跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/21 06:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳昱橖
研究生(外文):CHEN,YU-TANG
論文名稱:有毒氣體分子在二維 B2CO 單層改質前後吸附和感測特性的DFT研究
論文名稱(外文):Adsorption and gas-sensing characteristics of toxic gases on pristine and modified 2D B2CO monolayer: A DFT study
指導教授:葉丞豪
指導教授(外文):YEH,CHEN-HAO
口試委員:張育誠張鈞智
口試委員(外文):CHANG,YU-CHENGCHANG,CHUN-CHIH
口試日期:2022-06-29
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:123
中文關鍵詞:密度泛函理論二維B2CO單層氣體感測器空位缺陷改質Al摻雜取代
外文關鍵詞:Density functional theory2D B2CO monolayerGas sensorsDefect engineeringAl-doping modification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
二維(2D)材料由於其優異的光學和電學性能而受到廣泛關注。此外,基於其優異的電學特性已被廣泛研究作為氣體傳感器。最近,一種新型的二維(2D)材料B2CO單層被研究並報導其具有顯著的結構、能量和熱力學穩定性。因此,我們將進一步研究二維B2CO單層對常見有毒氣體的感測機制。在本研究中,我們使用密度泛函理論 (DFT) 通過計算其吸附能來探索 CO、CO2、NH3、NO和NO2氣體分子在未改質、缺陷環境、Si/Al摻雜取代和拉伸/壓縮應變下B2CO單層上的感測特性。我們發現NO與NO2分子在未改質以及改質的B2CO單層上都有相當優秀的吸附能,其中又以NO2分子作用力最大。此外經歷缺陷以及原子參雜改質後,僅有Al摻雜取代能夠有效提升CO、CO2和NH3在B2CO單層上的吸附能,其中CO、NO和NO2氣體分子吸附後系統的帶隙大小皆會大幅降低,以提升其導電率,這些是其他改質方法無法達到的結果。另一方面,我們的計算顯示,當我們在B2CO-Al單層上施加壓縮與拉伸應變時,可以進一步調節對NO2的吸附強度。最後,我們發現二維B2CO單層是一種很好的NO2氣體感測器,並且進一步對B2CO單層改性也被計算出能夠有效地提高B2CO單層對其他有毒氣體分子的感測能力。
Two-dimensional (2D) materials have attracted widespread attention due to their excellent optical and electrical properties. Besides, 2D materials have been widely studied as gas sensors based on their excellent electrical properties. Very recently, a new type of two-dimensional (2D) material B2CO monolayer has been studied and reported to possess significant structural, energetic, and thermodynamic stabilities. Therefore, we will further investigate the sensing mechanism of various gaseous species over the 2D B2CO monolayer. In this thesis, density functional theory (DFT) was performed to explore the sensing properties of CO, CO2, NH3, NO, and NO2 gases molecules on pristine B2CO, defected B2CO, Si, or Al-doped B2CO, as well as the strain effects to these monolayers for the sensing properties. We found that both NO and NO2 have great adsorption energies on various type’s B2CO monolayers, in which the NO2 molecule has the strongest interaction with all B2CO monolayers. In addition, by using defect engineering and heteroatom doping to modify the B2CO monolayer, only Al-doped B2CO monolayer can largely enhance the adsorption energy of CO, NO, and NO2 molecules. Moreover, the system’s bandgap values would be greatly reduced after the adsorption of these gases on the Al-doped B2CO monolayer; thus, their conductivity could rise. Besides, our results indicate that the adsorption energy for NO2 can be further regulated when we apply tensile and compressive strain on the B2CO-Al monolayer. Finally, we found that the 2D B2CO monolayer is a good NO2 gas sensor, and further, the modified B2CO monolayers are also predicted to effectively improve the sensing capability of other toxic gas molecules.
第一章 緒論 1
1.1 氣體感測 1
1.1.1簡介 1
1.1.2氣體感測器種類 1
1.2 半導體感測器 3
1.3 二維氣體感測器 4
1.4 二維 B–C–O 系統在氣體感測器上的潛力 5
1.4.1改質對氣體感測效果的影響 5
1.4.2二維 B–C–O 系統 6
第二章 理論與計算原理 8
2.1 多電子系統計算上的近似 8
2.2 密度泛函理論 (Density Function Theory,DFT) 9
2.2.1 Hohenberg-Kohn theorem 9
2.2.2 Kohn-Sham method 10
2.3 局部密度近似法(Local density function approximation, LDA) 12
2.4 廣義梯度近似法(Generalized gradient approximation, GGA) 14
2.5 空間週期性與布洛赫理論(Bloch Theorem) 16
2.6 結構參數與吸附能計算 19
第三章 結果與討論 22
3.1 2D B2CO單層表面對氣體的吸附 22
3.1.1吸附結構分析 22
3.1.2電子結構分析 33
3.2 空位缺陷對氣體吸附的影響 41
3.2.1吸附結構分析 41
3.2.2電子結構分析 51
3.3 Si摻雜對氣體吸附的影響 58
3.3.1吸附結構分析 58
3.3.2電子結構分析 71
3.4 Al摻雜對氣體吸附的影響 78
3.4.1吸附結構分析 78
3.4.2電子結構分析 91
3.5 拉伸/壓縮對氣體吸附的影響 100
3.5.1拉伸/壓縮應變 100
第四章 結論 103
參考文獻 106


(1) Chaisitsak, S. Nanocrystalline SnO2:F Thin Films for Liquid Petroleum Gas Sensors. Sensors 2011, 11 (7), 7127–7140. https://doi.org/10.3390/s110707127.
(2) Dhall, S.; Mehta, B. R.; Tyagi, A. K.; Sood, K. A Review on Environmental Gas Sensors: Materials and Technologies. Sens. Int. 2021, 2, 100116. https://doi.org/10.1016/j.sintl.2021.100116.
(3) Kanan, S. M.; El-Kadri, O. M.; Abu-Yousef, I. A.; Kanan, M. C. Semiconducting Metal Oxide Based Sensors for Selective Gas Pollutant Detection. Sensors 2009, 9 (10), 8158–8196. https://doi.org/10.3390/s91008158.
(4) Liu, X.; Cheng, S.; Liu, H.; Hu, S.; Zhang, D.; Ning, H. A Survey on Gas Sensing Technology. SENSORS 2012, 12 (7), 9635–9665. https://doi.org/10.3390/s120709635.
(5) Guth, U.; Vonau, W.; Zosel, J. Recent Developments in Electrochemical Sensor Application and Technology—a Review. Meas. Sci. Technol. 2009, 20 (4), 042002. https://doi.org/10.1088/0957-0233/20/4/042002.
(6) Nikolic, M.; Milovanovic, V.; Vasiljevic, Z.; Stamenkovic, Z. Semiconductor Gas Sensors: Materials, Technology, Design, and Application. SENSORS 2020, 20 (22). https://doi.org/10.3390/s20226694.
(7) Arshak, K.; Moore, E.; Lyons, G. M.; Harris, J.; Clifford, S. A Review of Gas Sensors Employed in Electronic Nose Applications. Sens. Rev. 2004, 24 (2), 181–198. https://doi.org/10.1108/02602280410525977.
(8) Lee, S. W.; Tsai, P. P.; Chen, H. Comparison Study of SnO2 Thin- and Thick-Film Gas Sensors. Sens. Actuators B Chem. 2000, 67 (1), 122–127. https://doi.org/10.1016/S0925-4005(00)00390-7.
(9) Carotta, M. C.; Cervi, A.; di Natale, V.; Gherardi, S.; Giberti, A.; Guidi, V.; Puzzovio, D.; Vendemiati, B.; Martinelli, G.; Sacerdoti, M.; Calestani, D.; Zappettini, A.; Zha, M.; Zanotti, L. ZnO Gas Sensors: A Comparison between Nanoparticles and Nanotetrapods-Based Thick Films. Sens. Actuators B Chem. 2009, 137 (1), 164–169. https://doi.org/10.1016/j.snb.2008.11.007.
(10) Giberti, A.; Carotta, M. C.; Malagù, C.; Aldao, C. M.; Castro, M. S.; Ponce, M. A.; Parra, R. Permittivity Measurements in Nanostructured TiO2 Gas Sensors. Phys. Status Solidi A 2011, 208 (1), 118–122. https://doi.org/10.1002/pssa.201026443.
(11) Mirzaei, A.; Hashemi, B.; Janghorban, K. α-Fe2O3 Based Nanomaterials as Gas Sensors. J. Mater. Sci. Mater. Electron. 2016, 27 (4), 3109–3144. https://doi.org/10.1007/s10854-015-4200-z.
(12) Urasinska-Wojcik, B.; Vincent, T. A.; Chowdhury, M. F.; Gardner, J. W. Ultrasensitive WO3 Gas Sensors for NO2 Detection in Air and Low Oxygen Environment. Sens. Actuators B Chem. 2017, 239, 1051–1059. https://doi.org/10.1016/j.snb.2016.08.080.
(13) Volanti, D. P.; Felix, A. A.; Orlandi, M. O.; Whitfield, G.; Yang, D.-J.; Longo, E.; Tuller, H. L.; Varela, J. A. The Role of Hierarchical Morphologies in the Superior Gas Sensing Performance of CuO-Based Chemiresistors. Adv. Funct. Mater. 2013, 23 (14), 1759–1766. https://doi.org/10.1002/adfm.201202332.
(14) Yu, Y.; Xia, Y.; Zeng, W.; Liu, R. Synthesis of Multiple Networked NiO Nanostructures for Enhanced Gas Sensing Performance. Mater. Lett. 2017, 206, 80–83. https://doi.org/10.1016/j.matlet.2017.06.119.
(15) Pokhrel, S.; Simion, C. E.; Quemener, V.; Bârsan, N.; Weimar, U. Investigations of Conduction Mechanism in Cr2O3 Gas Sensing Thick Films by Ac Impedance Spectroscopy and Work Function Changes Measurements. Sens. Actuators B Chem. 2008, 133 (1), 78–83. https://doi.org/10.1016/j.snb.2008.01.054.
(16) Yoon, J.-W.; Kim, H.-J.; Jeong, H.-M.; Lee, J.-H. Gas Sensing Characteristics of P-Type Cr2O3 and Co3O4 Nanofibers Depending on Inter-Particle Connectivity. Sens. Actuators B Chem. 2014, 202, 263–271. https://doi.org/10.1016/j.snb.2014.05.081.
(17) Tulliani, J.-M.; Baroni, C.; Zavattaro, L.; Grignani, C. Strontium-Doped Hematite as a Possible Humidity Sensing Material for Soil Water Content Determination. Sensors 2013, 13 (9), 12070–12092. https://doi.org/10.3390/s130912070.
(18) Falsafi, F.; Hashemi, B.; Mirzaei, A.; Fazio, E.; Neri, F.; Donato, N.; Leonardi, S. G.; Neri, G. Sm-Doped Cobalt Ferrite Nanoparticles: A Novel Sensing Material for Conductometric Hydrogen Leak Sensor. Ceram. Int. 2017, 43 (1, Part B), 1029–1037. https://doi.org/10.1016/j.ceramint.2016.10.035.
(19) Galstyan, V.; Ponzoni, A.; Kholmanov, I.; Natile, M. M.; Comini, E.; Sberveglieri, G. Highly Sensitive and Selective Detection of Dimethylamine through Nb-Doping of TiO2 Nanotubes for Potential Use in Seafood Quality Control. Sens. Actuators B Chem. 2020, 303, 127217. https://doi.org/10.1016/j.snb.2019.127217.
(20) Neri, G. First Fifty Years of Chemoresistive Gas Sensors. Chemosensors 2015, 3 (1), 1–20. https://doi.org/10.3390/chemosensors3010001.
(21) Tsai, H.; Wang, Y.; Liu, C.; Wang, T.; Huo, M. The Elemental 2D Materials beyond Graphene Potentially Used as Hazardous Gas Sensors for Environmental Protection. J. Hazard. Mater. 2022, 423. https://doi.org/10.1016/j.jhazmat.2021.127148.
(22) Donarelli, M.; Ottaviano, L. 2D Materials for Gas Sensing Applications: A Review on Graphene Oxide, MoS2, WS2 and Phosphorene. SENSORS 2018, 18 (11). https://doi.org/10.3390/s18113638.
(23) Sajjad, M.; Montes, E.; Singh, N.; Schwingenschlogl, U. Superior Gas Sensing Properties of Monolayer PtSe2. Adv. Mater. INTERFACES 2017, 4 (5). https://doi.org/10.1002/admi.201600911.
(24) Guo, L.; Hao, Y.-W.; Li, P.-L.; Song, J.-F.; Yang, R.-Z.; Fu, X.-Y.; Xie, S.-Y.; Zhao, J.; Zhang, Y.-L. Improved NO2 Gas Sensing Properties of Graphene Oxide Reduced by Two-Beam-Laser Interference. Sci. Rep. 2018, 8 (1), 4918. https://doi.org/10.1038/s41598-018-23091-1.
(25) Lu, G.; Park, S.; Yu, K.; Ruoff, R. S.; Ocola, L. E.; Rosenmann, D.; Chen, J. Toward Practical Gas Sensing with Highly Reduced Graphene Oxide: A New Signal Processing Method To Circumvent Run-to-Run and Device-to-Device Variations. ACS Nano 2011, 5 (2), 1154–1164. https://doi.org/10.1021/nn102803q.
(26) Li, W.; Geng, X.; Guo, Y.; Rong, J.; Gong, Y.; Wu, L.; Zhang, X.; Li, P.; Xu, J.; Cheng, G.; Sun, M.; Liu, L. Reduced Graphene Oxide Electrically Contacted Graphene Sensor for Highly Sensitive Nitric Oxide Detection. ACS Nano 2011, 5 (9), 6955–6961. https://doi.org/10.1021/nn201433r.
(27) Han, T. H.; Huang, Y.-K.; Tan, A. T. L.; Dravid, V. P.; Huang, J. Steam Etched Porous Graphene Oxide Network for Chemical Sensing. J. Am. Chem. Soc. 2011, 133 (39), 15264–15267. https://doi.org/10.1021/ja205693t.
(28) Yavari, F.; Chen, Z.; Thomas, A. V.; Ren, W.; Cheng, H.-M.; Koratkar, N. High Sensitivity Gas Detection Using a Macroscopic Three-Dimensional Graphene Foam Network. Sci. Rep. 2011, 1 (1), 166. https://doi.org/10.1038/srep00166.
(29) Paul, R. K.; Badhulika, S.; Saucedo, N. M.; Mulchandani, A. Graphene Nanomesh As Highly Sensitive Chemiresistor Gas Sensor. Anal. Chem. 2012, 84 (19), 8171–8178. https://doi.org/10.1021/ac3012895.
(30) Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-Layer MoS2 Transistors. Nat. Nanotechnol. 2011, 6 (3), 147–150. https://doi.org/10.1038/nnano.2010.279.
(31) Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon. Phys. Rev. Lett. 2012, 108 (15), 155501. https://doi.org/10.1103/PhysRevLett.108.155501.
(32) Bianco, E.; Butler, S.; Jiang, S.; Restrepo, O. D.; Windl, W.; Goldberger, J. E. Stability and Exfoliation of Germanane: A Germanium Graphane Analogue. ACS Nano 2013, 7 (5), 4414–4421. https://doi.org/10.1021/nn4009406.
(33) Saxena, S.; Chaudhary, R. P.; Shukla, S. Stanene: Atomically Thick Free-Standing Layer of 2D Hexagonal Tin. Sci. Rep. 2016, 6 (1), 31073. https://doi.org/10.1038/srep31073.
(34) Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X.; Tománek, D.; Ye, P. D. Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano 2014, 8 (4), 4033–4041. https://doi.org/10.1021/nn501226z.
(35) Zhang, S.; Zhou, J.; Wang, Q.; Chen, X.; Kawazoe, Y.; Jena, P. Penta-Graphene: A New Carbon Allotrope. Proc. Natl. Acad. Sci. 2015, 112 (8), 2372–2377. https://doi.org/10.1073/pnas.1416591112.
(36) Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials. Adv. Mater. 2014, 26 (7), 992–1005. https://doi.org/10.1002/adma.201304138.
(37) Li, F.; Han, W.; Cao, Z.; Ji, S.; Wang, H.; Wang, L.; Wu, H.; Zhu, Y.; Pu, Y. Two Novel Semiconducting B2CO Monolayers with High Carrier Mobilities. J. Comput. Chem. 2021, 42 (28), 2024–2030. https://doi.org/10.1002/jcc.26735.
(38) Boukhvalov, D. W.; Katsnelson, M. I. Modeling of Graphite Oxide. J. Am. Chem. Soc. 2008, 130 (32), 10697–10701. https://doi.org/10.1021/ja8021686.
(39) Krivanek, O. L.; Chisholm, M. F.; Nicolosi, V.; Pennycook, T. J.; Corbin, G. J.; Dellby, N.; Murfitt, M. F.; Own, C. S.; Szilagyi, Z. S.; Oxley, M. P.; Pantelides, S. T.; Pennycook, S. J. Atom-by-Atom Structural and Chemical Analysis by Annular Dark-Field Electron Microscopy. Nature 2010, 464 (7288), 571–574. https://doi.org/10.1038/nature08879.
(40) Zheng, B.; Zhang, M.; Wang, C. Exploring the Mechanical Anisotropy and Ideal Strengths of Tetragonal B4CO4. Materials 2017, 10 (2), 128. https://doi.org/10.3390/ma10020128.
(41) Ozturk, B.; de-Luna-Bugallo, A.; Panaitescu, E.; Chiaramonti, A. N.; Liu, F.; Vargas, A.; Jiang, X.; Kharche, N.; Yavuzcetin, O.; Alnaji, M.; Ford, M. J.; Lok, J.; Zhao, Y.; King, N.; Dhar, N. K.; Dubey, M.; Nayak, S. K.; Sridhar, S.; Kar, S. Atomically Thin Layers of B–N–C–O with Tunable Composition. Sci. Adv. 1 (6), e1500094. https://doi.org/10.1126/sciadv.1500094.
(42) Naseri, M.; Hoat, D. Prediction of a New 2D B2CO Monolayer from Density Functional Theory. Comput. Mater. Sci. 2021, 186. https://doi.org/10.1016/j.commatsci.2020.109975.
(43) Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B 1993, 47 (1), 558–561. https://doi.org/10.1103/PhysRevB.47.558.
(44) Kresse, G.; Hafner, J. Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal--Amorphous-Semiconductor Transition in Germanium. Phys. Rev. B 1994, 49 (20), 14251–14269. https://doi.org/10.1103/PhysRevB.49.14251.
(45) Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6 (1), 15–50. https://doi.org/10.1016/0927-0256(96)00008-0.
(46) Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54 (16), 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169.
(47) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865.
(48) Blöchl, P. E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50 (24), 17953–17979. https://doi.org/10.1103/PhysRevB.50.17953.
(49) Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59 (3), 1758–1775. https://doi.org/10.1103/PhysRevB.59.1758.
(50) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104. https://doi.org/10.1063/1.3382344.
(51) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32 (7), 1456–1465. https://doi.org/10.1002/jcc.21759.
(52) Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13 (12), 5188–5192. https://doi.org/10.1103/PhysRevB.13.5188.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top