跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/02/03 14:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高郁傑
研究生(外文):KAO,YU-CHIEH
論文名稱:Bi11VO19和碳纖維布@BiOBr/CuO光觸媒之製備及在選擇性光降解與光催化產氫之應用
論文名稱(外文):Preparation of Bi11VO19 and carbon fiber cloth@BiOBr/CuO photocatalysts for selective photocatalytic degradation and photocatalytic H2 production applications
指導教授:張棋榕
指導教授(外文):CHANG,CHI-JUNG
口試委員:吳石乙蔡健益李榮和
口試委員(外文):WU,SHU-YIITSAY,CHIEN-YIELEE,RONG-HO
口試日期:2022-01-13
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:122
中文關鍵詞:光觸媒花狀溴氧化鉍釩酸鉍碳纖維布產氫降解離子液體
外文關鍵詞:photocatalystdegradationFlower-likeBiOBrBi11VO19ionic liquidcarbon fiber clothhydrogen production
相關次數:
  • 被引用被引用:0
  • 點閱點閱:43
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
1.2.1 釩酸鉍/溴氧化鉍降解光觸媒 3
1.2.2 碳纖維布@溴氧化鉍/氧化銅產氫光觸媒 4
第二章 基本理論及文獻回顧 5
2.1 光觸媒 5
2.1.1 光觸媒的原理 5
2.2 以鉍為基底之光觸媒 6
2.2.1 鉍的氧化物 6
2.2.2 以鉍為基底多成分氧化物 7
2.2.3 鹵氧化鉍 8
2.3 光觸媒的改質 9
2.3.1 金屬與非金屬的摻雜 9
2.3.2 光催化劑的表面形態 11
2.3.3 光催化劑的固定化 12
2.3.4 複合式觸媒 14
2.4光觸媒基本性質文獻回顧 17
2.4.1 釩酸鉍 17
2.4.2 溴氧化鉍 22
第三章 實驗藥品與步驟 27
3.1 實驗藥品及材料 27
3.3 實驗流程圖 30
3.3.1製作溴氧化鉍作為光觸媒之流程圖 30
3.3.2製作釩酸鉍作為光觸媒之流程圖 30
3.3.3 製作碳纖維布@溴氧化鉍/氧化銅作為光觸媒之流程圖 31
3.4 實驗樣品命名 32
3.4.1 釩酸鉍/溴氧化鉍光觸媒降解實驗命名 32
3.4.2 碳纖維布@溴氧化鉍/氧化銅產氫實驗命名 32
3.5 釩酸鉍/溴氧化鉍光觸媒降解實驗步驟 33
3.5.1釩酸鉍光觸媒製備方法 33
3.5.2溴氧化鉍光觸媒製備方法 33
3.5.3光觸媒降解染料實驗 33
3.5.4 離子液體的回收與檢測 34
3.6 溴氧化鉍光觸媒產氫實驗步驟 35
3.6.1溴氧化鉍成長在碳纖維布上的樣品製備 35
3.6.2碳纖維布@溴氧化鉍/氧化銅樣品的製備 35
3.6.3碳纖維布@溴氧化鉍/氧化銅光觸媒產氫實驗 35
3.7 實驗分析及鑑定 37
3.7.1冷場發射掃描式電子顯微鏡及能量散佈光譜儀 37
3.7.2冷場發射穿透式電子顯微鏡及能量散佈X射線光譜儀 38
3.7.3 多功能薄膜X光繞射儀(Multipurpose Thin-film X-ray Diffractometer, HR-XRD) 38
3.7.4電子能譜儀 (X-Ray Photoelectron Spectroscopy, XPS/ESCA) 40
3.7.5 紫外光/可見光/近紅外光光譜儀(UV/VIS/NIR Spectrophotometer) 41
3.7.6 光電流響應(Photocurrent) 41
3.7.7 傅立葉轉換紅外光譜(Fourier-transform infrared spectroscopy) 42
3.7.8 拉曼光譜儀(Raman Spectroscopy) 43
3.7.9 電子順磁共振儀(Electron Paramagnetic Resonance) 44
第四章 結果與討論 46
4.1 BVO/溴氧化鉍光觸媒 46
4.1.1 光觸媒之表面結構(FESEM) 46
4.1.2 高解析穿透式電子顯微鏡(HRTEM、mapping、SAED and EDX) 48
4.1.3 X射線繞射光譜(XRD) 51
4.1.4 表面化學性質(化學分析電子能譜儀XPS分析) 53
4.1.5 擴散反射式紫外線-可見光光譜(UV-Vis DRS) 56
4.1.6 光觸媒之生長機制 57
4.1.7 光觸媒之降解效率 60
4.1.8光電流(Photocurrent) 62
4.1.9 選擇性光降解染料後之離子液體特性分析 63
4.1.10 光觸媒降解之反應機制 68
4.1.11 BVO/BOB光觸媒之自由基檢測 72
4.2 碳纖維布@溴氧化鉍/氧化銅/光觸媒 76
4.2.1 光觸媒之表面結構(FESEM) 76
4.2.2高解析穿透式電子顯微鏡(HRTEM、mapping、SAED and EDX) 79
4.2.3 X射線繞射光譜 (XRD) 82
4.2.4 表面化學性質(化學分析電子能譜儀XPS分析) 83
4.2.5 擴散反射式紫外線-可見光光譜(UV-Vis DRS) 85
4.2.6 光觸媒之產氫效率 87
4.2.7 光觸媒電化學阻抗頻譜(EIS) 89
4.2.8碳纖維布@溴氧化鉍/氧化銅光觸媒反應機制 90
第五章結論 92
5.1釩酸鉍/溴氧化鉍之光催化降解 92
5.2碳纖維布@溴氧化鉍/氧化銅之光催化產氫 93
第六章參考資料 94


[1]Hayat H, Mahmood Q, Pervez A, Bhatti ZA, Baig SA. Comparative decolorization of dyes in textile wastewater using biological and chemical treatment. Separation and Purification Technology 2015;154:149–53.
[2]Biodegradation of textile azo dyes by textile effluent non-adapted and adapted Aeromonas hydrophila - ScienceDirect
[3]Swatloski RP, Spear SK, Holbrey JD, Rogers RD. Dissolution of Cellose with Ionic Liquids. J Am Chem Soc 2002;124:4974–5.
[4]Ng HLT and RA and YH. Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO4: a review | EndNote Click n.d.
[5]Lu Y, Chen L, Huang Y, Cheng H, Kim SI, Seo HJ. Optical properties and visible light-driven photocatalytic activity of Bi11VO19 nanoparticles with δ-Bi2O3-structure. Journal of Alloys and Compounds 2015;640:226–32.
[6]Hu J, Li H, Huang C, Liu M, Qiu X. Enhanced photocatalytic activity of Bi2O3 under visible light irradiation by Cu(II) clusters modification. Applied Catalysis B: Environmental 2013;142–143:598–603.
[7]Yan T, Sun M, Liu H, Wu T, Liu X, Yan Q, et al. Fabrication of hierarchical BiOI/Bi2MoO6 heterojunction for degradation of bisphenol A and dye under visible light irradiation. Journal of Alloys and Compounds 2015;634:223–31.
[8]He R, Cao S, Zhou P, Yu J. Recent advances in visible light Bi-based photocatalysts. Chinese Journal of Catalysis 2014;35:989–1007.
[9]Wu L, Bi J, Li Z, Wang X, Fu X. Rapid preparation of Bi2WO6 photocatalyst with nanosheet morphology via microwave-assisted solvothermal synthesis. Catalysis Today 2008;131:15–20.
[10]Huang WL. Electronic structures and optical properties of BiOX (X = F, Cl, Br, I) via DFT calculations. Journal of Computational Chemistry 2009;30:1882–91.
[11]Zhang K-L, Liu C-M, Huang F-Q, Zheng C, Wang W-D. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Applied Catalysis B: Environmental 2006;68:125–9.
[12]Zheng H, Guo W, Li S, Yin R, Wu Q, Feng X, et al. Surfactant (CTAB) assisted flower-like Bi2WO6 through hydrothermal method: Unintentional bromide ion doping and photocatalytic activity. Catalysis Communications 2017;88:68–72.
[13]He R, Xu D, Cheng B, Yu J, Ho W. Review on nanoscale Bi-based photocatalysts. Nanoscale Horizons 2018;3:464–504.
[14]Duan F, Wang X, Tan T, Chen M. Highly exposed surface area of {001} facets dominated BiOBr nanosheets with enhanced visible light photocatalytic activity. Phys Chem Chem Phys 2016;18:6113–21.
[15]Experimental Evidence for the Carrier Transportation Enhanced Visible Light Driven Photocatalytic Process in Bismuth Ferrite (BiFeO3) One-Dimensional Fiber Nanostructures | The Journal of Physical Chemistry C n.d.
[16]Jia T, Wang X, Long F, Li J, Kang Z, Fu F, et al. Facile Synthesis, Characterization, and Visible-light Photocatalytic Activities of 3D Hierarchical Bi2S3 Architectures Assembled by Nanoplatelets. Crystals 2016;6:140.
[17]Block Copolymer-Assisted Solvothermal Synthesis of Hollow Bi2MoO6 Spheres Substituted with Samarium | Langmuir n.d.
[18]Chen L, Wang J, Meng D, Wu X, Wang Y, Zhong E. The pH-controlled {040} facets orientation of BiVO4 photocatalysts with different morphologies for enhanced visible light photocatalytic performance. Materials Letters 2016;162:150–3.
[19]Chen L, Wang J, Meng D, Xing Y, Wang C, Li F, et al. Enhanced photocatalytic activity of hierarchically structured BiVO4 oriented along {040} facets with different morphologies. Materials Letters 2015;147:1–3.
[20]Guo Z, Li P, Che H, Wang G, Wu C, Zhang X, et al. One-dimensional spindle-like BiVO4/TiO2 nanofibers heterojunction nanocomposites with enhanced visible light photocatalytic activity. Ceramics International2016;42:4517–25.
[21]Liu T, Zhang Y, Shi Z, Cao W, Zhang L, Liu J, et al. BiOBr/Ag/AgBr heterojunctions decorated carbon fiber cloth with broad-spectral photoresponse as filter-membrane-shaped photocatalyst for the efficient purification of flowing wastewater. Journal of Colloid and Interface Science 2021;587:633–43.
[22]Fan L, Wei B, Xu L, Liu Y, Cao W, Ma N, et al. Ion Exchange Synthesis of Bi2MoO6/BiOI Heterojunctions for Photocatalytic Degradation and Photoelectrochemical Water Splitting. NANO 2016;11:1650095.
[23]Lv J, Dai K, Zhang J, Geng L, Liang C, Liu Q, et al. Facile synthesis of Z-scheme graphitic-C3N4/Bi2MoO6 nanocomposite for enhanced visible photocatalytic properties. Applied Surface Science 2015;358:377–84.
[24]Hu Y, Fan J, Pu C, Li H, Liu E, Hu X. Facile synthesis of double cone-shaped Ag4V2O7/BiVO4 nanocomposites with enhanced visible light photocatalytic activity for environmental purification. Journal of Photochemistry and Photobiology A: Chemistry 2017;337:172–83.
[25]Zhang Y, Li W, Sun Z, Zhang Q, Wang L, Chen Z. In-situ synthesis of heterostructured BiVO4/BiOBr core-shell hierarchical mesoporous spindles with highly enhanced visible-light photocatalytic performance. Journal of Alloys and Compounds 2017;713:78–86.
[26]Tokunaga S, Kato H, Kudo A. Selective Preparation of Monoclinic and Tetragonal BiVO4 with Scheelite Structure and Their Photocatalytic Properties. Chem Mater 2001;13:4624–8.
[27]Kudo A, Omori K, Kato H. A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties. J Am Chem Soc 1999;121:11459–67.
[28]Maisano M, Dozzi MV, Selli E. Searching for facet-dependent photoactivity of shape-controlled anatase TiO2. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2016;28:29–43.
[29]Gotić M, Musić S, Ivanda M, Šoufek M, Popović S. Synthesis and characterisation of bismuth(III) vanadate. Journal of Molecular Structure 2005;744–747:535–40.
[30]Surfactant‐Free Synthesis of Hyperbranched Monoclinic Bismuth Vanadate and its Applications in Photocatalysis, Gas Sensing, and Lithium‐Ion Batteries - Zhao - 2008 - Chemistry – A European Journal - Wiley Online Library n.d.
[31]Effects of Structural Variation on the Photocatalytic Performance of Hydrothermally Synthesized BiVO4 - Yu - 2006 - Advanced Functional Materials - Wiley Online Library n.d.
[32]Selective synthesis and visible-light photocatalytic activities of BiVO4 with different crystalline phases - ScienceDirect n.d.
[33]Zhang HM, Liu JB, Wang H, Zhang WX, Yan H. Rapid microwave-assisted synthesis of phase controlled BiVO4 nanocrystals and research on photocatalytic properties under visible light irradiation. J Nanopart Res 2008;10:767–74.
[34]Galembeck A, Alves OL. BiVO4 thin film preparation by metalorganic decomposition. Thin Solid Films 2000;365:90–3.
[35]Jiang H, Endo H, Natori H, Nagai M, Kobayashi K. Fabrication and photoactivities of spherical-shaped BiVO4 photocatalysts through solution combustion synthesis method. Journal of the European Ceramic Society 2008;28:2955–62.
[36]Luo S, Li S, Zhang S, Cheng Z, Nguyen TT, Guo M. Visible-light-driven Z-scheme protonated g-C3N4/wood flour biochar/BiVO4 photocatalyst with biochar as charge-transfer channel for enhanced RhB degradation and Cr(VI) reduction. Science of The Total Environment 2022;806:150662.
[37]Zhang X, Li M, Liu C, Zhang Z, Zhang F, Liu Q. Enhanced the Efficiency of Photocatalytic Degradation of Methylene Blue by Construction of Z-Scheme g-C3N4/BiVO4 Heterojunction. Coatings 2021;11:1027.
[38]Senasu T, Youngme S, Hemavibool K, Nanan S. Sunlight-driven photodegradation of oxytetracycline antibiotic by BiVO4 photocatalyst. Journal of Solid State Chemistry 2021;297:122088.
[39]Tian H, Wu H, Fang Y, Li R, Huang Y. Hydrothermal synthesis of m-BiVO4/t-BiVO4 heterostructure for organic pollutants degradation: Insight into the photocatalytic mechanism of exposed facets from crystalline phase controlling. Journal of Hazardous Materials 2020;399:123159.
[40]Samran B, lunput S, Tonnonchiang S, Chaiwichian S. BiFeO3/BiVO4 nanocomposite photocatalysts with highly enhanced photocatalytic activity for rhodamine B degradation under visible light irradiation. Physica B: Condensed Matter 2019;561:23–8.
[41]Wei Z, Xinyue T, Xiaomeng W, Benlin D, Lili Z, Jiming X, et al. Novel p-n heterojunction photocatalyst fabricated by flower-like BiVO4 and Ag2S nanoparticles: Simple synthesis and excellent photocatalytic performance. Chemical Engineering Journal 2019;361:1173–81.
[42]Chen Y, Liu Y, Xie X, Li C, Si Y, Zhang M, et al. Synthesis flower-like BiVO4/BiOI core/shell heterostructure photocatalyst for tetracycline degradation under visible-light irradiation. J Mater Sci: Mater Electron 2019;30:9311–21.
[43]Liu Y, Kong J, Yuan J, Zhao W, Zhu X, Sun C, et al. Enhanced photocatalytic activity over flower-like sphere Ag/Ag2CO3/BiVO4 plasmonic heterojunction photocatalyst for tetracycline degradation. Chemical Engineering Journal 2018;331:242–54.
[44]Wei Z, Benlin D, Fengxia Z, Xinyue T, Jiming X, Lili Z, et al. A novel 3D plasmonic p-n heterojunction photocatalyst: Ag nanoparticles on flower-like p-Ag2S/n-BiVO4 and its excellent photocatalytic reduction and oxidation activities. Applied Catalysis B: Environmental 2018;229:171–80.
[45]Fakhrul Ridhwan Samsudin M, Sufian S, Bashiri R, Muti Mohamed N, Tau Siang L, Mahirah Ramli R. Optimization of photodegradation of methylene blue over modified TiO2/BiVO4 photocatalysts: effects of total TiO2 loading and different type of co-catalyst. Materials Today: Proceedings 2018;5:21710–7.
[46]Li H, Zhang J, Huang G, Fu S, Ma C, Wang B, et al. Hydrothermal synthesis and enhanced photocatalytic activity of hierarchical flower-like Fe-doped BiVO4. Transactions of Nonferrous Metals Society of China 2017;27:868–75.
[47]Monfort O, Roch T, Gregor M, Satrapinskyy L, Raptis D, Lianos P, et al. Photooxidative properties of various BiVO4/TiO2 layered composite films and study of their photocatalytic mechanism in pollutant degradation. Journal of Environmental Chemical Engineering 2017;5:5143–9.
[48]Wang W, Dai R, Zhang L, Wu Q, Wang X, Zhang S, et al. Experimental and DFT investigation on the different effects of Er3+- and Ag+-doped BiOBr microspheres in enhancing photocatalytic activity under visible light irradiation. Journal of Materials Science 2020;55.
[49]Guo W, Qin Q, Geng L, Wang D, Guo Y, Yang Y. Morphology-controlled preparation and plasmon-enhanced photocatalytic activity of Pt–BiOBr heterostructures. Journal of Hazardous Materials 2016;308:374–85.
[50]原位合成具有增強的可見光光催化行為的金裝飾的 BiOCl/BiVO4 雜化三元體系 n.d.
[51]Singh S, Sharma R, Khanuja M. A review and recent developments on strategies to improve the photocatalytic elimination of organic dye pollutants by BiOX (X=Cl, Br, I, F) nanostructures. Korean J Chem Eng 2018;35:1955–68.
[52]Cheng H, Huang B, Dai Y. Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale 2014;6:2009–26.
[53]Wu D, Yue S, Wang W, An T, Li G, Yip HY, et al. Boron doped BiOBr nanosheets with enhanced photocatalytic inactivation of Escherichia coli. Applied Catalysis B: Environmental 2016;192:35–45.
[54]Guo Y, Siretanu I, Zhang Y, Mei B, Li X, Mugele F, et al. pH-Dependence in facet-selective photo-deposition of metals and metal oxides on semiconductor particles. J Mater Chem A 2018;6:7500–8.
[55]Wu D, Wang B, Wang W, An T, Li G, Ng TW, et al. Visible-light-driven BiOBr nanosheets for highly facet-dependent photocatalytic inactivation of Escherichia coli. J Mater Chem A 2015;3:15148–55.
[56]Zhang D, Li J, Wang Q, Wu Q. High {001} facets dominated BiOBr lamellas: facile hydrolysis preparation and selective visible-light photocatalytic activity. J Mater Chem A 2013;1:8622–9.
[57]Yu X, Qiu H, Wang B, Meng Q, Sun S, Tang Y, et al. A ternary photocatalyst of all-solid-state Z-scheme TiO2–Au–BiOBr for efficiently degrading various dyes. Journal of Alloys and Compounds 2020;839:155597.
[58]Yu Q, Chen J, Li Y, Wen M, Liu H, Li G, et al. In-situ decoration of metallic Bi on BiOBr with exposed (110) facets and surface oxygen vacancy for enhanced solar light photocatalytic degradation of gaseous n-hexane. Chinese Journal of Catalysis 2020;41:1603–12.
[59]Meng L, Qu Y, Jing L. Recent advances in BiOBr-based photocatalysts for environmental remediation. Chinese Chemical Letters 2021.
[60]Liu C, Mao S, Shi M, Wang F, Xia M, Chen Q, et al. Peroxymonosulfate activation through 2D/2D Z-scheme CoAl-LDH/BiOBr photocatalyst under visible light for ciprofloxacin degradation. Journal of Hazardous Materials 2021;420:126613.
[61]Senasu T, Nijpanich S, Juabrum S, Chanlek N, Nanan S. CdS/BiOBr heterojunction photocatalyst with high performance for solar-light-driven degradation of ciprofloxacin and norfloxacin antibiotics. Applied Surface Science 2021;567:150850.
[62]Yan S, Yang J, Li Y, Jia X, Song H. One-step synthesis of ZnS/BiOBr photocatalyst to enhance photodegradation of tetracycline under full spectral irradiation. Materials Letters 2020;276:128232.
[63]Lv X, Yan DYS, Lam FL-Y, Ng YH, Yin S, An AK. Solvothermal synthesis of copper-doped BiOBr microflowers with enhanced adsorption and visible-light driven photocatalytic degradation of norfloxacin. Chemical Engineering Journal 2020;401:126012..
[64]Yu H, Huang J, Jiang L, Shi Y, Yi K, Zhang W, et al. Enhanced photocatalytic tetracycline degradation using N-CQDs/OV-BiOBr composites: Unraveling the complementary effects between N-CQDs and oxygen vacancy. Chemical Engineering Journal 2020;402:126187.
[65]Singh P, Sonu, Raizada P, Sudhaik A, Shandilya P, Thakur P, et al. Enhanced photocatalytic activity and stability of AgBr/BiOBr/graphene heterojunction for phenol degradation under visible light. Journal of Saudi Chemical Society 2019;23:586–99.
[66]Wang Z, Wang K, Li Y, Jiang L, Zhang G. Novel BiSbO4/BiOBr nanoarchitecture with enhanced visible-light driven photocatalytic performance: Oxygen-induced pathway of activation and mechanism unveiling. Applied Surface Science 2019;498:143850.
[67]Ren X, Wu K, Qin Z, Zhao X, Yang H. The construction of type II heterojunction of Bi2WO6/BiOBr photocatalyst with improved photocatalytic performance. Journal of Alloys and Compounds 2019;788:102–9.
[68]Hu T, Yang Y, Dai K, Zhang J, Liang C. A novel Z-scheme Bi2MoO6/BiOBr photocatalyst for enhanced photocatalytic activity under visible light irradiation. Applied Surface Science 2018;456:473–81.
[69]Ji M, Zhang Z, Xia J, Di J, Liu Y, Chen R, et al. Enhanced photocatalytic performance of carbon quantum dots/BiOBr composite and mechanism investigation. Chinese Chemical Letters 2018;29:805–10.
[70]Jia Y, Liu P, Wang Q, Wu Y, Cao D, Qiao Q-A. Construction of Bi2S3-BiOBr nanosheets on TiO2 NTA as the effective photocatalysts: Pollutant removal, photoelectric conversion and hydrogen generation. Journal of Colloid and Interface Science 2021;585:459–69.
[71]Chang C-J, Huang C-L, Yu Y-H, Teng M-C, Chiang C-L, Lin Y-G. Electron transfer dynamics and enhanced H2 production activity of hydrangea-like BiOBr/Bi2S3-based photocatalysts with Cu-complex as a redox mediator. Applied Surface Science 2022;576:151870.
[72]Wang B, An W, Liu L, Chen W, Liang Y, Cui W. Novel Cu2S quantum dots coupled flower-like BiOBr for efficient photocatalytic hydrogen production under visible light. RSC Advances 2015;5:3224–31.
[73]Chen G, Hing Wong N, Sunarso J, Wang Y, Huang X, Xiong X, et al. Characterization of BiOBr/g-C3N4 heterostructures immobilized on flexible electrospun polyacrylonitrile nanofibers for photocatalytic applications. Applied Surface Science 2021;569:151011.
[74]Imam SS, Adnan R, Mohd Kaus NH. Immobilization of BiOBr into cellulose acetate matrix as hybrid film photocatalyst for facile and multicycle degradation of ciprofloxacin. Journal of Alloys and Compounds 2020;843:155990.
[75]Shi Z, Zhang Y, Liu T, Cao W, Zhang L, Li M, et al. Synthesis of BiOBr/Ag3PO4 heterojunctions on carbon-fiber cloth as filter-membrane-shaped photocatalyst for treating the flowing antibiotic wastewater. Journal of Colloid and Interface Science 2020;575:183–93.
[76]Chang C-J, Chao P-Y, Lin K-S. Flower-like BiOBr decorated stainless steel wire-mesh as immobilized photocatalysts for photocatalytic degradation applications. Applied Surface Science 2019;494:492–500.
[77]Tan G, Zhang L, Ren H, Wei S, Huang J, Xia A. Effects of pH on the Hierarchical Structures and Photocatalytic Performance of BiVO4 Powders Prepared via the Microwave Hydrothermal Method. ACS Appl Mater Interfaces 2013;5:5186–93.
[78]Vila M, Díaz-Guerra C, Piqueras J. α-Bi2O3 microcrystals and microrods: Thermal synthesis, structural and luminescence properties. Journal of Alloys and Compounds 2013;548:188–93.
[79]Prakash D, Masuda Y, Sanjeeviraja C. Synthesis and structure refinement studies of LiNiVO4 electrode material for lithium rechargeable batteries. Ionics 2013;19:17–23.
[80]Physical and Electrochemical Characterization of Quaternary Li‐Mn‐V‐O Spinel as Positive Materials for Rechargeable Lithium Batteries - IOPscience n.d.
[81]Kekade SS, Gaikwad PV, Raut SA, Choudhary RJ, Mathe VL, Phase D, et al. Electronic Structure of Visible Light-Driven Photocatalyst δ-Bi11VO19 Nanoparticles Synthesized by Thermal Plasma. ACS Omega 2018;3:5853–64.
[82]Ai Z, Ho W, Lee S, Zhang L. Efficient Photocatalytic Removal of NO in Indoor Air with Hierarchical Bismuth Oxybromide Nanoplate Microspheres under Visible Light. Environ Sci Technol 2009;43:4143–50.
[83]Huo Y, Zhang J, Miao M, Jin Y. Solvothermal synthesis of flower-like BiOBr microspheres with highly visible-light photocatalytic performances. Applied Catalysis B: Environmental 2012;111–112:334–41.
[84]Mahendran N, Praveen K. BiPO4/Fe-metal organic framework composite: A promising photocatalyst toward the abatement of tetracycline hydrochloride, Indigo Carmine and reduction of 4-nitrophenol. Journal of Industrial and Engineering Chemistry 2021;100:220–32.
[85]Cao J, Zhou C, Lin H, Xu B, Chen S. Surface modification of m-BiVO4 with wide band-gap semiconductor BiOCl to largely improve the visible light induced photocatalytic activity. Applied Surface Science 2013;284:263–9.
[86]Shang M, Wang W, Zhang L. Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template. Journal of Hazardous Materials 2009;167:803–9.
[87]Cao A-M, Hu J-S, Liang H-P, Wan L-J. Self-Assembled Vanadium Pentoxide (V2O5) Hollow Microspheres from Nanorods and Their Application in Lithium-Ion Batteries. Angewandte Chemie International Edition 2005;44:4391–5.
[88]Li X, Qian B, Li J, Song Z. Composition-Controlled Synthesis of Bismuth Vanadate Photocatalysts via a Facile Electrochemical Method. Journal of the American Ceramic Society 2016;99:3516–9.
[89](a) Kotov N, Šturcová A, Zhigunov A, Raus V, Dybal J. Structural Transitions of 1-Butyl-3-methylimidazolium Chloride/Water Mixtures Studied by Raman and FTIR Spectroscopy and WAXS. Crystal Growth & Design 2016;16:1958–67. (b) Kotov, N., Raus, V., Urbanová, M., Zhigunov, A., Dybal, J., & Brus, J. (2020). Impact of Cellulose Dissolution on 1-Butyl-3-Methylimidazolium Chloride Crystallization Studied by Raman Spectroscopy, Wide-Angle X-ray Scattering, and Solid-State NMR. Crystal Growth & Design, 2020; 20: 1706-1715.
[90]Dharaskar SA, Varma MN, Shende DZ, Yoo CK, Wasewar KL. Synthesis, Characterization and Application of 1-Butyl-3 Methylimidazolium Chloride as Green Material for Extractive Desulfurization of Liquid Fuel. The Scientific World Journal 2013;2013:e395274.
[91]Chen X, Wu Z, Liu D, Gao Z. Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes. Nanoscale Res Lett 2017;12:143.
[92]Wang M, Guo P, Zhang Y, Liu T, Li S, Xie Y, et al. Eu doped g-C3N4 nanosheet coated on flower-like BiVO4 powders with enhanced visible light photocatalytic for tetracycline degradation. Applied Surface Science 2018;453:11–22.
[93]Cui W, An W, Liu L, Hu J, Liang Y. Novel Cu2O quantum dots coupled flower-like BiOBr for enhanced photocatalytic degradation of organic contaminant. Journal of Hazardous Materials 2014;280:417–27.
[94]Gao S, Guo C, Hou S, Wan L, Wang Q, Lv J, et al. Photocatalytic removal of tetrabromobisphenol A by magnetically separable flower-like BiOBr/BiOI/Fe3O4 hybrid nanocomposites under visible-light irradiation. Journal of Hazardous Materials 2017;331:1–12.
[95]Xia P, Cheng B, Jiang J, Tang H. Localized π-conjugated structure and EPR investigation of g-C3N4 photocatalyst. Applied Surface Science 2019;487:335–42.
[96]Xiao J, Xie Y, Rabeah J, Brückner A, Cao H. Visible-Light Photocatalytic Ozonation Using Graphitic C3N4 Catalysts: A Hydroxyl Radical Manufacturer for Wastewater Treatment. Acc Chem Res 2020;53:1024–33.
[97]Guo F, Shi W, Wang H, Han M, Li H, Huang H, et al. Facile fabrication of a CoO/g-C3N4 p–n heterojunction with enhanced photocatalytic activity and stability for tetracycline degradation under visible light. Catal Sci Technol 2017;7:3325–31.
[98]Liu K, Zhang X, Zhang C, Ren G, Zheng Z, Lv Z, et al. Enhanced photocatalytic reduction of CO2 to CO over BiOBr assisted by phenolic resin-based activated carbon spheres. RSC Advances 2019;9:14391–9.
[99]Ahmad R, Tripathy N, Ahn M-S, Bhat KS, Mahmoudi T, Wang Y, et al. Highly Efficient Non-Enzymatic Glucose Sensor Based on CuO Modified Vertically-Grown ZnO Nanorods on Electrode. Sci Rep 2017;7:5715.
[100]Tian F, Hou D, Hu F, Xie K, Qiao X, Li D. Pouous TiO2 nanofibers decorated CdS nanoparticles by SILAR method for enhanced visible-light-driven photocatalytic activity. Applied Surface Science 2017;391:295–302.
[101]Karthik P, Naveen Kumar TR, Neppolian B. Redox couple mediated charge carrier separation in g-C3N4/CuO photocatalyst for enhanced photocatalytic H2 production. International Journal of Hydrogen Energy 2020;45:7541–51.
[102]Hossain SS, Tarek M, Munusamy TD, Rezaul Karim KM, Roopan SM, Sarkar SM, et al. Facile synthesis of CuO/CdS heterostructure photocatalyst for the effective degradation of dye under visible light. Environmental Research 2020;188:109803.


電子全文 電子全文(網際網路公開日期:20280101)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊