跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/25 18:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馬羅莉
研究生(外文):Romauli Simanullang
論文名稱:壓電薄膜之量測與特性分析研究
論文名稱(外文):The Study of Measurement and Characteristic Analysis on Piezoelectric Thin-film
指導教授:丁鏞
指導教授(外文):Yung Ting
口試委員:李有璋康淵
口試委員(外文):You-zhang LiYuan Kang
口試日期:2022-01-12
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:80
中文關鍵詞:PZT/PVDF複合材料介電常數壓電與焦電特性
外文關鍵詞:PZT/PVDF compositeDielectric constantPiezoelectric and Pyroelectric properties
DOI:10.6840/cycu202200126
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本論文是採用溶液鎔鑄法以不同體積比例(10~70 vol%)的鋯鈦酸鉛Lead zirconate titanate, PZT)混合聚偏二氟乙烯(polyvinylidene difluoride, PVDF)製備PZT/PVDF複合薄膜,然後進行熱壓和極化。本文探討PZT/PVDF複合薄膜的密度和孔隙率等物理性能,以及 PZT/PVDF 複合薄膜在不同體積比例混合下的壓電與焦電特性及介電係數、以及微觀結構變化。由實驗中得知,PZT/PVDF 複合材料的性能與 PZT 的體積比例極為相關。其中,針對介電係數在 PZT 不同體積比例的測量結果與一些先前預測的數學模型進行比較,可發現目前製作之複合薄膜之介電係數與PZT 的體積比例之關係,最適合於古河理論模型描述實驗結果。另特別討論以材料之均勻度影響介電係數數學模型,獲得進一步之驗證效果。亦針對焦電效應進行幾種溫升效應之量測,比較使用純 PVDF 薄膜PZT/PVDF 複合材料之靈敏度較佳。
Abstract
In this thesis, the PZT/PVDF composite film was prepared using a solution casting with different volume fractions of PZT (10~70 vol%) followed by hot press and poling. The physical properties such as density and porosity of the PZT/PVDF composite film were studied. The dielectric properties, pyroelectric coefficient, piezoelectric properties, and microstructure of the PZT/PVDF composite film were investigated and characterized as a function of PZT volume fraction. As found, the properties of the PZT/PVDF composite were determined by the volume fraction of PZT. The measured results of dielectric constant with the different volume ratios of PZT were compared with a few of previously predicted models. The homogeneity of the composite models is used to assess the dielectric behaviours, and find the Furukawa theoretical model is the most appropriate to describe the experimental results. Several temperature change rates were carried out in experimental for examining pyroelectricity. The PZT/PVDF composite film manifests an increase in the pyroelectric coefficient and such tends to provide a greater responsivity or detectivity compared to pure PVDF film.
Table of Contents
摘要 i
Abstract ii
Acknowledgments iii
Table of Contents iv
List of Tables vii
List of Figures viii
List of Symbols x
CHAPTER 1 INTRODUCTION 1
1.1 The background 1
1.2 Aim and objective 2
1.2.1 Aim 2
1.2.1 Objective 2
1.3 Structure of the thesis 3
CHAPTER 2 LITERATURE REVIEW 4
2.1 Piezoelectric Material 4
2.2 Pyroelectric Materials 6
2.3 PVDF 9
2.4 PZT 10
2.4 PZT/PVDF COMPOSITE 11
2.5 Polarization Composite 13
2.6 Piezoelectric coefficient 15
2.7 Dielectric Properties 16
2.7.1 capacitance 17
2.7.2 Dielectric constant 17
2.7.3 Dielectric loss tan δ 22
2.7.4 Dielectric break down 23
CHAPTER 3 METHODOLOGY EXPERIMENT 24
3.1 Fabrication of PZT/PVDF composite films 24
3.2 Material Properties 26
3.3 Dielectric measurement 27
3.4 Piezoelectric Properties 29
3.5 Pyroelectric Measurement 29
3.6 Piezoelectric Voltage Output and Sensitivity Measurement 30
3.7 Scanning electron microscopy (SEM) 30
3.8 Fourier transform infrared spectroscopy (FTIR) 31
CHAPTER 4 RESULT AND DISCUSSION 32
4.1 Density 32
4.2 FTIR (Fourier-Transform Infrared Spectroscopy) 33
4.3 SEM (Scanning Electron Microscope) 37
4.4 Dielectric Properties 39
4.4.1 Dielectric properties dependence of Volume fraction 39
4.4.2 Dielectric Properties dependence on temperature 45
4.5 Piezoelectric Properties 47
4.6 The Piezoelectric Sensitivity 50
4.7 Temperature Effect 53
4.7.1 Heating Rate 54
4.7.2 Output Voltage Response 55
4.7.3 Pyroelectric Sensitivity 57
4.7.4 Pyroelectric coefficient material 57
CHAPTER 5 CONCLUSION AND FUTURE STUDY 60
5.1 Conclusion 60
5.2 Future Study 61
REFERENCES 62

List of Tables
Table 2. 1 The piezoelectric material 4
Table 2. 2 piezoelectric properties ceramic, polymer, and composite [6]. 13
Table 2. 3 The parameter theoretical model calculation…………...……………………..19
Table 4. 1 The vibrational and types of crystalline phases of the bands PZT/PVDF composite film ………………………………………………………………………………..………34
Table 4. 2 β phase fractions of PZT/PVDF composite Film 35
Table 4. 3 Distribution D index of PZT/PVDF composite film. 39
Table 4. 4 Theoretical model calculated dielectric constant 40
Table 4. 5 Piezoelectric and dielectric properties of PZT/PVDF composite film sensor 52

List of Figures
Figure 2. 1 Piezoelectric application mode (a) Direct Effect and (b) Converse Effect 5
Figure 2. 2 The illustration Thermal (T), electrical (E), and Mechanical (σ) corresponding Piezoelectric and pyroelectric[12]. 7
Figure 2. 3 The illustration of the pyroelectric effect. An increase in the temperature T [13]8
Figure 2. 4 Schematic representation of the chain conformation for the α, β, and γ-phases of PVDF 10
Figure 2. 5 Connectivity families for diphasic composites [22]. 12
Figure 2. 6 The comparison of the mechanical and piezoelectric properties of the polymer, ceramic, and composite[24]. 12
Figure 2. 7 A schematic view of the composites indicating directions of the polarization in the copolymer and ceramic: (a) only polymer polarization (b) only ceramic polarization (c) both of material polarization in parallel (pyroelectric) (d) both phase polarization in antiparallel direction (piezoelectric)[27]. 15
Figure 2. 8 The illustration of the mode (a) d33 and (b) d31 15
Figure 3. 1 Fabrication proses of PZT/PVDF composite film…………………………….24
Figure 3. 2 Schematic of temperature poling Process 25
Figure 3. 3 Schematic fabrication method for devices 25
Figure 3. 4 Schematic Parallel plate capacitor[38]. 28
Figure 3. 5 The measurement output voltage and sensitivity different force 30
Figure 4. 1 Density of PZT/PVDF different volume fraction of PZT……... ……………..32
Figure 4. 2 FTIR of Pure PVDF Film…………………………………………………….. 36
Figure 4. 3 FTIR of PZT/PVDF composite different Volume fraction of PZT…………... 36
Figure 4. 4 (a) SEM Pure PVDF, (b) diameter distribution particle of PZT, SEM micrographs and the corresponding binary image (using Image @ software) PZT/PVDF composite with PZT volume fraction (c) (f) 10 vol % PZT, (d) (g) 50 vol% PZT and (e) (h) 70 vol% PZT…………………………………………………………………………...……………38
Figure 4. 5 Schematic illustrations (a) homogeneous of ions PZT/PVDF composite with uniformity particle size PZT, (b) Randomly of PZT/PVDF composite with nonuniformity particle size PZT…………………………………………………………………………... 41
Figure 4. 6 Dielectric constant theoretical model and experimental with different volume fraction PZT……………………………………………………………………………….42
Figure 4. 7 (a), (b), and (c) show the capacitance, dielectric constant, and tan δ (dielectric loss) of various volume fractions PZT …………………………………………………….44
Figure 4. 8 The capacitance of PZT/PVDF composite film different in temperature …….46
Figure 4. 9 The Dielectric constant of PZT/PVDF composite film different volume fractions as a function of temperature. ………………………………………………………………47
Figure 4. 10 The value of d33 with different volume fractions of PZT ……………….48
Figure 4. 11 The value of g33 with different volume fractions of PZT ……………….49
Figure 4. 12 (a) Output voltage and (b) sensitivity of PZT/PVDF composite different Volume fraction PZT ……………………………………………………………………………….51
Figure 4. 13 Signal output voltage response at different temperature …………………….53
Figure 4. 14 Output voltage vs. temperature at different changing rates …………………55
Figure 4. 15 The output voltage response (a) PVDF and PZT, (b) PZT/PVDF composite film as a function of temperature. ………………………………………………………………56
Figure 4. 16 The Sensitivity (a) PVDF and PZT, (b) PZT/PVDF composite film as a function of temperature. ……………………………………………………………………………..57
Figure 4. 17 The pyroelectric coefficient (a) PVDF (b) PZT, and (c) PZT/PVDF composite film as a function of temperature…………………………………………………………. 58
REFERENCES
1.Aksel, E. and J.L. Jones, Advances in lead-free piezoelectric materials for sensors and actuators. Sensors, 2010. 10(3): p. 1935-1954.
2.Wang, Y., et al., Compositional tailoring effect on electric field distribution for significantly enhanced breakdown strength and restrained conductive loss in sandwich-structured ceramic/polymer nanocomposites. Journal of Materials Chemistry A, 2017. 5(9): p. 4710-4718.
3.Wang, Y., Y. Hou, and Y. Deng, Effects of interfaces between adjacent layers on breakdown strength and energy density in sandwich-structured polymer composites. Composites Science and Technology, 2017. 145: p. 71-77.
4.Ram, R., et al., Determination of percolation threshold and electrical conductivity of polyvinylidene fluoride (PVDF)/short carbon fiber (SCF) composites: effect of SCF aspect ratio. Polymer International, 2017. 66(4): p. 573-582.
5.Mendes, S.F., et al., Effect of the ceramic grain size and concentration on the dynamical mechanical and dielectric behavior of poly (vinylidene fluoride)/Pb (Zr 0.53 Ti 0.47) O 3 composites. Applied Physics A, 2009. 96(4): p. 899-908.
6.Schlaberg, H. and J. Duffy, Piezoelectric polymer composite arrays for ultrasonic medical imaging applications. Sensors and Actuators A: Physical, 1994. 44(2): p. 111-117.
7.Venkatragavaraj, E., et al., Piezoelectric properties of ferroelectric PZT-polymer composites. Journal of Physics D: Applied Physics, 2001. 34(4): p. 487.
8.Lallart, M., Ferroelectrics: Material Aspects. 2011: BoD–Books on Demand.
9.Zhang, D.-q., et al., Structural and electrical properties of PZT/PVDF piezoelectric nanocomposites prepared by cold-press and hot-press routes. Chinese Physics Letters, 2008. 25(12): p. 4410-4413.
10.Tzou, H., H.-J. Lee, and S. Arnold, Smart materials, precision sensors/actuators, smart structures, and structronic systems. Mechanics of Advanced Materials and Structures, 2004. 11(4-5): p. 367-393.
11.Caliò, R., et al., Piezoelectric energy harvesting solutions. Sensors, 2014. 14(3): p. 4755-4790.
12.Nye, J.F., Physical properties of crystals: their representation by tensors and matrices. 1985: Oxford university press.
13.Marino, A.A., Modern bioelectricity. 2020: CRC Press.
14.Li, M., et al., Revisiting the δ-phase of poly (vinylidene fluoride) for solution-processed ferroelectric thin films. Nature materials, 2013. 12(5): p. 433-438.
15.Zhu, Y., et al., Dielectric phenomena and electrical energy storage of poly (vinylidene fluoride) based high-k polymers. Chinese Chemical Letters, 2017. 28(11): p. 2027-2035.
16.Bodkhe, S., et al., Beta-phase enhancement in polyvinylidene fluoride through filler addition: comparing cellulose with carbon nanotubes and clay. Journal of Polymer Research, 2014. 21(5): p. 1-11.
17.Sappati, K.K. and S. Bhadra, Piezoelectric polymer and paper substrates: a review. Sensors, 2018. 18(11): p. 3605.
18.Schumacher, B., et al., Temperature treatment of nano-scaled barium titanate filler to improve the dielectric properties of high-k polymer- composites. Microelectronic Engineering, 2010. 87(10): p. 1978-1983.
19.Smith, W.A. The role of piezo composite in ultrasonic transducers. in Proceedings., IEEE Ultrasonics Symposium. 1989. IEEE.
20.Marra, S.P., K.T. Ramesh, and A.S. Douglas. Mechanical properties of compliant piezoelectric composites. in Smart Structures and Materials 1997: Smart Materials Technologies. 1997. International Society for Optics and Photonics.
21.Levassort, F., et al., Modeling of highly loaded 0-3 piezoelectric composites using a matrix method. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1998. 45(6): p. 1497-1505.
22.Gururaja, T., Piezoelectric ceramic-polymer composites for transducer applications. Electronic Ceramics, 1987: p. 92-128.
23.Jain, A., et al., Dielectric and piezoelectric properties of PVDF/PZT composites: A review. Polymer Engineering & Science, 2015. 55(7): p. 1589-1616.
24.Tiwari, V., Investigations on Structural Dielectric and Piezoelectric Properties of PZT PVDF Composites.
25.van der Zwaag, S., D.A. van den Ende, and W.A.P. Groen, Sensing and energy harvesting novel polymer composites, in Materials Experience. 2014, Elsevier. p. 221-234.
26.Or, Y., et al., Modeling of poling, piezoelectric, and pyroelectric properties of ferroelectric 0–3 composites. Journal of applied physics, 2003. 94(5): p. 3319-3325.
27.Ploss, B., et al., Pyroelectric or piezoelectric compensated ferroelectric composites. Applied Physics Letters, 2000. 76(19): p. 2776-2778.
28.Pardo, L., J. Mendiola, and C. Alemany, Theoretical study of ferroelectric composites made from CA-modified lead titanate ceramics. Ferroelectrics, 1989. 93(1): p. 183-188.
29.Ueberschlag, P., PVDF piezoelectric polymer. Sensor Review, 2001.
30.Furukawa, T., K. Ishida, and E. Fukada, Piezoelectric properties in the composite systems of polymers and PZT ceramics. Journal of Applied Physics, 1979. 50(7): p. 4904-4912.
31.Ting, Y., et al., Characteristic analysis of biaxially stretched PVDF thin films. Journal of Applied Polymer Science, 2018. 135(36): p. 46677.
32.Bernard, F., et al., Direct Piezoelectric Coefficient Measurements of PVDF and PLLA under Controlled Strain and Stress. Proceedings, 2017. 1(4): p. 335.
33.Gusarov, B., et al., PVDF piezoelectric voltage coefficient situmeasurementsicient as a function of applied stress. Journal of Applied Polymer Science, 2016. 133(14): p. 1-6.
34.Ting, Y., C.W. Chiu, and H. Gunawan, Characteristic analysis of biaxially stretched PVDF thin films. Journal of Applied Polymer Science, 2018. 135(36): p. 46677.
35.Sundar, U., et al., Dielectric and piezoelectric properties of percolative three-phase piezoelectric polymer composites. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2016. 34(4): p. 041232.
36.Lewis, T., Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE transactions on dielectrics and electrical insulation, 2004. 11(5): p. 739-753.
37.Guo, Q., G. Cao, and I. Shen, Measurements of piezoelectric coefficient d33 of lead zirconate titanate thin films using a mini force hammer. Journal of Vibration and Acoustics, 2013. 135(1).
38.Note, A., Solutions for measuring permittivity and permeability with LCR meters and impedance analyzers. Agilent Literature, 2008(2008): p. 25.
39.Kaur, S., et al., Influence of annealing on dielectric and polarization behavior of PVDF thick films. Journal of Materials Science: Materials in Electronics, 2017. 28(12): p. 8391-8396.
40.Goyal, R. and A. Kulkarni, Electrical properties of novel three-phase polymer nanocomposites with a high dielectric constant. Journal of Physics D: Applied Physics, 2012. 45(46): p. 465302.
41.Gowdhaman, P., V. Annamalai, and O. Thakur, Piezo, Ferro and dielectric properties of ceramic-polymer composites of 0-3 connectivity. Ferroelectrics, 2016. 493(1): p. 120-129.
42.Yakaboylu, G.A. and E.M. Sabolsky, Determination of a homogeneity factor for composite materials by a microstructural image analysis method. Journal of Microscopy, 2017. 266(3): p. 263-272.
43.Tereshchenko, O., F.J.K. Buesink, and F.B.J. Leferink. An overview of the techniques for measuring the dielectric properties of materials. in 2011 XXXth URSI General Assembly and Scientific Symposium. 2011. Ieee.
44.Grove, T., M. Masters, and R. Miers, Determining dielectric constants using a parallel plate capacitor. American journal of physics, 2005. 73(1): p. 52-56.
45.Yeo, H.G., et al., Strongly (001) oriented bimorph PZT film on metal foils grown by rf‐sputtering for wrist‐worn piezoelectric energy harvesters. Advanced Functional Materials, 2018. 28(36): p. 1801327.
46.Jachalke, S., et al., How to measure the pyroelectric coefficient? Applied Physics Reviews, 2017. 4(2): p. 021303.
47.Pal, A., et al., Enhancement in energy storage and piezoelectric performance of three phasees based (PZT/MWCNT/PVDF) composite. Materials Chemistry and Physics, 2020. 244: p. 122639.
48.Sencadas, V., R. Gregorio Jr, and S. Lanceros-Méndez, α to β phase transformation and microestructural changes of PVDF films induced by uniaxial stretch. Journal of Macromolecular Science®, 2009. 48(3): p. 514-525.
49.Gowdhaman, P., K. Antonyraj, and V. Annamalai, An effective approach on physical and dielectric properties of PZT-PVDF composites. International Journal of Advances in Scientific Research, 2015. 1(8): p. 322-8.
50.Ruan, L., et al., Properties and applications of the β phase poly (vinylidene fluoride). Polymers, 2018. 10(3): p. 228.
51.Daneshkhah, A., et al., Cross-selectivity enhancement of poly (vinylidene fluoride-hexafluoropropylene)-based sensor arrays for detecting acetone and ethanol. Sensors, 2017. 17(3): p. 595.
52.Yee, W.A., et al., Morphology, polymorphism behavior and molecular orientation of electrospun poly (vinylidene fluoride) fibers. Polymer, 2007. 48(2): p. 512-521.
53.Bose, P., et al., Decoupling of segmental relaxation from ionic conductivity in [DEMM][TFSI] room temperature ionic liquid incorporated poly (vinylide-co-hexafluoropropylene) membranes. Solid State Ionics, 2017. 311: p. 75-82.
54.Okada, D., et al., Colloidal crystallization and ionic liquid induced partial β-phase transformation of poly (vinylidene fluoride) nanoparticles. Macromolecules, 2015. 48(8): p. 2570-2575.
55.Luo, B., et al., Fabrication, characterization, properties and theoretical analysis of ceramic/PVDF composite flexible films with high dielectric constant and low dielectric loss. Journal of Materials Chemistry A, 2014. 2(2): p. 510-519.
56.Mohanty, H.S., et al., Dielectric/ferroelectric properties of ferroelectric ceramic dispersed poly (vinylidene fluoride) with enhanced β-phase formation. Materials Chemistry and Physics, 2019. 230: p. 221-230.
57.Kumar, C. and P. Viswanath, Solvent driven polymorphism in Langmuir and Langmuir Schaefer film of poly (vinylidene fluoride). European Polymer Journal, 2017. 86: p. 132-142.
58.Revathi, S., et al., Synthesis, structural, optical and dielectric properties of nanostructured 0–3 PZT/PVDF composite films. Journal of nanoscience and nanotechnology, 2018. 18(7): p. 4953-4962.
59.Marrett, C., et al., Flexible polymer composite electromagnetic crystals. Polymer Engineering & Science, 2003. 43(4): p. 822-830.
60.Bhimasankaram, T., S. Suryanarayana, and G. Prasad, Piezoelectric polymer composite materials. Current Science, 1998: p. 967-976.
61.Yamada, T., T. Ueda, and T. Kitayama, Piezoelectricity of a high‐content lead zirconate titanate/polymer composite. Journal of Applied Physics, 1982. 53(6): p. 4328-4332.
62.Sun, Y., Z. Zhang, and C. Wong, Influence of interphase and moisture on the dielectric spectroscopy of epoxy/silica composites. Polymer, 2005. 46(7): p. 2297-2305.
63.Rao, Y., et al., A precise numerical prediction of effective dielectric constant for polymer-ceramic composite based on effective-medium theory. IEEE Transactions on Components and Packaging Technologies, 2000. 23(4): p. 680-683.
64.Seema, A., K. Dayasne fluoride, and J.M. Varghese, PVDF‐PZT‐5H composites prepared by hot press and tape casting techniques. Journal of applied polymer science, 2007. 106(1): p. 146-151.
65.Chamankar, N., et al., An experimental model for predicting the piezo and dielectric constant of PVDF-PZT nanocomposite fibers with 0–3 and 1–3 connectivity. Ceramics International, 2020. 46(15): p. 23567-23581.
66.Yadav, V.S., et al. Frequency and temperature dependence of dielectric properties of pure polyvin fluoride (PVDF) thin films. in AIP Conference Proceedings. 2010. American Institute of Physics.
67.Chamankar, N., et al., Comparing the piezo, pyro andylidene dielectric properties of PZT particles synthesized by sol-gel and electrospinning methods. Journal of Materials Science: Materials in Electronics, 2019. 30(9): p. 8721-8735.
68.Guan, X., et al., PZT/PVDF composites doped with carbon nanotubes. Sensors and Actuators A: Physical, 2013. 194: p. 228-231.
69.Xia, K., et al., A triboelectric nanogenerator as self-powered temperature sensor based on PVDF and PTFE. Applied Physics A, 2018. 124(8): p. 1-7.
70.Malmonge, L.F., J.A. Malmonge, and W.K. Sakamoto, Study of pyroelectric activity of PZT/PVDF-HFP composite. Materials Research, 2003. 6: p. 469-473.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top