|
1.Zandi Zand, R., Verbeken, K., Adriaens, A. (2012) Corrosion resistance performance of cerium doped silica sol–gel coatings on 304 L stainless steel. Progress in Organic Coatings, 75(4), 463-473. DOI:10.1016/j.porgcoat.2012.06.008 2.Brady, D., & Duncan, J. R. (1994). Bioaccumulation of metal cations by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 41(1), 149-154. DOI:10.1007/BF00166098 3.Wang, Y., Li, M., Liang, Y. X., Liu, S. Effect of inclusions on corrosion and dissolution of metallic ions of stainless steel 304 in simulated tap water. (In Chinese)中國腐蝕與防護學報, 2016, 36(4), 328-334. 4.USEPA (2021). National primary drinking water regulations. 5.WHO (2021). A global overview of national regulations and standards for drinking-water quality, 2nd ed. 6.WHO (2007). Guidelines for drinking water quality: pH in Drinking Water. 7.臺灣環境保護局 (2020). 飲用水水質標準。 https://oaout.epa.gov.tw/law/LawContent.aspx?id=FL015512 8.Morris, J. C. (1966). The acid ionization constant of hypochlorous acid from 5 to 35 degrees. J. Phys. Chem., 70, 3798-3805. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0000108201&partnerID=40&md5=864da62816d5ef67af778c4c6932ba7c 9.Deborde, M., & von Gunten, U. (2008). Reactions of chlorine with inorganic and organic compounds during water treatment—Kinetics and mechanisms: A critical review. Water Research, 42(1), 13-51. DOI:10.1016/j.watres.2007.07.025 10.Doré, M. (1989). Chimie des oxydants et traitement des eaux. Technique et Documentation-Lavoisier. 11.Ahmad, J. K., Arumugam, S. (2011). Chlorine decay prediction in bulk water using the parallel second order model : An analytical solution development, 171(1), 232-241. DOI:10.1016/j.cej.2011.03.034 12.Dominic, L., Boccelli, Michael, E., Tryby, James, G., Uber, R., Scott, S. (2003). A reactive species model for chlorine decay and THM formation under rechlorination conditions, 37(11), 2654-2666. DOI:10.1016/S0043-1354(03)00067-8. 13.Clark, R. M. (1998). Chlorine demand and TTHM formation kinetics : A second-order model, 124(1), 16-24. DOI:10.1061/(ASCE)0733-9372(1998)124 :1(16) 14.Barceloux, D. G., Barceloux, D. (1999). Nickel. Journal of Toxicology : Clinical Toxicology, 37(2), 239-258. DOI:10.1081/CLT-100102423 15.Jose, C., Jagannathan, L., Tanwar, V. S., Zhang, X., Zang, C., Cuddapah, S. (2018). Nickel exposure induces persistent mesenchymal phenotype in human lung epithelial cells through epigenetic activation of ZEB1.Molecular Carcinogenesis., 57, 794– 806. DOI:10.1002/mc.22802 16.Donna, J., Steven, K., Seilkop, K. L., Bruce, R., Conard, S. F.,Jones, E. C., Collinson. (2014). Reconstruction of historical exposures at a welsh nickel refinery (1953–2000). The annals of occupational hygiene., 58,(6), 739–760. DOI:10.1093/annhyg/meu022 17.Barbara, Z., Vladimir, N., Uversky, S. C. (2016). Nickel impact on human health: an intrinsic disorder perspective. Biochimica Biophysica Acta., 1864(12), 1714-1731. DOI:10.1016/j.bbapap.2016.09.008Get rights and content 18.Doll, R., Mathews, J. D., Morgan, L. G. (1977). Cancers of the lung and nasal sinuses in nickel workers: a reassessment of the period of risk. British Journal of Industrial Medicine, 34(2), 102. DOI:10.1136/oem.34.2.102 19.IARC (2022). Monographs On The Identification Of Carcinogenic Hazards To Humans. https://monographs.iarc.who.int/list-of-classifications 20.Ezugwu, E. O., Wang, Z. M., & Machado, A. R. (1999). The machinability of nickel-based alloys: a review. Journal of Materials Processing Technology, 86(1), 1-16. DOI:10.1016/S0924-0136(98)00314-8 21.Seilkop, S. K., Oller, A. R. (2003). Respiratory cancer risks associated with low-level nickel exposure: an integrated assessment based on animal, epidemiological, and mechanistic data. Regulatory Toxicology and Pharmacology, 37(2), 173-190. DOI:10.1016/S0273-2300(02)00029-6 22.Genchi, G., Carocci, A., Lauria, G., Sinicropi, M. S., Catalano, A. (2020). Nickel: Human health and environmental toxicology. International journal of environmental research and public health, 17(3), 679. DOI:10.3390/ijerph17030679 23.WHO (2017). Guidelines for drinking-water quality (4th ed.). Incorporating the first addendum. 24.Anoop Krishnan, K., Sreejalekshmi, K. G., Baiju, R. S. (2011). Nickel(II) adsorption onto biomass based activated carbon obtained from sugarcane bagasse pith. Bioresource Technology, 102(22), 10239-10247. DOI:10.1016/j.biortech.2011.08.069 25.Habib, A., Serniabad, S., Khan, M. S., Islam, R., Chakraborty, M., Nargis, A., Tabata, M. (2021). Kinetics and mechanism of formation of nickel (II) porphyrin and its interaction with DNA in aqueous medium. Journal of Chemical Sciences, 133(3), 83. DOI:10.1007/s12039-021-01945-y 26.Eurofins EAG “ SEM, ”EAG Laboratories (2020) 27.Eurofins EAG “ EDS, ”EAG Laboratories (2014) 28.Eurofins EAG “ XRD, ”EAG Laboratories (2020) 29.Addy, K., Green, L., Herron, E. (2004). pH and alkalinity. URI Watershed Watch,(3), 1-4. http://cels.uri.edu/docslink/ww/water-quality-factsheets/pH&alkalinity.pdf 30.Rhamdhani, M., Jak, E. & Hayes, P. (2008). Basic nickel carbonate:part I. microstructure and phase changes during oxidation and reduction processes. Metall Mater Trans, B(39), 218–233. DO:10.1007/s11663-007-9124-4 31.Liu, J., Chen, P., Deng, L., He, J., Wang, L.,Rong, L., Lei, J. (2015). A non-sulfided flower-like Ni-PTA catalyst that enhances the hydrotreatment efficiency of plant oil to produce green diesel. Sci Rep (5), 15576. DOI:10.1038/srep15576
|