|
1.Gorkin, R., Park, J., Siegrist, J., Amasia, M., Lee, B. S., Park, J. M., & Cho, Y. K. (2010). Centrifugal microfluidics for biomedical applications. Lab on a Chip, 10(14), 1758-1773. 2.Strohmeier, O., Keller, M., Schwemmer, F., Zehnle, S., Mark, D., von Stetten, F., & Paust, N. (2015). Centrifugal microfluidic platforms: advanced unit operations and applications. Chemical Society Reviews, 44(17), 6187-6229. 3.Moore, J. L., McCuiston, A., Mittendorf, I., Ottway, R., & Johnson, R. D. (2011). Behavior of capillary valves in centrifugal microfluidic devices prepared by three-dimensional printing. Microfluidics and Nanofluidics, 10(4), 877-888. 4.Siegrist, J., Gorkin, R., Clime, L., Roy, E., Peytavi, R., Kido, H., & Madou, M. (2010). Serial siphon valving for centrifugal microfluidic platforms. Microfluidics and nanofluidics, 9(1), 55-63. 5.La, M., Park, S. J., Kim, H. W., Park, J. J., Ahn, K. T., Ryew, S. M., & Kim, D. S. (2013). A centrifugal force-based serpentine micromixer (CSM) on a plastic lab-on-a-disk for biochemical assays. Microfluidics and nanofluidics, 15(1), 87-98. 6.Wang, Y., Li, Z., Huang, X., Ji, W., Ning, X., Liu, K., & Wang, G. (2019). On-board control of wax valve on active centrifugal microfluidic chip and its application for plasmid DNA extraction. Microfluidics and Nanofluidics, 23(10), 1-11. 7.Ukita, Y., Takamura, Y., & Utsumi, Y. (2015). Water-clock-based autonomous flow sequencing in steadily rotating centrifugal microfluidic device. Sensors and Actuators B: Chemical, 220, 180-183. 8.Li, J., Xia, G., & Li, Y. (2013). Numerical and experimental analyses of planar asymmetric split‐and‐recombine micromixer with dislocation sub‐channels. Journal of Chemical Technology & Biotechnology, 88(9), 1757-1765. 9.Zhu, Y., Chen, Y., & Xu, Y. (2018). Interruptible siphon valving for centrifugal microfluidic platforms. Sensors and Actuators B: Chemical, 276, 313-321. 10.Oh, S. J., & Seo, T. S. (2019). Combination of a centrifugal microfluidic device with a solution-loading cartridge for fully automatic molecular diagnostics. Analyst, 144(19), 5766-5774. 11.Concept of theoretical plates in column chromatography. 2015; Available from : https://lab-training.com/concept-of-theoretical-plates-in-column-chromatography/ 12.High performance liquid chromatography. 2020; Available from : https://chem .libretexts.org/@go/page/307 13.俞姿宇, 凡第姆特方程式. 科學Online 高瞻自然科學教學資源平台, 2016. 14.Yuan, X., & Oleschuk, R. D. (2018). Advances in microchip liquid chromatography. Anal. Chem, 90(1), 283-301. 15.Haghighi, F., Talebpour, Z., & Nezhad, A. S. (2018). Towards fully integrated liquid chromatography on a chip: evolution and evaluation. TrAC Trends in Analytical Chemistry, 105, 302-337 16.Zhuo-Heng, Z. H. O. U., Ya, L., & ZHANG, B. (2019). Microfluidic array liquid chromatography: a proof of principle study. Chinese Journal of Analytical Chemistry, 47(4), 500-507. 17.He, C., Zhu, Z., Gu, C., Lu, J., & Liu, S. (2012). Stacking open-capillary electroosmotic pumps in series to boost the pumping pressure to drive high-performance liquid chromatographic separations. Journal of Chromatography A, 1227, 253-258. 18.Yang, X., Jenkins, G., Franzke, J., & Manz, A. (2005). Shear-driven pumping and Fourier transform detection for on chip circular chromatography applications. Lab on a Chip, 5(7), 764-771. 19.Penrose, A., Myers, P., Bartle, K., & McCrossen, S. (2004). Development and assessment of a miniaturised centrifugal chromatograph for reversed-phase separations in micro-channels. Analyst, 129(8), 704-709. 20.Ishibashi, R., Mawatari, K., & Kitamori, T. (2012). High resolution separation by pressure-driven liquid chromatography in meander extended nanochannels. Journal of Chromatography A, 1238, 152-155. 21.Wang, Z., Wang, W., Chen, G., Wang, W., & Fu, F. (2010). Liquid chromatography on a monolithic column microfluidic chip coupled with “three‐T” sample injection mode and amperometric detection. Journal of separation science, 33(17‐18), 2568-2574. 22.Gaspar, A., Nagy, A., & Lazar, I. (2011). Integration of ground aerogel particles as chromatographic stationary phase into microchip. Journal of Chromatography A, 1218(7), 1011-1015. 23.Knox, J. H. (1999). Band dispersion in chromatography–a new view of A-term dispersion. Journal of Chromatography A, 831(1), 3-15. 24.Li, J., Xia, G., & Li, Y. (2013). Numerical and experimental analyses of planar asymmetric split‐and‐recombine micromixer with dislocation sub‐channels. Journal of Chemical Technology & Biotechnology, 88(9), 1757-1765. 25.Hopf PP., Radial chromatography in industry. Ind Eng Chem 1947;39:938–40. 26.Nyiredy, S. (2001). Rotation planar chromatography. Planar Chromatography–A Retrospective View for the Third Millennium, Springer, Budapest, 177-199. 27.Nyiredy Sz, Botz L, Sticher O. ROTACHROM: a new instrument for rotation planar chromatography (RPC). J Planar Chromatogr 1989;2:53–61. 28.Studer, A., & Traitler, H. (1986). Sample collection, quantification, and identification in preparative anticircular planar chromatography. Journal of High Resolution Chromatography, 9(4), 218-223. 29.Nie, J., & Kennedy, R. T. (2013). Capillary liquid chromatography fraction collection and postcolumn reaction using segmented flow microfluidics. Journal of separation science, 36(21-22), 3471-3477 30.Baker, C. A., & Roper, M. G. (2010). A continuous-flow, microfluidic fraction collection device. Journal of Chromatography A, 1217(28), 4743-4748. 31.Longwell, S. A., & Fordyce, P. M. (2020). micrIO: an open-source autosampler and fraction collector for automated microfluidic input–output. Lab on a Chip, 20(1), 93-106. 32.Kim, J., Kido, H., Rangel, R. H., & Madou, M. J. (2008). Passive flow switching valves on a centrifugal microfluidic platform. Sensors and actuators B: Chemical, 128(2), 613-621. 33.Xiang, J., Cai, Z., Zhang, Y., & Wang, W. (2018). Mechanically programmed valving technology and the active flow switching application in centrifugal microfluidics. Sensors and Actuators B: Chemical, 259, 325-331.
|