跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/10/01 13:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭智謙
研究生(外文):HSIAO,CHIH-CHIEN
論文名稱:在離心平台上開發層析系統之分液收集器
論文名稱(外文):Development of fraction collectors for chromatography on a centrifugal platform
指導教授:施志欣
指導教授(外文):SHIH,CHIH HSIN
口試委員:施志欣王孟菊張厚謙
口試日期:2022-06-30
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:82
中文關鍵詞:離心式微流體製備層析分液收集器
外文關鍵詞:Centrifugal microfluidicsPreparative chromatographyFraction collector
相關次數:
  • 被引用被引用:0
  • 點閱點閱:12
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
製備層析法之中的收集是一項重要的程序,然而在微流體裝置上,層析系統通常被用於分析層析法上,因此多數的研究則不進行洗脫液的收集程序,在我們先前的研究之中,我們在離心平台上建立了製備層析法的基礎,為了改善洗脫液收集的結果,以提高各組分的純度,因此本研究著重於開發離心平台上的分液收集器,將洗脫液分成數個獨立的組分,藉由科氏力作用,可以將洗脫液送至不同的收集槽位置,藉此以達到分液收集器的效果。
A few fluidic designs for fraction collectors of chromatography on a centrifugal platform were developed. In our previous effort, the preparative chromatography on a centrifugal platform was established. In order to improve the purity of the eluate, an effective fraction collector is of great importance. In this work, we proposed a few fraction collector designs using flow switching techniques. By changing the rotational speed, the Coriolis-induced flow would direct the eluate into the corresponding collecting chambers. The experimental results showed that water-soluble dyes can be successfully separated and recovered by the proposed fraction collectors.
圖目錄 ........................................................................................................................ 6
表目錄 ... 9
第一章 緒論 10
1.1 前言................................................................................................................... 10
1.2 離心式微流體技術介紹 11
1.3 層析法 13
1.4 分液收集器 15
1.5 研究動機 16
第二章 文獻回顧 17
2.1 離心式微流體單元介紹 17
2.2 微流體上之層析應用 22
2.3 離心旋轉式層析發展 26
2.4 微流體裝置上之洗脫物收集方法 30
2.5 離心平台上之流動切換應用 33
第三章 實驗設計 36
3.1 實驗藥品與材料 36
3.1.1 層析之水溶性色素 36
3.1.2 層析之分析藥品 36
3.1.3 研究使用之材料 37
3.2 實驗儀器 38
3.3 離心式層析操作平台 39
3.3.1 馬達儀控系統 39
3.3.2 影像擷取系統 40
3.3.3 偵測系統 42
3.4 碟片設計與製作 43
3.4.1 碟片設計及製作 43
3.4.2 離心式微流體操作流程 46
3.5 實驗分析 49
3.5.1 灰階分析法 49
3.5.2 分光光度計分析 49
第四章 實驗結果 51
4.1 離心式微流體層析之分離探討 51
4.1.1 轉速對分離的影響 51
4.1.2 固定相粒徑對分離之影響 54
4.2 離心平台上收集之因素探討 58
4.2.1 不同轉速下的擴散情形探討 58
4.2.2 溶液組成對擴散之影響 61
4.2 流動切換之收集方法 63
4.3 離心式分液收集器 69
4.3.1 碟片設計及封裝 69
4.3.2 偏移之起始半徑位置 71
4.3.3 不同組分之溶劑與偏移角度關係 74
4.3.4 離心式分液收集器之應用 76
第五章 結論 77
第六章 未來展望 78
第七章 參考文獻 79



1.Gorkin, R., Park, J., Siegrist, J., Amasia, M., Lee, B. S., Park, J. M., & Cho, Y. K. (2010). Centrifugal microfluidics for biomedical applications. Lab on a Chip, 10(14), 1758-1773.
2.Strohmeier, O., Keller, M., Schwemmer, F., Zehnle, S., Mark, D., von Stetten, F., & Paust, N. (2015). Centrifugal microfluidic platforms: advanced unit operations and applications. Chemical Society Reviews, 44(17), 6187-6229.
3.Moore, J. L., McCuiston, A., Mittendorf, I., Ottway, R., & Johnson, R. D. (2011). Behavior of capillary valves in centrifugal microfluidic devices prepared by three-dimensional printing. Microfluidics and Nanofluidics, 10(4), 877-888.
4.Siegrist, J., Gorkin, R., Clime, L., Roy, E., Peytavi, R., Kido, H., & Madou, M. (2010). Serial siphon valving for centrifugal microfluidic platforms. Microfluidics and nanofluidics, 9(1), 55-63.
5.La, M., Park, S. J., Kim, H. W., Park, J. J., Ahn, K. T., Ryew, S. M., & Kim, D. S. (2013). A centrifugal force-based serpentine micromixer (CSM) on a plastic lab-on-a-disk for biochemical assays. Microfluidics and nanofluidics, 15(1), 87-98.
6.Wang, Y., Li, Z., Huang, X., Ji, W., Ning, X., Liu, K., & Wang, G. (2019). On-board control of wax valve on active centrifugal microfluidic chip and its application for plasmid DNA extraction. Microfluidics and Nanofluidics, 23(10), 1-11.
7.Ukita, Y., Takamura, Y., & Utsumi, Y. (2015). Water-clock-based autonomous flow sequencing in steadily rotating centrifugal microfluidic device. Sensors and Actuators B: Chemical, 220, 180-183.
8.Li, J., Xia, G., & Li, Y. (2013). Numerical and experimental analyses of planar asymmetric split‐and‐recombine micromixer with dislocation sub‐channels. Journal of Chemical Technology & Biotechnology, 88(9), 1757-1765.
9.Zhu, Y., Chen, Y., & Xu, Y. (2018). Interruptible siphon valving for centrifugal microfluidic platforms. Sensors and Actuators B: Chemical, 276, 313-321.
10.Oh, S. J., & Seo, T. S. (2019). Combination of a centrifugal microfluidic device with a solution-loading cartridge for fully automatic molecular diagnostics. Analyst, 144(19), 5766-5774.
11.Concept of theoretical plates in column chromatography. 2015; Available from : https://lab-training.com/concept-of-theoretical-plates-in-column-chromatography/
12.High performance liquid chromatography. 2020; Available from : https://chem .libretexts.org/@go/page/307
13.俞姿宇, 凡第姆特方程式. 科學Online 高瞻自然科學教學資源平台, 2016.
14.Yuan, X., & Oleschuk, R. D. (2018). Advances in microchip liquid chromatography. Anal. Chem, 90(1), 283-301.
15.Haghighi, F., Talebpour, Z., & Nezhad, A. S. (2018). Towards fully integrated liquid chromatography on a chip: evolution and evaluation. TrAC Trends in Analytical Chemistry, 105, 302-337
16.Zhuo-Heng, Z. H. O. U., Ya, L., & ZHANG, B. (2019). Microfluidic array liquid chromatography: a proof of principle study. Chinese Journal of Analytical Chemistry, 47(4), 500-507.
17.He, C., Zhu, Z., Gu, C., Lu, J., & Liu, S. (2012). Stacking open-capillary electroosmotic pumps in series to boost the pumping pressure to drive high-performance liquid chromatographic
separations. Journal of Chromatography A, 1227, 253-258.
18.Yang, X., Jenkins, G., Franzke, J., & Manz, A. (2005). Shear-driven pumping and Fourier transform detection for on chip circular chromatography applications. Lab on a Chip, 5(7), 764-771.
19.Penrose, A., Myers, P., Bartle, K., & McCrossen, S. (2004). Development and assessment of a miniaturised centrifugal chromatograph for reversed-phase separations in micro-channels. Analyst, 129(8), 704-709.
20.Ishibashi, R., Mawatari, K., & Kitamori, T. (2012). High resolution separation by pressure-driven liquid chromatography in meander extended nanochannels. Journal of Chromatography A, 1238, 152-155.
21.Wang, Z., Wang, W., Chen, G., Wang, W., & Fu, F. (2010). Liquid chromatography on a monolithic column microfluidic chip coupled with “three‐T” sample injection mode and amperometric detection. Journal of separation science, 33(17‐18), 2568-2574.
22.Gaspar, A., Nagy, A., & Lazar, I. (2011). Integration of ground aerogel particles as chromatographic stationary phase into microchip. Journal of Chromatography A, 1218(7), 1011-1015.
23.Knox, J. H. (1999). Band dispersion in chromatography–a new view of A-term dispersion. Journal of Chromatography A, 831(1), 3-15.
24.Li, J., Xia, G., & Li, Y. (2013). Numerical and experimental analyses of planar asymmetric split‐and‐recombine micromixer with dislocation sub‐channels. Journal of Chemical Technology & Biotechnology, 88(9), 1757-1765.
25.Hopf PP., Radial chromatography in industry. Ind Eng Chem 1947;39:938–40.
26.Nyiredy, S. (2001). Rotation planar chromatography. Planar Chromatography–A Retrospective View for the Third Millennium, Springer, Budapest, 177-199.
27.Nyiredy Sz, Botz L, Sticher O. ROTACHROM: a new instrument for rotation planar chromatography (RPC). J Planar Chromatogr 1989;2:53–61.
28.Studer, A., & Traitler, H. (1986). Sample collection, quantification, and identification in preparative anticircular planar chromatography. Journal of High Resolution Chromatography, 9(4), 218-223.
29.Nie, J., & Kennedy, R. T. (2013). Capillary liquid chromatography fraction collection and postcolumn reaction using segmented flow microfluidics. Journal of separation science, 36(21-22), 3471-3477
30.Baker, C. A., & Roper, M. G. (2010). A continuous-flow, microfluidic fraction collection device. Journal of Chromatography A, 1217(28), 4743-4748.
31.Longwell, S. A., & Fordyce, P. M. (2020). micrIO: an open-source autosampler and fraction collector for automated microfluidic input–output. Lab on a Chip, 20(1), 93-106.
32.Kim, J., Kido, H., Rangel, R. H., & Madou, M. J. (2008). Passive flow switching valves on a centrifugal microfluidic platform. Sensors and actuators B: Chemical, 128(2), 613-621.
33.Xiang, J., Cai, Z., Zhang, Y., & Wang, W. (2018). Mechanically programmed valving technology and the active flow switching application in centrifugal microfluidics. Sensors and Actuators B: Chemical, 259, 325-331.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top