跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/17 13:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李奕頡
研究生(外文):Yi-Jie Li
論文名稱:以氧化鋅奈米線改質之紙基電極檢測草酸鈣中之草酸
論文名稱(外文):Determination of oxalic acid in calcium oxalate using screen-printed electrode modified with ZnO nanowires
指導教授:張耀仁張耀仁引用關係
指導教授(外文):Yaw-Jen Chang
口試委員:陳冠宇施延欣
口試委員(外文):Kuan-Yu ChenYan-Shin Shih
口試日期:2022-01-18
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:53
中文關鍵詞:電性量測氧化鋅奈米線草酸鹽草酸鈣網版印刷電極
外文關鍵詞:Electrical measurementsZinc oxide nanowireOxalateCalcium oxalateScreen printed electrode
DOI:10.6840/cycu202200035
相關次數:
  • 被引用被引用:0
  • 點閱點閱:107
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自然界中許多植物、食物都含有草酸鹽(OA)的成分,人體內存在過多草酸鹽會影起胃腸道發炎、中樞神經紊亂、尿路結石等疾病,因此控制體內草酸鹽濃度相當重要。本研究利用循環伏安比較各種混合之硝酸銀及氧化鋅奈米線改質工作電極之方法,並比較各改質方法之靈敏度,最後選擇利用水熱法製備氧化鋅奈米線改質網版印刷電極之工作電極(ZnO-NWs/SPE)。將難溶於水之草酸鈣結石以硫酸緩衝溶液徹底溶解,最後利用電性量測檢測草酸鈣中草酸鹽之濃度。由SEM分析工作電極經氧化鋅奈米線改質後之表徵。檢測結果顯示草酸鹽濃度在0.25 mM至2 mM有良好的檢測能力。
Many plants and foods in nature contain oxalate (OA). Excessive presence of oxalate in the human body may cause gastrointestinal inflammation, central nervous system dysfunction, urinary stone, or other diseases, so it is important to control the concentration of oxalate in the body. In this study, we compared the sensitivity of various methods of modifying working electrodes with silver nitrate and zinc oxide nanowires by cyclic voltammetry, and finally chose to prepare working electrodes (ZnO-NWs/SPE) for zinc oxide nanowire modified screen printed electrodes by hydrothermal method. The insoluble calcium oxalate stones were thoroughly dissolved in sulfuric acid buffer solution, and the concentration of oxalate in calcium oxalate was finally measured by electrical measurements. The working electrodes were analyzed by SEM after modification by zinc oxide nanowires. The results showed a good linear trend of oxalate concentration from 0.25 mM to 2 mM.
目錄
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 螢光檢測法 3
1.2.2 高效液相色譜法 4
1.2.3 電化學檢測法 5
1.2.4 液相色譜電化學檢測法 6
1.2.5 傅立葉變換紅外光譜 7
1.3 氧化鋅奈米線簡介 8
1.4 紙基電極簡介 9
1.5 研究目的 11
1.6 研究方法 11
1.7 論文架構 14
第二章 實驗方法與步驟 15
2.1 檢測草酸鈣晶片製程設備與材料 15
2.2 網版印刷電極 (Screen Printed Electrode, SPE) 18
2.3 草酸鈣檢測晶片之製程 21
2.3.1 硝酸銀各種改質晶片 21
2.3.2 氧化鋅奈米線生長 21
2.3.3 硫酸鹽緩衝溶液配置 24
2.4 實驗方法 24
2.4.1 不同電極條件之影響 24
2.4.2 不同量測方式之比較 24
2.4.3 不同濃度之影響 25
2.4.4 干擾性測試實驗 25
第三章 結果與討論 27
3.1 掃描電子顯微鏡 (SEM) 27
3.2 不同改質晶片檢測相同草酸鹽濃度 30
3.3 循環伏安法檢測線性草酸鹽濃度 32
3.4 電性檢測法檢測草酸鹽濃度 33
3.5 電性檢測法檢測干擾性物質 36
第四章 結論與未來展望 39
4.1 結論 39
4.2 未來展望 40
參考文獻 41


圖目錄
圖1.1 螢光檢測法檢測草酸鹽[14] 3
圖1.2 液相色譜法檢測檸檬酸、乳酸、蘋果酸、草酸、酒石酸[15] 4
圖1.3 循環伏安法檢測草酸鹽[16] 5
圖1.4 液相色譜電化學檢測草酸鹽[17] 6
圖1.5 FTIR檢測草酸鈣[18] 7
圖1.6 溶劑熱法製備之氧化鋅空心微球[21] 8
圖1.7 化學氣相沉積製備之氧化鋅奈米線[22] 9
圖1.8 蠟印晶片製程[23] 10
圖2.1 網版印刷電極製程示意圖 18
圖2.2 各種設計之網版印刷電極 18
圖2.3 網版印刷電極 TE100 19
圖2.4 網版印刷電極與傳統三電極之比較 20
圖2.5 氧化鋅奈米線晶種製程 22
圖2.6 氧化鋅奈米線改質工作電極表面 23
圖3.1 以水熱法四小時製備之氧化鋅奈米線 28
圖3.2 以水熱法八小時製備之氧化鋅奈米線 28
圖3.3 檢測草酸鹽前工作電極表面之表徵 29

圖3.4 檢測草酸鹽後工作電極表面之表徵 29
圖3.5 硝酸銀各種改質條件之循環伏安圖 30
圖3.6 氧化鋅奈米線各種改質晶片之循環伏安圖 31
圖3.7 草酸鹽濃度 0.25及 2 mM之循環伏安圖 33
圖3.8 電性檢測 1 mM草酸鹽之曲線及擬合曲線 34
圖3.9 濃度曲線及其擬合曲線 35
圖3.10 氧化鋅奈米線改質晶片檢測磷酸鹽 36
圖3.11 氧化鋅奈米線改質晶片檢測尿酸 37
圖3.12 氧化鋅奈米線改質晶片檢測OA、PA、UA混合物 38



表目錄
表1.1 各項檢測方法之比較 12
表2.1 實驗設備與儀器 15
表2.2 氧化鋅奈米線製備材料 16
表2.3 待測物溶液製備材料 17
表3.1 氧化鋅奈米線改質晶片檢測氧化峰值及電位 32
[1]P. Ruggenenti, M.R. Caruso, M. Cortinovis, A. Perna, T. Peracchi, G.A. Giuliano, S. Rota, P. Brambilla, G. Invernici, D. Villa, O. Diadei, M. Trillini, G. Natali, and G. Remuzzi, “Fresh lemon juice supplementation for the prevention of recurrent stones in calcium oxalate nephrolithiasis: A pragmatic, prospective, randomised, open, blinded endpoint (PROBE) trial,” EClinicalMedicine, vol. 43, 2022
[2]E.M. Worcester, and F.L. Coe, “Nephrolithiasis,” Primary Care:Clinics in Office Practice, vol. 35, pp. 369-391, 2008
[3]A.W. Miller, D. Choy, K.L. Penniston, and D. Lange, “Inhibition of urinary stone disease by a multi-species bacterial network ensures healthy oxalate homeostasis,” Kidney Internation, vol. 96, pp. 180-188, 2019
[4]H. Brzica, D. Breljak, B.C. Burckhardt, G.Burckhardt, and I.Sabolic, “Oxalate: From the Environment to Kidney Stones,” Archives of Industrial Hygiene and Toxicology, vol. 64, pp. 609-630, 2007
[5]S. Robijn, B. Hoppe, B.A. Vervaet, P.C. D’Haese, and A. Verhulst, “Hyperoxaluria: a gut–kidney axis?,” Kidney Internation, vol.80, pp. 1146-1158, 2011
[6]J.B. Raoof, F. Chekin, and V. Ehsani, “Palladium-doped mesoporous silica SBA-15 modified in carbon-paste electrode as a sensitive voltammetric sensor for detection of oxalic acid,” Sensors and Actuators B:Chemical, vol. 207, pp. 291-296, 2015
[7]A. Safavi, A.R. Banazadeh, “Catalytic determination of traces of oxalic acid in vegetables and water samples using a novel optode,” Food Chemistry, vol. 105, pp. 1106-1111, 2007
[8]M. Trevaskis, and V.C. Trenerry, “An investigation into the determination of oxalic acid in vegetables by capillary electrophoresis,” Food Chemistry, vol.57, pp. 323-330, 1996
[9]R. Siener, A. Seidler, S. Voss, and A. Hesse, “The oxalate content of fruit and vegetable juices, nectars and drinks,” Journal of Food Composition and Analysis, vol. 45, pp. 108-112, 2016
[10]Q.Z. Zhai, “Determination of trace amount of oxalic acid with zirconium(IV)–(DBS-arsenazo) by spectrophotometry,” Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, vol. 71, pp. 332-335, 2008
[11]F. Hong, N.O. Nilvebrant, and L.J. Jönsson, “Rapid and convenient determination of oxalic acid employing a novel oxalate biosensor based on oxalate oxidase and SIRE technology,” Biosensors and Bioelectronics, vol. 18, pp. 1173-1181, 2003
[12]C.G. Fu, L.X. Wang, and Y.Z. Fang, “Determination of oxalic acid in urine by co-electroosmotic capillary electrophoresis with amperometric detection,” Talanta, vol. 50, pp. 953-958, 1999
[13]L.M. Santos, and R.P. Baldwin, “Profiling of oxalic acid and α-keto acids in blood and urine by liquid chromatography with electrochemical detection at a chemically modified electrode,” Journal of Chromatography B: Biomedical Sciences and Applications, vol. 414, pp. 161-166, 1987
[14]B. Rathinam, and B.T. Liu, “Highly efficient probe of dinuclear zinc complex for selective detection of oxalic acid,” Journal of the Taiwan Institute of Chemical Engineers, vol. 127, pp. 349-356, 2021
[15]T.P. Ruiz, C.M. Lozano, V. Tomás, and J. Martı́n, “High-performance liquid chromatographic separation and quantification of citric, lactic, malic, oxalic and tartaric acids using a post-column photochemical reaction and chemiluminescence detection,” Journal of Chromatography A, vol. 1026, pp. 57-64, 2004
[16]R.D. Nagarajan, and A.K. Sundramoorthy, “One-pot electrosynthesis of silver nanorods/graphene nanocomposite using 4-sulphocalix[4]arene for selective detection of oxalic acid,” Sensors and Actuators B: Chemical, vol. 304, 2019
[17]I.G. Casella, C.G. Zambonin, and F. Prete, “Liquid chromatography with electrocatalytic detection of oxalic acid by a palladium-based glassy carbon electrode,” Journal of Chromatography A, vol. 833, pp. 75-82, 1999
[18]M.H. Lin, Y.L. Song, P.A. Lo, C.Y. Hsu, A.T.L. Lin, E.Y.H. Huang, H.K. Chiang, “Quantitative analysis of calcium oxalate hydrate urinary stones using FTIR and 950/912 cm−1 peak ratio,” Vibrational Spectroscopy, vol. 102, pp. 85-90, 2019
[19]G. Heiland, “Homogeneous semiconducting gas sensors,” Sensors and Actuators, vol. 2, pp. 343-361, 1981-1982
[20]Z. Chen, S.B. Cheng, P. Cao, Q.F. Qiu, Y. Chen, M. Xie, Y. Xu, and W.H. Huang, “Detection of exosomes by ZnO nanowires coated three-dimensional scaffold chip device,” Biosensors and Bioelectronics, vol. 122, pp. 211-216, 2018
[21]Y.J. Li, S.M. Wang, P. Hao, J. Tian, H.Z. Cui, and X.Z. Wang, “Soft-templated formation of double-shelled ZnO hollow microspheres for acetone gas sensing at low concentration/near room temperature,” Sensors and Actuators B: Chemical, vol. 273, pp. 751-759, 2018
[22]E. Navarrete, F. Güell, P.R.M. Alanis, and E. Llobet, “Chemical vapour deposited ZnO nanowires for detecting ethanol and NO2,” Journal of Alloys and Compounds, vol. 890, 2022
[23]Y. Xia, J. Si, and Z. Li, “Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review,” Biosensors and Bioelectronics, vol. 77, pp.774-789, 2016
[24]T. Alizadeh, and S. Nayeri, “Graphite/Ag/AgCl nanocomposite as a new and highly efficient electrocatalyst for selective electroxidation of oxalic acid and its assay in real samples,” Materials Science and Engineering: C, vol. 100, pp.826-836, 2019
[25]P. Sharma, S. Radhakrishnan, S.S. Jayaseelan, and B.S. Kim, “Non-enzymatic Electrochemical Oxidation Based on AuNP/PPy/rGO Nanohybrid Modified Glassy Carbon Electrode as a Sensing Platform for Oxalic Acid,” Electroanalysis, vol. 28, pp. 2626-2632, 2016
[26]F. Lan, Y. Chen, J. Zhu, Q. Lu, C. Jiang, S. Hao, X. Cao, N. Wang, and Z.L.Wang, “Piezotronically enhanced detection of protein kinases at ZnO micro/nanowire heterojunctions,” Nano Energy, vol. 69, 2020
[27]J. Zhang, D. Han, R. Yang, Y. Ji, J. Liu, and X. Yu, “Electrochemical detection of DNA hybridization based on three-dimensional ZnO nanowires/graphite hybrid microfiber structure,” Bioelectrochemistry, vol. 128, pp. 126-132, 2019
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top