|
[1] J. Gaubicher, C. Wurm, G. Goward, C. Masquelier and L. Nazar, Rhombohedral Form of Li3V2(PO4)3 as a Cathode in Li-Ion Batteries, Chem. Mater. (2000) 12,3240-3242.
[2] Yuzhan Li, Zhen Zhou, Manman Ren, Xueping Gao, Jie Yan, Electrochemical performance of nanocrystalline Li3V2(PO4)3/carbon composite material synthesized by a novel sol–gel method, Electrochimica Acta 51 (2006) 6498–6502.
[3] Quanqi Chen, Jianming Wang, Zheng Tang, Weichun He, Haibo Shao, Jianqing Zhang, Electrochemical performance of the carbon coated Li3V2(PO4)3 cathode material synthesized by a sol–gel method, Electrochimica Acta 52 (2007) 5251–5257.
[4] X.H. Rui, C. Li, C.H. Chen, Synthesis and characterization of carbon-coated Li3V2(PO4)3 cathode materials with different carbon sources, Electrochimica Acta 54 (2009) 3374–3380.
[5] X.H. Rui, N. Ding, J. Liu, C. Li, C.H. Chen, Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material, Electrochimica Acta 55 (2010) 2384–2390.
[6] Marcella Bini, Stefania Ferrari, Doretta Capsoni, Vincenzo Massarotti, Mn influence on the electrochemical behaviour of Li3V2(PO4)3 cathode material, Electrochimica Acta 56 (2011) 2648–2655.
[7] Shanshan Jiang, Yuansheng Wang, Phosphorus-doped graphene-improved Na3V2(PO4)3@C nanocomposite possessing high-rate performance for electrochemical energy storage, Ceramics International 45 (2019) 11600–11606.
[8] Anqiang Pan, Jun Liu, Ji-Guang Zhang, Wu Xub, Guozhong Cao, Zimin Nie, Bruce W. Arey, Shuquan Liang, Nano-structured Li3V2(PO4)3/carbon composite for high-rate lithium-ion batteries, Electrochemistry Communications 12 (2010) 1674–1677.
[9] Mineo Sato, Hirokazu Ohkawa, Kenji Yoshida, Mai Saito, Kazuyoshi Uematsu, Kenji Toda, Enhancement of discharge capacity of Li3V2(PO4)3 by stabilizing the orthorhombic phase at room temperature, Solid State Ionics 135 (2000) 137–142.
[10] Sebastien Patoux, Calin Wurm, Mathieu Morcrette, Gwenaelle Rousse, Christian Masquelier, A comparative structural and electrochemical study of monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3, Journal of Power Sources 119–121 (2003) 278–284.
[11] Peng Fu, Yanming Zhao, Youzhong Dong, Xiaoning An, Guopei Shen, Synthesis of Li3V2(PO4)3 with high performance by optimized solid-state synthesis routine, Journal of Power Sources 162 (2006) 651–657.
[12] Jun-Chao Zheng, Xin-Hai Li, Zhi-XingWang, Hua-Jun Guo, Qi-Yang Hu,Wen-Jie Peng, Li3V2(PO4)3 cathode material synthesized by chemical reduction and lithiation method, Journal of Power Sources 189 (2009) 476–479.
[13] L. Zhang, X.L. Wang, J.Y. Xiang, Y. Zhou, S.J. Shi, J.P. Tu, Synthesis and electrochemical performances of Li3V2(PO4)3/(Ag + C) composite cathode, Journal of Power Sources 195 (2010) 5057–5061.
[14]Anqiang Pan, Daiwon Choi, Ji-Guang Zhang, Shuquan Lianga, Guozhong Cao, Zimin Nie, Bruce W. Arey, Jun Liu, High-rate cathodes based on Li3V2(PO4)3 nanobelts prepared via surfactant-assisted fabrication, Journal of Power Sources 196 (2011) 3646–3649.
[15] Bo Pei, Zhongqing Jiang, Weixin Zhang, Zeheng Yang, Arumugam Manthiram, Nanostructured Li3V2(PO4)3 cathode supported on reduced graphene oxide for lithium-ion batteries, Journal of Power Sources 239 (2013) 475-482. [16] Wenhao Ren, Zhiping Zheng, Chang Xu, Chaojiang Niu, Qiulong Wei, Qinyou An, Kangning Zhao, Mengyu Yan, Mingsheng Qin, Liqiang Mai, Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium–ion full batteries, Nano Energy 25(2016)145–153.
[17]Ze Yang, Guolong Li, Jingying Sun, Lixin Xie, Yan Jiang, Yunhui Huang, Shuo Chen, High performance cathode material based on Na3V2(PO4)2F3 and Na3V2(PO4)3 for sodium-ion batteries, Energy Storage Materials 25 (2020) 724–730.
[18] Sunkyu Park, Ziliang Wang, Zeyu Deng, Iona Moog, Pieremanuele Canepa, François Fauth, Dany Carlier, Laurence Croguennec, Christian Masquelier, and Jean-Noël Chotard, Crystal Structure of Na2V2(PO4)3, an Intriguing Phase Spotted in the Na3V2(PO4)3−Na1V2(PO4)3 System, Chem. Mater. (2022) 34, 451−462.
[19] Jiexin Zhang, Yongjin Fang, Lifen Xiao, Jiangfeng Qian, Yuliang Cao, Xinping Ai, Hanxi Yang, Graphene-Scaffolded Na3V2(PO4)3 Microsphere Cathode with High Rate Capability and Cycling Stability for Sodium Ion Batteries, ACS Appl. Mater. Interfaces (2017) 9, 7177−7184.
[20] Qiao Ni, Lumin Zheng, Ying Bai, Tongchao Liu, Haixia Ren, Huajie Xu, Chuan Wu, Jun Lu, An Extremely Fast Charging Li3V2(PO4)3 Cathode at a 4.8 V Cutoff Voltage for Li-Ion Batteries, ACS Energy Lett. (2020) 5, 1763−1770.
[21] Zelang Jian, Chenchen Yuan, Wenze Han, Xia Lu , Lin Gu, Xuekui Xi , Yong-Sheng Hu, Hong Li, Wen Chen, Dongfeng Chen, Yuichi Ikuhara, Liquan Chen, Atomic Structure and Kinetics of NASICON NaxV2(PO4)3 Cathode for Sodium-Ion Batteries, Adv. Funct. Mater. (2014) 24, 4265–4272.
[22] Kuppan Saravanan, Chad W. Mason, Ashish Rudola, Kim Hai Wong, Palani Balaya, The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries, Adv. Energy Mater. (2013) 3, 444–450. [23] Yu Jiang , Zhenzhong Yang , Weihan Li , Linchao Zeng , Fusen Pan , Min Wang , Xiang Wei , Guantai Hu , Lin Gu , Yan Yu, Nanoconfi ned Carbon-Coated Na3V2(PO4)3 Particles in Mesoporous Carbon Enabling Ultralong Cycle Life for Sodium-Ion Batteries, Adv. Energy Mater. (2015) 5, 1402104.
[24] Yu Jiang, Xuefeng Zhou, Dongjun Li, Xiaolong Cheng, Fanfan Liu, Yan Yu, Highly Reversible Na Storage in Na3V2(PO4)3 by Optimizing Nanostructure and Rational Surface Engineering, Adv. Energy Mater. (2018) 8, 1800068.
[25] Chenchen Wang, Dongfeng Du, Mingming Song, Yunhai Wang, Fujun Li, A High-Power Na3V2(PO4)3-Bi Sodium-Ion Full Battery in a Wide Temperature Range, Adv. Energy Mater. (2019) 9, 1900022.
[26] Yongjin Fang, Lifen Xiao, Xinping Ai, Yuliang Cao, Hanxi Yang, Hierarchical Carbon Framework Wrapped Na3V2(PO4)3 as a Superior High-Rate and Extended Lifespan Cathode for Sodium-Ion Batteries, Adv. Mater. (2015) 27, 5895–5900.
[27] Xianhong Rui, Wenping Sun, Chao Wu, Yan Yu, Qingyu Yan, An Advanced Sodium-Ion Battery Composed of Carbon Coated Na3V2(PO4)3 in a Porous Graphene Network, Adv. Mater. (2015) 27, 6670–6676.
[28] Chunwen Sun, Shreyas Rajasekhara, Youzhong Dong, John B. Goodenough, Hydrothermal Synthesis and Electrochemical Properties of Li3V2(PO4)3/C-Based Composites for Lithium-Ion Batteries, ACS Appl. Mater. Interfaces (2011) 3, 3772–3776.
[29] Rongyu Zhang, Yongquan Zhang, Kai Zhu, Fei Du, Qiang Fu, Xu Yang, Yuhui Wang, Xiaofei Bie, Gang Chen, Yingjin Wei, Carbon and RuO2 Binary Surface Coating for the Li3V2(PO4)3 Cathode Material for Lithium-Ion Batteries, ACS Appl. Mater. Interfaces (2014) 6, 12523−12530.
[30] Weixin Song, Xiaobo Ji, Yirong Zhu, Hanjun Zhu, Fangqian Li, Jun Chen, Fang Lu, Yinpeng Yao, Craig. E. Banks, Aqueous Sodium-Ion Battery using a Na3V2(PO4)3 Electrode, ChemElectroChem (2014) 1, 871 – 876.
[31] C. Deng, S. Zhang, S. Y. Yang, Y. Gao, B. Wu, L. Ma, B. L. Fu, Q. Wu, F. L. Liu, Effects of Ti and Mg Codoping on the Electrochemical Performance of Li3V2(PO4)3 Cathode Material for Lithium Ion Batteries, J. Phys. Chem. C (2011) 115, 15048–15056.
[32] M. M. Ren, Z. Zhou, X. P. Gao, W. X. Peng, J. P. Wei, Core-Shell Li3V2(PO4)3@C Composites as Cathode Materials for Lithium-Ion Batteries, J. Phys. Chem. C (2008) 112, 5689-5693.
[33] Changbao Zhu, Kepeng Song, Peter A. van Aken, Joachim Maier, Yan Yu, Carbon-Coated Na3V2(PO4)3 Embedded in Porous Carbon Matrix: An Ultrafast Na-Storage Cathode with the Potential of Outperforming Li Cathodes, Nano Lett. (2014) 14, 2175−2180.
[34] Huan Huang, Shieh-Chieh Yin, Tracy Kerr, Nicholas Taylor and Linda F. Nazar, Nanostructured composites: A high capacity fast rate Li3V2(PO4)3/carbon cathode for rechargeable lithium batteries, Adv. Mater. (2002) 14, No. 21.
[35] Manman Ren, Zhen Zhou, Yuzhan Li, X.P. Gao and Jie Yan, Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries, Jour. of Power Sour. 162 (2006) 1357-1362.
[36] Zelang Jian, Liang Zhao, Huilin Pan, Yong-Sheng Hu, Hong Li, Wen Chen, Liquan Chen, Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries, Electrochem. Commun. 14, 86-89 (2012).
[37] Zelang Jian, Wenze Han, Xia Lu, Huaixin Yang, Yong‐Sheng Hu, Jing Zhou, Zhibin Zhou, Jianqi Li, Wen Chen, Dongfeng Chen, Liquan Chen, Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room-Temperature Sodium-Ion Batteries, Adv. Energy Mater. (2013) 3, 156-160.
[38] Zelang Jian, Wenze Han, Yanliang Liang, Yucheng Lan, Zheng Fang, Yong-Sheng Hud and Yan Yao, Carbon-Coated Rhombohedral Li3V2(PO4)3 as Both Cathode and Anode Materials for Lithium-Ion Batteries: Electrochemical Performance and Lithium Storage Mechanism, J. Name.(2014) 00,1-7.
[39] Zelang Jian, Yang Sun and Xiulei Ji, A new low-voltage plateau of Na3V2(PO4)3 as an anode for Na-ion batteries, Chem. Commun. ( 2015) 51, 6381-6383.
[40] Soo Yeon Lim, Heejin Kim, R. A. Shakoor, Yousung Jung, Jang Wook Choi, Electrochemical and Thermal Properties of NASICON Structured Na3V2(PO4)3 as a Sodium Rechargeable Battery Cathode: A Combined Experimental and Theoretical Study, Journal of The Electrochemical Society, (2012) 159 (9) A1393-A1397.
[41] Huang Zhang, Bingsheng Qin, Daniel Buchholz, and Stefano Passerini, High-Efficiency Sodium-Ion Battery Based on NASICON Electrodes with High Power and Long Lifespan, ACS Appl. Energy Mater. (2018) 1, 6425−6432.
[42] Junqi Fang, Suqing Wang, Xiang Yao, Xinchao Hu, Ying Wang, Haihui Wang, Ration design of porous Mn-doped Na3V2(PO4)3 cathode for high rate and super stable sodium-ion batteries, Electrochim. Acta. (2019) 295, 262-269.
[43] Wei Shen, Cong Wang, Haimei Liu, Wensheng Yang, Towards Highly Stable Storage of Sodium Ions: A Porous Na3V2(PO4)3/C Cathode Material for Sodium-Ion Batteries, Chem. Eur. J. ( 2013) 19, 14712 – 14718.
[44] Wei Shen, Hui Li, Ziyang Guo, Zhihong Li, Qunjie Xu, Haimei Liu, Yonggang Wang, Improvement on the high-rate performance of Mn-doped Na3V2(PO4)3/C as a cathode material for sodium ion batteries, RSC Adv.(2016) 6, 71581–71588.
[45]Bao Zhang, Tao Zeng, Yi Liub and Jia-feng Zhang, Effect of Ti-doping on the electrochemical performance of sodium vanadium(III) phosphate, RSC Adv.( 2018) 8,5523-5531.
[46] Yangyang Huang, Xiang Li, Jinsong Wang, Lin Miao, Chang Li, Jiantao Han, Yunhui Huang, Superior Na-ion storage achieved by Ti substitution in Na3V2(PO4)3, Energy Storage Materials 15 (2018) 108–115.
[47] Lina Zhao, Hailei Zhao, Xuanyou Long, Zhaolin Li, Zhihong Du, Superior High-Rate and Ultralong-Lifespan Na3V2(PO4)3@C Cathode by Enhancing the Conductivity Both in Bulk and on Surface, ACS Appl. Mater. Interfaces (2018) 10, 35963−35971.
[48] Qiong Zhenga, Hongming Yia, Wanqiu Liua, Xianfeng Lia, Huamin Zhang, Improving the electrochemical performance of Na3V2(PO4)3 cathode in sodium ion batteries through Ce/V substitution based on rational design and synthesis optimization, Electrochimica Acta 238 (2017) 288–297.
[49] Tian Wu, Jianguo Sun, Zu Quan Jeremy Yap, Meilu Ke, Christina Y.H. Lim, Li Lu, Substantial doping engineering in Na3V2-xFex(PO4)3 (0≤x≤0.15) as highrate cathode for sodium-ion battery, Materials and Design 186(2020)108287.
[50] Xiang Li, Yangyang Huang, Jingsong Wang, Lin Miao, Yuyu Li, Yi Liu,Yuegang Qiu, Chun Fang, Jiantao Han and Yunhui Huang, High valence Mo-doped Na3V2(PO4)3/C as a high rate and stable cycle-life cathode for sodium battery, J. Matter. Chem. A. (2018) 201. 6. 1390-1396.
[51] Hongyang Ma, Bangchuan Zhao, Jin Bai, Kunzhen Li, Zhitang Fang, Peiyao Wang, Wanyun Li, Xuebin Zhu and Yuping Sun, Improved Electrochemical Performance of Na3V2−xZrx(PO4)3/C Through Electronic and Ionic Conductivities Regulation, Jour. of The Electrochemical Society, (2020) 167 070548.
[52] Qianchen Wang, Yongjie Zhao, Junjie Gao, Huayun Geng, Jingbo Li, Haibo Jin, Triggering the Reversible Reaction of V3+/V4+/V5+ in Na3V2(PO4)3 by Cr3+ Substitution, ACS Appl. Mater. Interfaces (2020) 12, 50315−50323.
[53] M.J. Aragón, P. Lavela, R. Alcántara, J.L. Tirado, Effect of aluminum doping on carbon loaded Na3V2(PO4)3 as cathode material for sodium-ion batteries, Electrochimica Acta 180 (2015) 824–830.
[54] Yang Xia, Wenkui Zhang, Hui Huang, Yongping Gan, Chongge Li, Xinyong Tao, Synthesis and electrochemical properties of Nb-doped Li3V2(PO4)3/C cathode materials for lithium-ion batteries, Materials Science and Engineering B 176 (2011) 633–639.
[55] Wei Yuana, Ji Yan, Zhiyuan Tang, Ou Sha, Jinmei Wang, Wenfeng Mao, Li Ma, Mo-doped Li3V2(PO4)3/C cathode material with high rate capability and long term cyclic stability, Electrochimica Acta 72 (2012) 138– 142.
[56] Y.Z. Dong, Y.M. Zhao, H. Duan, The effect of doping Mg2+ on the structure and electrochemical properties of Li3V2(PO4)3 cathode materials for lithium-ion batteries, Journal of Electroanalytical Chemistry 660 (2011) 14–21.
[57]Jiexin Dang, Feng Xiang, Ningyu Gu, Rongbin Zhang, Rahul Mukherjee, Il-Kwon Oh, Nikhil Koratkar, Zhenyu Yang, Synthesis and electrochemical performance characterization of Ce-doped Li3V2(PO4)3/C as cathode materials for lithium-ion batteries, Journal of Power Sources 243 (2013) 33-39.
[58]ZHONG Shengkui, LIU Letong, JIANG Jiqiong, LIYanwei, WANG Jian, LIU Jiequn, LI Yanhong, Preparation and electrochemical properties of Y-doped Li3V2(PO4)3 cathode materials for lithium batteries, JOURNAL OF RARE EARTHS, (2009) Vol. 27, No. 1.
[59]Yinghua Chena, Yanming Zhaoa, Xiaoning Anb, Jianmin Liuc, Youzhong Donga, Ling Chen, Preparation and electrochemical performance studies on Cr-doped Li3V2(PO4)3 as cathode materials for lithium-ion batteries, Electrochimica Acta 54 (2009) 5844–5850.
[60]Quan Kuanga, Yanming Zhaoa, Xiaoning Anb, Jianmin Liuc, Youzhong Donga, Ling Chen, Synthesis and electrochemical properties of Co-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries, Electrochimica Acta 55 (2010) 1575–1581.
[61] Lu-Lu Zhang, Gan Liang, Gang Peng, Yun-Hui Huang, Long Wang, Long Qie, Mark C. Croft, Alexander Ignatov, John B. Goodenough, Insight into Fe Incorporation in Li3V2(PO4)3/C Cathode Material, Journal of The Electrochemical Society, 159 (10) (2012) A1573-A1578.
[62] Xiaohong Liu, Guilin Feng, Enhui Wang, Hui Chen, Zhenguo Wu, Wei Xiang, Yanjun Zhong, Yanxiao Chen, Xiaodong Guo, Benhe Zhong, Insight into Preparation of Fe-Doped Na3V2(PO4)3@C from Aspects of Particle Morphology Design, Crystal Structure Modulation, and Carbon Graphitization Regulation, ACS Appl. Mater. Interfaces (2019) 11, 12421−12430.
[63] Amalendu Das , S.B. Majumder , Ayan Roy Chaudhuri, K+ and Mg2+ co-doped bipolar Na3V2(PO4)3: An ultrafast electrode for symmetric sodium ion full cell, Journal of Power Sources 461 (2020) 228149.
[64] Qing Zhang, Wei Wang, Yujiao Wang, Pingyuan Feng, Kangli Wang, Shijie Cheng, Kai Jiang, Controllable construction of 3D-skeleton-carbon coated Na3V2(PO4)3 for high-performance sodium ion battery cathode, Nano Energy (2016) 20, 11–19.
[65]Zhaoyang Wang, Jinmei Liu, Zijuan Du, Haizheng Tao and Yuanzheng Yue, Enhancing Na-ion storage in Na3V2(PO4)3/C cathodes for sodium ion batteries through Br and N co-doping, Inorg. Chem. Front. (2020) 7, 1289–1297.
[66] Huang Zhang, Ivana Hasa, Daniel Buchholz, Bingsheng Qin, Stefano Passerini, Effects of nitrogen doping on the structure and performance of carbon coated Na3V2(PO4)3 cathodes for sodium-ion batteries, Carbon 124 (2017) 334-341.
[67] Shuo Li, Yifan Dong, Lin Xu, Xu Xu, Liang He, Liqiang Mai, Effect of Carbon Matrix Dimensions on the Electrochemical Properties of Na3V2(PO4)3 Nanograins for High-Performance Symmetric Sodium-Ion Batteries, Adv. Mater. (2014) 26, 3545-3553.
[68] Bo Yan, Lin Chen, Ting Wang, Jing Xu, Haiying Wang, Gang Yang, Preparation and characterization of Li3V2(PO4)3 grown on carbon nanofiber as cathode material for lithium-ion batteries, Electrochimica Acta 176 (2015) 1358–1363.
[69] Hee Je Seong, André L. Boehman, Evaluation of Raman Parameters Using Visible Raman Microscopy for Soot Oxidative Reactivity, Energy Fuels (2013) 27, 1613−1624.
[70] Ghislaine Le Polles, Jean-Jacques Videau et Roger Olazcuaga, Analyse Structurale par Spectroscopie Raman et Infrarouge de Quelques Phosphates de Cuivre de Type Nasicon, J. Solid State Chem. (1996) 127, 341-349.
[71] Nellymar Membreño, Penghao Xiao, Kyu-Sung Park, John B. Goodenough, Graeme Henkelman, Keith J. Stevenson, In Situ Raman Study of Phase Stability of α‑Li3V2(PO4)3 upon Thermal and Laser Heating, J. Phys. Chem. C (2013) 117, 11994−12002.
[72] Xiaoyu Cao, Lulu Mo, Limin Zhu, and Lingling Xie, Preparation and Electrochemical Properties of Li3V2(PO4)3-xBrx/Carbon Composites as Cathode Materials for Lithium-Ion Batteries, Nanomaterials (2017) 7, 52.
[73] Cheng-Wei Kao, Chun-Chuen Yang, Chin Wei Wang, Shu-Han Zhuang, Yung-Hsiang Tung, Ting-Wei Hsu, Wei-Chun Wu, Wei-Ren Liu, and Kuen-Song Lin, Interplay between magnetic ion and amorphous carbon in Na3V2(PO4)3/C nanocomposite, AIP Advances (2019) 9, 035134.
[74] NCTU 國立陽明交通大學畢業倫文,林怡芬 著作(2004)
[75] Lina Zhao, Hailei Zhao, Zhihong Du, Jie Wang, Xuanyou Long, Zhaolin Li, Konrad Świerczek, Delicate Lattice Modulation Enables Superior Na Storage Performance of Na3V2(PO4)3 as Both Anode and Cathode Materials for Sodium-Ion Batteries: Understanding the Role of Calcium Substitution for Vanadium, J. Name. (2013) 00, 1-3.
[76] Wang Z.Y., He W., Zhang X.D., Yi X.L., Wang, J.C., Yang G.H., Yue Yuanzheng, 3D porous Li3V2(PO4)3/hard carbon composites for improving the rate performance of lithium ion batteries, RSC Adv., (2017) 7, 21848.
[77] Anping Tang, Xianyou Wang, Guorong Xu, Zhihua Zhou, Huidong Nie, Determination of the chemical diffusion coefficient of lithium in Li3V2(PO4)3, Materials Letters 63 (2009) 1439–1441.
[78] Tao Jiang, Wencheng Pan, Jian Wang, Xiaofei Bie, Fei Du, Yingjin Wei,Chunzhong Wang, Gang Chen, Carbon coated Li3V2(PO4)3 cathode material prepared by a PVA assisted sol–gel method, Electrochimica Acta 55 (2010) 3864–3869.
[79] Hua-Bin Sun, Lu-LuZhang, Xue-LinYang, Yun-HuiHuang, ZhenLi, Ying-Xian Zhou, Xiao-KaiDing, GanLiang, Effect of Fe-doping followed by C+SiO2 hybrid layer coating on Li3V2(PO4)3 cathode material for lithium-ion batteries, Ceramics International 42 (2016) 16557–16562.
[80] Ke Du, Hongwei Guo, Guorong Hu, Zhongdong Peng, Yanbing Cao, Na3V2(PO4)3 as cathode material for hybrid lithium ion batteries, Journal of Power Sources 223 (2013) 284-288
[81] Limin Zhu, Lulu Mo, Lingling Xie, Xiaoyu Cao, Synthesis and electrochemical Li-storage performance of Li2ZrO3-Li3V2(PO4)3/C composites, Electrochemistry Communications 122 (2021) 106908.
[82] Xiaohong Liu, Guilin Feng, Enhui Wang, Hui Chen, Zhenguo Wu, Wei Xiang, Yanjun Zhong, Yanxiao Chen, Xiaodong Guo, Benhe Zhong, Insight into Preparation of Fe-Doped Na3V2(PO4)3@C from Aspects of Particle Morphology Design, Crystal Structure Modulation, and Carbon Graphitization Regulation, ACS Appl. Mater. Interfaces (2019) 11, 12421−12430.
[83] Linnan Bi, Xiaoyan Li, Xiaoqin Liu, Qiaoji Zheng, Dunmin Lin, Enhanced Cycling Stability and Rate Capability in a La-Doped Na3V2(PO4)3/C Cathode for High-Performance Sodium Ion Batteries, ACS Sustainable Chem. Eng. (2019) 7, 7693−7699.
[84] Bereket Tsegai Habtea, Fangming Jiang, Microstructure reconstruction and impedance spectroscopy study of LiCoO2, LiMn2O4 and LiFePO4 Li-ion battery cathodes, Microporous and Mesoporous Materials 268 (2018) 69–76.
[85] X.H. Rui, N. Yesibolati, S.R. Li, C.C. Yuan, C.H. Chen, Determination of the chemical diffusion coefficient of Li+ in intercalation-type Li3V2(PO4)3 anode material, Solid State Ionics 187 (2011) 58–63.
[86] Yujie Zhu, Yunhua Xu, Yihang Liu, Chao Luo, Chunsheng Wang, Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries, Nanoscale (2013) 5, 780–787.
[87] S.S. Zhang, K. Xu, T.R. Jow, EIS study on the formation of solid electrolyte interface in Li-ion battery, Electrochimica Acta 51 (2006) 1636–1640. [88] A. C. Larson, R. B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR, (1994) 86–748.
[89] B. H. Toby, EXPGUI, a graphical user interface for GSAS, J. Appl. Cryst. (2001) 34,210–213.
[90] N. E. BRESE and M. O'KEEFFE, Bond-Valence Parameters for Solids, Acta Cryst. (1991). B47, 192-197.
[91] Lu-Lu Zhanga, Gan Liang, Gang Peng, Yan Jiang, Hui Fang, Yun-Hui Huang,Mark C. Croft, Alexander Ignatov, Evolution of electrochemical performance in Li3V2(PO4)3/Ccomposites caused by cation incorporation, Electrochimica Acta 108 (2013) 182– 190.
[92] Xiaofei Zhang, Ruben-Simon Kuhnel, Matthias Schroeder and Andrea Balducci, Revisiting Li3V2(PO4)3 as an anode – an outstanding negative electrode for high power energy storage devices, Mater. Chem. A. (2014) 2,17906.
|