跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/10 02:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇銘綸
研究生(外文):SUE,MING-LUN
論文名稱:自由氯與鎳離子在水中反應機制之研究
論文名稱(外文):Investigation of the interaction between free chlorine and nickel (II) ions in water
指導教授:黃鼎荃
指導教授(外文):NG,DING-QUAN
口試委員:官崇煜章日行
口試委員(外文):GUAN,CHONG-YUCHANG,JIH-HSING
口試日期:2022-06-20
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:環境工程與管理系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:70
中文關鍵詞:飲用水自由氯鎳離子pH溶解無機碳
外文關鍵詞:Drinking waterFree chlorineNickel ionsPHDissolved inorganic carbon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:59
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
隨著不鏽鋼管材在自來水配水系統中的普及化,鎳作爲不鏽鋼的主要成分,預計水中鎳含量會隨時間逐步上升。由於鎳離子在自來水中的反應機制尚未釐清,本研究將針對自由氯與鎳離子之間反應過程之探討,實驗參數包括溶液pH、起始自由氯濃度、鎳濃度及溶解無機碳濃度。實驗使用批次試驗進行3到7天。樣品分析項目含pH、餘氯濃度、餘氯及可溶性鎳濃度。採集樣品經過濾後,將收集固體顆粒進行SEM-EDS及XRD分析。最後利用Visual MINTEQ 3.1 水化學模擬軟體的建模結果與所有試驗數據互相參照,比對出自由氯與鎳離子反應之間的關係。溶液pH值、Ni2+與DIC濃度越高,餘氯濃度及可溶性鎳濃度衰減越顯著。初始自由氯濃度越高,可溶性鎳濃度下降越顯著,更容易產生沉澱物。在添加自由氯條件下,會產出Ni(OH)2花狀物,然而添加DIC則會產出NiCO3球形顆粒。Visual MINTEQ 3.1 的建模結果,pH介於7.5 – 8,沉澱出NiCO3;於72小時,pH介於8 – 9,沉澱出Ni(OH)2。當自來水中沉澱出鎳化合物,代表水中鎳含量超標的可能性很高。
With the popularization of stainless steel materials in drinking water distribution systems, nickel content in water supply is expected to gradually increase over time as nickel is a main component in stainless steel. However, the reaction mechanism of nickel ions in water has not been well elucidated. This study will investigate the interaction between nickel ions and free chlorine. The experimental parameters include solution pH, initial free chlorine concentration, nickel concentration and dissolved inorganic carbon concentration. Experiments were conducted for 3 to 7 days using batch studies. Samples were collected periodically and measured for pH, residual chlorine and soluble nickel concentration. The samples were then filtered to collect solid particles which were analyzed using SEM-EDS and XRD. The modeling results using Visual MINTEQ 3.1 were used to cross reference with all experimental data. The higher the solution pH, Ni2+ and DIC concentration, the faster the decay of residual chlorine and soluble nickel concentration. As the initial free chlorine concentration increases, soluble nickel decreases more rapidly, forming more precipitates. With the addition of free chlorine, Ni(OH)2 floral shaped precipitates were produced, while the addition of DIC produced NiCO3 spherical particles. Modeling results for Visual MINTEQ 3.1 at pH 7.5 – 8, NiCO3 precipitated; at pH 8 – 9, Ni(OH)2 precipitated at 72 hours. When nickel compounds precipitates under tap water conditions, there is a high possibility that the nickel content in the water exceeds the regulatory standard.
目錄
摘要 I
Abstract II
致謝 IV
表目錄 VII
圖目錄 VIII
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 3
第二章 文獻回顧 4
2-1 自由氯 (Free chlorine) 4
2-2 次氯酸鈉 (Sodium hypochlorite) 8
2-3 鎳 (Nickel) 9
第三章 實驗材料與方法 12
3-1 實驗架構 12
3-2 分析方法 15
3-2.1 DPD/FAS滴定法(NIEA W464.50C) 15
3-2.2 碘定量法-餘氯測定 17
3-3 實驗儀器設備 18
3-3.1感應耦合電漿原子發射光譜(ICP-OES) 19
3-3.2熱場發射掃描式電子顯微鏡(FE-SEM) 22
3-3.3能量色散X射線光譜儀 (EDS) 23
3-3.4 X 射線統射儀 (XRD) 24
3-4 實驗藥品 25
第四章 結果與討論 26
4-1 pH影響之試驗 27
4-2 Ni2+影響之試驗 33
4-3 DIC影響之試驗 39
4-4 自由氯影響之試驗 44
4-5 沉澱物型態與結構試驗 49
4-5.1 FE-SEM及EDS表面結構分析結果 50
4-5.2 XRD晶格結構分析 60
4-6 Visual MINTEQ 3.1&試驗參數結果對照 62
第五章 結論 64
建議 66
參考文獻 67
圖目錄
圖目錄
圖1家戶飲用水管線示意圖(來源:金管匯) 2
圖2-1 Cl2、HOCl及OCl-在25°C和5×10-3 M (177.5 mg/L) as Cl2濃度下作為pH值函數之分佈 (Deborde & Von, 2008) 5
圖2-2 25°C溶液中的氯平衡式 (Doré, 1989) 5
圖2-3 Ni(II)隨pH變化的形態圖 (Habib et al., 2021) 11
圖3-1本研究之流程架構圖 14
圖3-2 DPD比色法加入含氯溶液,即呈現紅色 16
圖3-3 FAS溶液滴定,顏色由紅色滴定至無色,達滴定終點 16
圖3-4 熱場發射掃描式電子顯微鏡成像原理 (Eurofins EAG, 2020) 22
圖3-5 能量色散X射線光譜儀成像原理 (Eurofins EAG, 2014) 23
圖3-6 X 射線統射儀成像原理 (Eurofins EAG, 2020) 24
圖4-1 pH變化趨勢圖 28
圖4-2 餘氯濃度變化趨勢圖 29
圖4-3 餘氯濃度一階反應速率 31
圖4-4 餘氯濃度二階反應速率 31
圖4-5 可溶性鎳濃度變化趨勢圖 32
圖4-6 pH變化趨勢圖 33
圖4-7 餘氯濃度變化趨勢圖 34
圖4-8 餘氯濃度一階反應速率 36
圖4-9 餘氯濃度二階反應速率 36
圖4-10 可溶性鎳濃度變化趨勢圖 38
圖4-11 可溶性鎳濃度變化趨勢圖 38
圖4-12 pH變化趨勢圖 39
圖4-13 餘氯濃度變化趨勢圖 40
圖4-14 餘氯濃度一階反應速率 42
圖4-15 餘氯濃度二階反應速率 42
圖4-16 可溶性鎳濃度變化趨勢圖 43
圖4-17 pH變化趨勢圖 44
圖4-18 餘氯濃度變化趨勢圖 45
圖4-19 餘氯濃度一階反應速率 47
圖4-20 餘氯濃度二階反應速率 47
圖4-21 可溶性鎳濃度變化趨勢圖 48
圖4-22 SEM結構影像圖-第(a) 8,(b、c) 24,(d) 72,(e) 168小時之顆粒 52
圖4-23 第72小時之EDS與元素分析圖譜 53
圖4-24 第168小時之EDS與元素分析圖譜(紅色點散圖:Ni 元素) 54
圖4-25 SEM結構影像圖-第(a) 8,(b) 24,(c) 72,(d) 168小時之顆粒 55
圖4-26 第72小時之EDS與元素分析圖譜 56
圖4-27 第168小時之EDS與元素分析圖譜(紅色點散圖:Ni 元素) 57
圖4-28 SEM結構影像圖-第(a) 8,(b) 24,(c) 72-低倍率,(d) 72-高倍率,(e) 168-低倍率,(f) 168-高倍率 小時 58
圖4-29 第72小時之EDS與元素分析圖譜(紅色點散圖:Ni 元素) 59
圖4-30 XRD 晶格結構分析 61
表目錄
表2-1含鎳食品和物品 (Genchi et al., 2020) 10
表3-1實驗參數對照表 13
表3-2實驗操作儀器設備及型號 18
表3-3藥品資訊 25
表4-1一階與二階反應速率R2 30
表4-2一階與二階反應速率R2 35
表4-3一階與二階反應速率R2 41
表4-4一階與二階反應速率R2 46
表4-5沉澱物型態與結構試驗參數對照表 49
表4-6 Visual MINTEQ 3.1 建模結果對照表 63

1.Zandi Zand, R., Verbeken, K., Adriaens, A. (2012) Corrosion resistance performance of cerium doped silica sol–gel coatings on 304 L stainless steel. Progress in Organic Coatings, 75(4), 463-473.
DOI:10.1016/j.porgcoat.2012.06.008
2.Brady, D., & Duncan, J. R. (1994). Bioaccumulation of metal cations by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 41(1), 149-154.
DOI:10.1007/BF00166098
3.Wang, Y., Li, M., Liang, Y. X., Liu, S. Effect of inclusions on corrosion and dissolution of metallic ions of stainless steel 304 in simulated tap water. (In Chinese)中國腐蝕與防護學報, 2016, 36(4), 328-334.
4.USEPA (2021). National primary drinking water regulations.
5.WHO (2021). A global overview of national regulations and standards for drinking-water quality, 2nd ed.
6.WHO (2007). Guidelines for drinking water quality: pH in Drinking Water.
7.臺灣環境保護局 (2020). 飲用水水質標準。
https://oaout.epa.gov.tw/law/LawContent.aspx?id=FL015512
8.Morris, J. C. (1966). The acid ionization constant of hypochlorous acid from 5 to 35 degrees. J. Phys. Chem., 70, 3798-3805.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0000108201&partnerID=40&md5=864da62816d5ef67af778c4c6932ba7c
9.Deborde, M., & von Gunten, U. (2008). Reactions of chlorine with inorganic and organic compounds during water treatment—Kinetics and mechanisms: A critical review. Water Research, 42(1), 13-51.
DOI:10.1016/j.watres.2007.07.025
10.Doré, M. (1989). Chimie des oxydants et traitement des eaux. Technique et Documentation-Lavoisier.
11.Ahmad, J. K., Arumugam, S. (2011). Chlorine decay prediction in bulk water using the parallel second order model : An analytical solution development, 171(1), 232-241.
DOI:10.1016/j.cej.2011.03.034
12.Dominic, L., Boccelli, Michael, E., Tryby, James, G., Uber, R., Scott, S. (2003). A reactive species model for chlorine decay and THM formation under rechlorination conditions, 37(11), 2654-2666.
DOI:10.1016/S0043-1354(03)00067-8.
13.Clark, R. M. (1998). Chlorine demand and TTHM formation kinetics : A second-order model, 124(1), 16-24.
DOI:10.1061/(ASCE)0733-9372(1998)124 :1(16)
14.Barceloux, D. G., Barceloux, D. (1999). Nickel. Journal of Toxicology : Clinical Toxicology, 37(2), 239-258.
DOI:10.1081/CLT-100102423
15.Jose, C., Jagannathan, L., Tanwar, V. S., Zhang, X., Zang, C., Cuddapah, S. (2018). Nickel exposure induces persistent mesenchymal phenotype in human lung epithelial cells through epigenetic activation of ZEB1.Molecular Carcinogenesis., 57, 794– 806.
DOI:10.1002/mc.22802
16.Donna, J., Steven, K., Seilkop, K. L., Bruce, R., Conard, S. F.,Jones, E. C., Collinson. (2014). Reconstruction of historical exposures at a welsh nickel refinery (1953–2000). The annals of occupational hygiene., 58,(6), 739–760.
DOI:10.1093/annhyg/meu022
17.Barbara, Z., Vladimir, N., Uversky, S. C. (2016). Nickel impact on human health: an intrinsic disorder perspective. Biochimica Biophysica Acta., 1864(12), 1714-1731.
DOI:10.1016/j.bbapap.2016.09.008Get rights and content
18.Doll, R., Mathews, J. D., Morgan, L. G. (1977). Cancers of the lung and nasal sinuses in nickel workers: a reassessment of the period of risk. British Journal of Industrial Medicine, 34(2), 102.
DOI:10.1136/oem.34.2.102
19.IARC (2022). Monographs On The Identification Of Carcinogenic Hazards To Humans.
https://monographs.iarc.who.int/list-of-classifications
20.Ezugwu, E. O., Wang, Z. M., & Machado, A. R. (1999). The machinability of nickel-based alloys: a review. Journal of Materials Processing Technology, 86(1), 1-16.
DOI:10.1016/S0924-0136(98)00314-8
21.Seilkop, S. K., Oller, A. R. (2003). Respiratory cancer risks associated with low-level nickel exposure: an integrated assessment based on animal, epidemiological, and mechanistic data. Regulatory Toxicology and Pharmacology, 37(2), 173-190.
DOI:10.1016/S0273-2300(02)00029-6
22.Genchi, G., Carocci, A., Lauria, G., Sinicropi, M. S., Catalano, A. (2020). Nickel: Human health and environmental toxicology. International journal of environmental research and public health, 17(3), 679.
DOI:10.3390/ijerph17030679
23.WHO (2017). Guidelines for drinking-water quality (4th ed.). Incorporating the first addendum.
24.Anoop Krishnan, K., Sreejalekshmi, K. G., Baiju, R. S. (2011). Nickel(II) adsorption onto biomass based activated carbon obtained from sugarcane bagasse pith. Bioresource Technology, 102(22), 10239-10247.
DOI:10.1016/j.biortech.2011.08.069
25.Habib, A., Serniabad, S., Khan, M. S., Islam, R., Chakraborty, M., Nargis, A., Tabata, M. (2021). Kinetics and mechanism of formation of nickel (II) porphyrin and its interaction with DNA in aqueous medium. Journal of Chemical Sciences, 133(3), 83.
DOI:10.1007/s12039-021-01945-y
26.Eurofins EAG “ SEM, ”EAG Laboratories (2020)
27.Eurofins EAG “ EDS, ”EAG Laboratories (2014)
28.Eurofins EAG “ XRD, ”EAG Laboratories (2020)
29.Addy, K., Green, L., Herron, E. (2004). pH and alkalinity. URI Watershed Watch,(3), 1-4.
http://cels.uri.edu/docslink/ww/water-quality-factsheets/pH&alkalinity.pdf
30.Rhamdhani, M., Jak, E. & Hayes, P. (2008). Basic nickel carbonate:part I. microstructure and phase changes during oxidation and reduction processes. Metall Mater Trans, B(39), 218–233.
DO:10.1007/s11663-007-9124-4
31.Liu, J., Chen, P., Deng, L., He, J., Wang, L.,Rong, L., Lei, J. (2015). A non-sulfided flower-like Ni-PTA catalyst that enhances the hydrotreatment efficiency of plant oil to produce green diesel. Sci Rep (5), 15576.
DOI:10.1038/srep15576

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top