跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/19 20:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李名傑
研究生(外文):Li, Min-Jie
論文名稱:改良型相位機制之具門檻值之部分傳輸序列用於降低正交分頻多工訊號之均峰功率比值
論文名稱(外文):PAPR Reduction of OFDM Signals Using Partial Transmit Sequences with Modified Phase Generation Mechanism
指導教授:梁新潁梁新潁引用關係
指導教授(外文):Liang, Hsin-Ying
口試委員:楊正穎林傳筆
口試委員(外文):Yang, Cheng-YingLin, Chuan-Bi
口試日期:2022-03-14
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:資訊與通訊系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:63
中文關鍵詞:正交分頻多工部分傳輸序列均峰功率比值相位產生機制
外文關鍵詞:OFDMPTSTS-PTSPAPR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:123
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
部分傳輸序列(Partial Transmit Sequence, PTS)為一種用於降低正交分頻多工(Orthogonal frequency-division multiplexing, OFDM)之均峰功率比值(Peak to Average Power, PAPR)的技術,然而隨著OFDM訊號的子載波數量增加,以及PTS劃分區塊數量提升,則使得計算複雜度呈指數上升。本論文提出一種改良型的具門檻值選擇機制之部分傳輸序列(Threshold Selection PTS, TS-PTS),主要有兩點貢獻:首先,修正了具門檻值選擇機制的部分傳輸序列的相位因子限制,採用其他類型組合的相位因子進行實驗,模擬結果顯示我們採用五種不同組合的相位因子皆優於原本的方法,另一方面,將門檻值引入自我調整機制,根據每一次的PAPR值動態調整門檻值。
Partial Transmit Sequence (PTS) is a technology used to reduce the Peak to Average Power (PAPR) of Orthogonal Frequency-Division Multiplexing (OFDM). The computational complexity increases when the number of sub-carriers of the OFDM signal increases or the number of PTS blocks increases. This paper proposes an improved Threshold Selection PTS, which has two main contributions: first, this paper adjusts the phase factor in the PTS with the threshold selection mechanism, this paper use other combinations of phase factors for our simulation. On the other hand, the threshold value is introduced into the self-adjusting mechanism. The threshold is dynamically adjusted according to the PAPR value each time. The simulation results show that the method proposed in this paper has better performance than the traditional PTS.
目錄
第一章、諸論............................................................................................................................ 1
1.1 研究動機.................................................................................................................... 1
1.2 論文架構.................................................................................................................... 3
第二章、正交分頻多工系統.................................................................................................... 4
2.1 正交分頻多工............................................................................................................ 5
2.2 正交分頻多工系統流程介紹.................................................................................... 6
2.3 調變技術.................................................................................................................... 8
2.4 快速傅立葉變換........................................................................................................ 9
2.5 均峰功率比值與互補累積分布函數...................................................................... 15
第三章、部分傳輸序列技術.................................................................................................. 17
3.1 劃分方式.................................................................................................................. 19
3.2 產生相位因子.......................................................................................................... 21
3.3 相位擾亂.................................................................................................................. 22
第四章、具門檻值機制之部分傳輸序列.............................................................................. 23
4.1 新型相位擾亂.......................................................................................................... 25
4.2 門檻值...................................................................................................................... 26
4.3 篩選機制.................................................................................................................. 27
第五章、研究方法.................................................................................................................. 28
5.1 相位因子規則.......................................................................................................... 32
5.2 新型相位產生.......................................................................................................... 33
5.3 產生兩群候選訊號.................................................................................................. 34
5.4 候選訊號合成.......................................................................................................... 34
5.5 門檻值選擇機制...................................................................................................... 35
第六章、模擬結果.................................................................................................................. 37
6.1 鄰近劃分之模擬分析.............................................................................................. 39
6.2 隨機劃分之模擬分析.............................................................................................. 42
6.3 交錯劃分之模擬分析.............................................................................................. 45
6.4 三種劃分方式之模擬分析...................................................................................... 49
6.5 搜尋量分析.............................................................................................................. 52
第七章、結論.......................................................................................................................... 61
參考文獻.................................................................................................................................. 62

表目錄
表 1 相位因子規則.................................................................................................. 33
表 2 實驗模擬在隨機劃分的參數設定.................................................................. 38
表 3 鄰近劃分均峰功率比值對照表...................................................................... 42
表 4 隨機劃分均峰功率比值對照表...................................................................... 45
表 5 交錯劃分均峰功率比值對照表...................................................................... 48
表 6 子載波數量為 256 時之搜尋量分析表.......................................................... 52
表 7 子載波數量為 512 時之搜尋量分析表.......................................................... 52
表 8 子載波數量為 1024 時之搜尋量分析表........................................................ 53
表 9 子載波數量為 2048 時之搜尋量分析表........................................................ 53
表 10 子載波數量為 256 時之搜尋量分析表........................................................ 55
表 11 子載波數量為 512 時之搜尋量分析表 ........................................................ 55
表 12 子載波數量為 1024 時之搜尋量分析表...................................................... 56
表 13 子載波數量為 2048 時之搜尋量分析表...................................................... 56
表 14 子載波數量為 256 時之搜尋量分析表........................................................ 58
表 15 子載波數量為 512 時之搜尋量分析表........................................................ 58
表 16 子載波數量為 1024 時之搜尋量分析表...................................................... 59
表 17 子載波數量為 2048 時之搜尋量分析表...................................................... 59

圖目錄
圖 1.分頻多工示意圖................................................................................... 5
圖 2. 正交分頻多工示意圖.......................................................................... 5
圖 3. 正交分頻多工系統流程圖.................................................................. 6
圖 4. QPSK 的相位星座圖........................................................................... 8
圖 5. 正交分頻多工示意圖........................................................................ 15
圖 6. 正交分頻多工訊號互補累積分布函數示意圖................................ 16
圖 7. 部分傳輸序列系統方塊圖................................................................ 18
圖 8. 具有 16 筆訊號的資料...................................................................... 19
圖 9. 鄰近劃分............................................................................................ 19
圖 10. 隨機劃分.......................................................................................... 20
圖 11. 交錯劃分.......................................................................................... 20
圖 12. 具門檻值機制之部分傳輸序列...................................................... 24
圖 13. 子載波為 256 時的門檻值曲線圖.................................................. 26
圖 14. 門檻值篩選機制.............................................................................. 27
圖 15. M-TS-PTS 系統方塊圖 ................................................................... 29
圖 16. 門檻值選擇機制流程圖................................................................. 36
圖 17. 子載波數量為 256 時之鄰近劃分效能分析圖............................. 39
圖 18. 子載波數量為 512 時之鄰近劃分效能分析圖............................. 39
圖 19. 子載波數量為 1024 時之鄰近劃分效能分析圖........................... 40
圖 20. 子載波數量為 2048 時之鄰近劃分效能分析圖........................... 40
圖 21. 子載波數量為 256 時之隨機劃分效能分析圖............................. 42
圖 22. 子載波數量為 512 時之隨機劃分效能分析圖............................. 43
圖 23. 子載波數量為 1024 時之隨機劃分效能分析圖........................... 43
圖 24. 子載波數量為 2048 時之隨機劃分分析圖................................... 44
圖 25. 子載波數量為 256 時之交錯劃分效能分析圖............................. 45
圖 26. 子載波數量為 512 時之交錯劃分效能分析圖............................. 46
圖 27. 子載波數量為 1024 時之交錯劃分效能分析圖........................... 46
圖 28. 子載波數量為 2048 時之交錯劃分效能分析圖........................... 47
圖 29. 子載波數量為 256 時之三種劃分方式效能分析圖..................... 49
圖 30. 子載波數量為 512 時之三種劃分方式效能分析圖..................... 49
圖 31. 子載波數量為 1024 時之三種劃分方式效能分析圖................... 50
圖 32. 子載波數量為 2048 時之三種劃分方式效能分析圖................... 50
[1]S. H. Mller, R. W. Buml, R. F. H. Fischer and J. B. Hber, "OFDM with reduced peak-to-average power ratio by multiple signal representation", Annals of Telecommun, 1997, Vol. 52, No. 1/2, pp. 58-67.
[2]G. Fodor, C. Koutsimanis, A. Rácz, N. Reider, A. Simonsson and W. Müller, "Intercell interference coordination in ofdma networks and in the 3gpp long term evolution system", Journal of Communications, 2009, Vol. 4, No. 7, pp. 445-453.
[3]D. Demmer, R. Gerzauet, J.-B. Dore and D. Le Ruyet, "Analytical study of 5G NR eMBB co-existence", IEEE International Conference on Telecommunications (ICT), 2018, pp. 186-190.
[4]H. Yin and S. Alamouti, "OFDMA: A broadband wireless access technology", 2006 IEEE Sarnoff Symposium, 2006, pp. 1-4.
[5]H. G. Myung, J. Lim and D. J. Goodman, "Single carrier FDMA for uplink wireless transmission", IEEE Vehicular Technology Magazine, 2006, Vol. 1, No. 3, pp. 30-38,
[6]B. G. Lee and S. Choi, Broadband Wireless Access and Local Networks: Mobile WiMAX and WiFi, USA:Artech House, 2008.
[7]D. Wulich, "Definition of efficient PAPR in OFDM", IEEE Communications Letters, 2005, Vol. 9, No. 9, pp. 832-834.
[8]K. Anoh, C. Tanriover and B. Adebisi, "On the optimization of iterative clipping and filtering for PAPR reduction in OFDM systems", IEEE Access, 2017, Vol. 5, pp. 12004-12013.
[9]S. H. Han and J. H. Lee, "PAPR reduction of OFDM signals using a reduced complexity PTS technique", IEEE Signal Processing Letters, 2004, Vol. 11, No. 11, pp. 887-890.
[10]M. Breiling, S. H. Muller and J. B. Huber, "SLM peak power reduction without explicit side information", IEEE Communications Letters, 2001,Vol. 5, No. 6, pp. 239-241
[11]A. E. Jones, T. A. Wilkinson and S. K. Barton, "Block coding scheme for reduction of peak-to-average envelope power ratio of multicarrier transmission systems", IEE Electronics Letters, 1994, Vol. 30, No. 8, pp. 2098-2099.
[12]X. Huang, J. H. Lu, J. L. Zheng, K. B. Letaief and J. Gu, "Companding transform for reduction in peak-to-average power ratio of OFDM signals", IEEE Transactions on Wireless Communications, 2004,Vol. 3, No. 6, pp. 2030-2039.
[13]R. Niu and L. Wang, "Threshold Selection PTS Method for PAPR Reduction in OFDM Systems", 2020 IEEE 20th International Conference on Communication Technology (ICCT), 2020, pp.1-5.
[14]H. Suganuma, S. Saito, T. Maruko and F. Maehara, "Inter-symbol interference suppression scheme employing periodic signals in coded network MIMO-OFDM systems", 2017 IEEE Radio and Wireless Symposium (RWS), 2017, pp. 42-44.
[15]D. Kim and G. L. Stuber, "Risidual ISI cancellation for OFDM with applications to HDTV broadcasting", IEEE Journal on Selected Areas in Communications, 1998, Vol. 16, No. 8, pp. 1590-1599.
[16]溫志宏、劉宗憲、邱茂清、林仁勇、連振凱、林進豐、李國瑞,正交分頻多重進接技術,滄海書局,2007,第20-29頁。
[17]M. Pedzisz and A. Mansour, "Automatic modulation recognition of MPSK signals using constellation rotation and its 4th order cumulant", Digital Signal Processing, 2005, Vol. 15, pp. 295-304.
[18]H. Yamamoto, "Advanced 16-QAM techniques for digital microwave radio", IEEE Communications Magazine, 1981, vol. 19, pp. 36-45.
[19]W.T. Cochran, J.W. Cooley, D.L. Favin, H.D. Helms, R.A. Kaenel, W.W. Lang, G.C. Maling, D.E. Nelson, C.M. Rader, P.D. Welch, "What is the fast Fourier transform ?", Proceedings of the IEEE, 1967, Vol. 55, No. 10, pp. 1664-1674.
[20]S.J. Ku, C.L. Wang and C.H. Chen, "A reduced-complexity PTS-based PAPR reduction scheme for OFDM systems", IEEE Transactions on Wireless Communications, 2010, Vol. 9, No. 8, pp. 2455-2460.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊