.H. Lim, Li Lu, Substantial doping engineering in Na3V2-xFex(PO4)3 (0≤x≤0.15) as highrate cathode for sodium-ion battery, Materials and Design 186(2020)108287.




[50] Xiang Li, Yangyang Huang, Jingsong Wang, Lin Miao, Yuyu Li, Yi Liu,Yuegang Qiu, Chun Fang, Jiantao Han and Yunhui Huang, High valence Mo-doped Na3V2(PO4)3/C as a high rate and stable cycle-life cathode for sodium battery, J. Matter. Chem. A. (2018) 201. 6. 1390-1396.

[51] Hongyang Ma, Bangchuan Zhao, Jin Bai, Kunzhen Li, Zhitang Fang, Peiyao Wang, Wanyun Li, Xuebin Zhu and Yuping Sun, Improved Electrochemical Performance of Na3V2−xZrx(PO4)3/C Through Electronic and Ionic Conductivities Regulation, Jour. of The Electrochemical Society, (2020) 167 070548.

[52] Qianchen Wang, Yongjie Zhao, Junjie Gao, Huayun Geng, Jingbo Li, Haibo Jin, Triggering the Reversible Reaction of V3+/V4+/V5+ in Na3V2(PO4)3 by Cr3+ Substitution, ACS Appl. Mater. Interfaces (2020) 12, 50315−50323.

[53] M.J. Aragón, P. Lavela, R. Alcántara, J.L. Tirado, Effect of aluminum doping on carbon loaded Na3V2(PO4)3 as cathode material for sodium-ion batteries, Electrochimica Acta 180 (2015) 824–830.

[54] Yang Xia, Wenkui Zhang, Hui Huang, Yongping Gan, Chongge Li, Xinyong Tao, Synthesis and electrochemical properties of Nb-doped Li3V2(PO4)3/C cathode materials for lithium-ion batteries, Materials Science and Engineering B 176 (2011) 633–639.

[55] Wei Yuana, Ji Yan, Zhiyuan Tang, Ou Sha, Jinmei Wang, Wenfeng Mao, Li Ma, Mo-doped Li3V2(PO4)3/C cathode material with high rate capability and long term cyclic stability, Electrochimica Acta 72 (2012) 138– 142.

[56] Y.Z. Dong, Y.M. Zhao, H. Duan, The effect of doping Mg2+ on the structure and electrochemical properties of Li3V2(PO4)3 cathode materials for lithium-ion batteries, Journal of Electroanalytical Chemistry 660 (2011) 14–21.



[57]Jiexin Dang, Feng Xiang, Ningyu Gu, Rongbin Zhang, Rahul Mukherjee, Il-Kwon Oh, Nikhil Koratkar, Zhenyu Yang, Synthesis and electrochemical performance characterization of Ce-doped Li3V2(PO4)3/C as cathode materials for lithium-ion batteries, Journal of Power Sources 243 (2013) 33-39.

[58]ZHONG Shengkui, LIU Letong, JIANG Jiqiong, LIYanwei, WANG Jian, LIU Jiequn, LI Yanhong, Preparation and electrochemical properties of Y-doped Li3V2(PO4)3 cathode materials for lithium batteries, JOURNAL OF RARE EARTHS, (2009) Vol. 27, No. 1.

[59]Yinghua Chena, Yanming Zhaoa, Xiaoning Anb, Jianmin Liuc, Youzhong Donga, Ling Chen, Preparation and electrochemical performance studies on Cr-doped Li3V2(PO4)3 as cathode materials for lithium-ion batteries, Electrochimica Acta 54 (2009) 5844–5850.

[60]Quan Kuanga, Yanming Zhaoa, Xiaoning Anb, Jianmin Liuc, Youzhong Donga, Ling Chen, Synthesis and electrochemical properties of Co-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries, Electrochimica Acta 55 (2010) 1575–1581.

[61] Lu-Lu Zhang, Gan Liang, Gang Peng, Yun-Hui Huang, Long Wang, Long Qie, Mark C. Croft, Alexander Ignatov, John B. Goodenough, Insight into Fe Incorporation in Li3V2(PO4)3/C Cathode Material, Journal of The Electrochemical Society, 159 (10) (2012) A1573-A1578.

[62] Xiaohong Liu, Guilin Feng, Enhui Wang, Hui Chen, Zhenguo Wu, Wei Xiang, Yanjun Zhong, Yanxiao Chen, Xiaodong Guo, Benhe Zhong, Insight into Preparation of Fe-Doped Na3V2(PO4)3@C from Aspects of Particle Morphology Design, Crystal Structure Modulation, and Carbon Graphitization Regulation, ACS Appl. Mater. Interfaces (2019) 11, 12421−12430.

[63] Amalendu Das , S.B. Majumder , Ayan Roy Chaudhuri, K+ and Mg2+ co-doped bipolar Na3V2(PO4)3: An ultrafast electrode for symmetric sodium ion full cell, Journal of Power Sources 461 (2020) 228149.

[64] Qing Zhang, Wei Wang, Yujiao Wang, Pingyuan Feng, Kangli Wang, Shijie Cheng, Kai Jiang, Controllable construction of 3D-skeleton-carbon coated Na3V2(PO4)3 for high-performance sodium ion battery cathode, Nano Energy (2016) 20, 11–19.

[65]Zhaoyang Wang, Jinmei Liu, Zijuan Du, Haizheng Tao and Yuanzheng Yue, Enhancing Na-ion storage in Na3V2(PO4)3/C cathodes for sodium ion batteries through Br and N co-doping, Inorg. Chem. Front. (2020) 7, 1289–1297.

[66] Huang Zhang, Ivana Hasa, Daniel Buchholz, Bingsheng Qin, Stefano Passerini, Effects of nitrogen doping on the structure and performance of carbon coated Na3V2(PO4)3 cathodes for sodium-ion batteries, Carbon 124 (2017) 334-341.

[67] Shuo Li, Yifan Dong, Lin Xu, Xu Xu, Liang He, Liqiang Mai, Effect of Carbon Matrix Dimensions on the Electrochemical Properties of Na3V2(PO4)3 Nanograins for High-Performance Symmetric Sodium-Ion Batteries, Adv. Mater. (2014) 26, 3545-3553.

[68] Bo Yan, Lin Chen, Ting Wang, Jing Xu, Haiying Wang, Gang Yang, Preparation and characterization of Li3V2(PO4)3 grown on carbon nanofiber as cathode material for lithium-ion batteries, Electrochimica Acta 176 (2015) 1358–1363.

[69] Hee Je Seong, André L. Boehman, Evaluation of Raman Parameters Using Visible Raman Microscopy for Soot Oxidative Reactivity, Energy Fuels (2013) 27, 1613−1624.


[70] Ghislaine Le Polles, Jean-Jacques Videau et Roger Olazcuaga, Analyse Structurale par Spectroscopie Raman et Infrarouge de Quelques Phosphates de Cuivre de Type Nasicon, J. Solid State Chem. (1996) 127, 341-349.

[71] Nellymar Membreño, Penghao Xiao, Kyu-Sung Park, John B. Goodenough, Graeme Henkelman, Keith J. Stevenson, In Situ Raman Study of Phase Stability of α‑Li3V2(PO4)3 upon Thermal and Laser Heating, J. Phys. Chem. C (2013) 117, 11994−12002.

[72] Xiaoyu Cao, Lulu Mo, Limin Zhu, and Lingling Xie, Preparation and Electrochemical Properties of Li3V2(PO4)3-xBrx/Carbon Composites as Cathode Materials for Lithium-Ion Batteries, Nanomaterials (2017) 7, 52.

[73] Cheng-Wei Kao, Chun-Chuen Yang, Chin Wei Wang, Shu-Han Zhuang, Yung-Hsiang Tung, Ting-Wei Hsu, Wei-Chun Wu, Wei-Ren Liu, and Kuen-Song Lin, Interplay between magnetic ion and amorphous carbon in Na3V2(PO4)3/C nanocomposite, AIP Advances (2019) 9, 035134.

[74] NCTU 國立陽明交通大學畢業倫文,林怡芬 著作(2004)

[75] Lina Zhao, Hailei Zhao, Zhihong Du, Jie Wang, Xuanyou Long, Zhaolin Li, Konrad Świerczek, Delicate Lattice Modulation Enables Superior Na Storage Performance of Na3V2(PO4)3 as Both Anode and Cathode Materials for Sodium-Ion Batteries: Understanding the Role of Calcium Substitution for Vanadium, J. Name. (2013) 00, 1-3.

[76] Wang Z.Y., He W., Zhang X.D., Yi X.L., Wang, J.C., Yang G.H., Yue Yuanzheng, 3D porous Li3V2(PO4)3/hard carbon composites for improving the rate performance of lithium ion batteries, RSC Adv., (2017) 7, 21848.

[77] Anping Tang, Xianyou Wang, Guorong Xu, Zhihua Zhou, Huidong Nie, Determination of the chemical diffusion coefficient of lithium in Li3V2(PO4)3, Materials Letters 63 (2009) 1439–1441.

[78] Tao Jiang, Wencheng Pan, Jian Wang, Xiaofei Bie, Fei Du, Yingjin Wei,Chunzhong Wang, Gang Chen, Carbon coated Li3V2(PO4)3 cathode material prepared by a PVA assisted sol–gel method, Electrochimica Acta 55 (2010) 3864–3869.

[79] Hua-Bin Sun, Lu-LuZhang, Xue-LinYang, Yun-HuiHuang, ZhenLi, Ying-Xian Zhou, Xiao-KaiDing, GanLiang, Effect of Fe-doping followed by C+SiO2 hybrid layer coating on Li3V2(PO4)3 cathode material for lithium-ion batteries, Ceramics International 42 (2016) 16557–16562.

[80] Ke Du, Hongwei Guo, Guorong Hu, Zhongdong Peng, Yanbing Cao, Na3V2(PO4)3 as cathode material for hybrid lithium ion batteries, Journal of Power Sources 223 (2013) 284-288

[81] Limin Zhu, Lulu Mo, Lingling Xie, Xiaoyu Cao, Synthesis and electrochemical Li-storage performance of Li2ZrO3-Li3V2(PO4)3/C composites, Electrochemistry Communications 122 (2021) 106908.


[82] Xiaohong Liu, Guilin Feng, Enhui Wang, Hui Chen, Zhenguo Wu, Wei Xiang, Yanjun Zhong, Yanxiao Chen, Xiaodong Guo, Benhe Zhong, Insight into Preparation of Fe-Doped Na3V2(PO4)3@C from Aspects of Particle Morphology Design, Crystal Structure Modulation, and Carbon Graphitization Regulation, ACS Appl. Mater. Interfaces (2019) 11, 12421−12430.

[83] Linnan Bi, Xiaoyan Li, Xiaoqin Liu, Qiaoji Zheng, Dunmin Lin, Enhanced Cycling Stability and Rate Capability in a La-Doped Na3V2(PO4)3/C Cathode for High-Performance Sodium Ion Batteries, ACS Sustainable Chem. Eng. (2019) 7, 7693−7699.

[84] Bereket Tsegai Habtea, Fangming Jiang, Microstructure reconstruction and impedance spectroscopy study of LiCoO2, LiMn2O4 and LiFePO4 Li-ion battery cathodes, Microporous and Mesoporous Materials 268 (2018) 69–76.

[85] X.H. Rui, N. Yesibolati, S.R. Li, C.C. Yuan, C.H. Chen, Determination of the chemical diffusion coefficient of Li+ in intercalation-type Li3V2(PO4)3 anode material, Solid State Ionics 187 (2011) 58–63.

[86] Yujie Zhu, Yunhua Xu, Yihang Liu, Chao Luo, Chunsheng Wang, Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries, Nanoscale (2013) 5, 780–787.

[87] S.S. Zhang, K. Xu, T.R. Jow, EIS study on the formation of solid electrolyte interface in Li-ion battery, Electrochimica Acta 51 (2006) 1636–1640.
[88] A. C. Larson, R. B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR, (1994) 86–748.

[89] B. H. Toby, EXPGUI, a graphical user interface for GSAS, J. Appl. Cryst. (2001) 34,210–213.

[90] N. E. BRESE and M. O'KEEFFE, Bond-Valence Parameters for Solids, Acta Cryst. (1991). B47, 192-197.

[91] Lu-Lu Zhanga, Gan Liang, Gang Peng, Yan Jiang, Hui Fang, Yun-Hui Huang,Mark C. Croft, Alexander Ignatov, Evolution of electrochemical performance in Li3V2(PO4)3/Ccomposites caused by cation incorporation, Electrochimica Acta 108 (2013) 182– 190.

[92] Xiaofei Zhang, Ruben-Simon Kuhnel, Matthias Schroeder and Andrea Balducci, Revisiting Li3V2(PO4)3 as an anode – an outstanding negative electrode for high power energy storage devices, Mater. Chem. A. (2014) 2,17906.
電子全文 電子全文(網際網路公開日期:20270121)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top