跳到主要內容

臺灣博碩士論文加值系統

(44.212.94.18) 您好!臺灣時間:2023/12/09 10:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳聖文
論文名稱:在鋁箔上成長氧化鋅奈米異質結構於光催化降解之應用
論文名稱(外文):Zinc Oxide Nano-Heterostructures Grown on Aluminum Foil for the Application of Photocatalytic Degradation
指導教授:張育誠張育誠引用關係
口試委員:陳協志駱安亞
口試日期:2022-07-20
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:100
中文關鍵詞:濕式化學法氧化鋅奈米片光催化降解甲基藍氧化鋅/硫化鎘奈米異質結構對位乙醯氨基酚
外文關鍵詞:wet chemical methodZnO nanosheetsphotocatalytic degradationmethylene blueZnO/CdS nano-heterostructuresacetaminophen
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
  本研究利用濕式化學法於鋁箔紙上成長氧化鋅奈米片,鋁箔相較其他材料便宜,並將其用於光催化降解有機汙染物之應用。研究中探討在不同氧化鋅反應前驅物濃度下,所製備氧化鋅奈米片的表面形貌、晶體結構及元素組成,並在紫外光的照射下,針對不同氧化鋅反應前驅物濃度下,所製備氧化鋅奈米片於光催化降解甲基藍。此結果證實在氧化鋅反應前驅物濃度為50 mM時,所製備氧化鋅奈米片為光催化降解的最佳參數。後續針對於此氧化鋅奈米片進行循環測試及捕捉劑測試,藉以了解材料的穩定性及反應機制。
  後續再藉由濕式化學法與氧化鋅奈米片上沉積硫化鎘奈米結構進而形成氧化鋅/硫化鎘奈米異質結構,並將其應用於光催化降解對位乙醯氨基酚。在研究中也針對於氧化鋅/硫化鎘奈米異質結構的表面形貌、晶體結構及元素組成進行分析。此外在紫外光的照射下,測試不同硫化鎘反應前驅物濃度與反應時間於製備氧化鋅/硫化鎘奈米異質結構在光催化降解對位乙醯氨基酚之影響進行深入研究與探討。

Zinc Oxide (ZnO) nanosheets can be grown on the aluminum foil by wet chemical method and applied to photocatalytic degradation of organic pollutants. The study discussed the surface morphology, crystal structure, and elemental composition of the prepared ZnO nanosheets under different ZnO precursor concentrations. ZnO nanosheets with different concentrations of ZnO reaction precursors were used to evaluate the photocatalytic efficiency of degradation of methylene blue under ultraviolet light irradiation. This result confirms that the ZnO nanosheets are the best parameters for photocatalytic degradation at the ZnO reaction precursor concentration of 50 mM.
Subsequently, cadmium sulfide (CdS) nanostructures were deposited on the ZnO nanosheets by wet chemical method to form ZnO/CdS nano-heterostructures, which were applied to photocatalytic degradation of acetaminophen. The surface morphology, crystal structure, and elemental composition of the ZnO/CdS nano-heterostructures were also analyzed. In addition, ZnO/CdS nano-heterostructures with different concentrations of CdS precursors and reaction times were used to evaluate the photocatalytic efficiency of degradation of acetaminophen under ultraviolet light irradiation.

摘要 I
Abstract II
圖目錄 VII
表目錄 XI
第一章 序論 1
1.1研究背景 1
1.2研究動機與目的 2
第二章 文獻回顧 4
2.1 奈米材料技術 4
2.1.1 奈米材料的簡介 4
2.1.2 奈米材料的製備 8
2.1.3 奈米材料的應用 10
2.2 氧化鋅 11
2.2.1 氧化鋅介紹 11
2.2.2 氧化鋅的光學性質 14
2.2.3 一維氧化鋅奈米結構的合成方式 15
2.3 硫化鎘 25
2.3.1硫化鎘介紹 25
2.4 光催化降解簡介 27
2.4.1常見有機汙染物的處理法 29
第三章 研究方法 30
3.1實驗藥品與設備 30
3.1.1實驗藥品 30
3.1.2實驗設備 32
3.1.3分析儀器 33
3.2 以鋁箔作為基材成長氧化鋅奈米結構 43
3.2.1 在鋁箔上成長氧化鋅奈米結構 43
3.2.2 製備氧化鋅/硫化鎘奈米異質結構 46
3.3 光催化降解實驗 48
3.3.1不同濃度所製備氧化鋅奈米結構之光催化降解測試 48
3.3.2 光催化降解循環測試 49
3.3.3 光催化降解之捕捉劑測試 49
第四章 結果與討論 50
4.1 氧化鋅奈米結構分析 50
4.1.1 表面形貌的分析 50
4.1.2 微結構的分析 52
4.1.3 晶體結構的分析 54
4.1.4 表面元素組成及化學狀態的分析 56
4.1.5 光致放光特性的分析 58
4.1.6 氧化鋅奈米結構於光催化降解之應用 59
4.1.6.1光催化降解甲基藍 59
4.1.6.2 捕捉劑的分析 62
4.1.6.3 光催化降解普拿疼 64
4.2氧化鋅/硫化鎘奈米異質結構分析 66
4.2.1 表面形貌的分析 66
4.2.2 微結構的分析 68
4.2.3 晶體結構的分析 70
4.2.4 光致放光特性的分析 72
4.2.5 氧化鋅/硫化鎘奈米異質結構於光催化降解之應用 73
4.2.5.1光催化降解普拿疼 73
第五章 結論 77
5.1氧化鋅奈米結構於光催化降解之應用 77
5.2氧化鋅/硫化鎘奈米異質結構於光催化降解之應用 78
第六章 參考資料 79


[1]Liu, B., Lin, M., & Li, H. (2010). Potential of SERS for rapid detection of melamine and cyanuric acid extracted from milk. Sensing and Instrumentation for Food Quality and Safety, 4(1), 13-19.
[2]Moisoiu, V., Iancu, S. D., Stefancu, A., Moisoiu, T., Pardini, B., Dragomir, M. P., ... & Leopold, N. (2021). SERS liquid biopsy: An emerging tool for medical diagnosis. Colloids and Surfaces B: Biointerfaces, 208, 112064.
[3]Tian, C., Zhao, L., Zhu, J., & Zhang, S. (2021). Ultrasensitive detection of trace Hg2+ by SERS aptasensor based on dual recycling amplification in water environment. Journal of Hazardous Materials, 416, 126251.
[4]Al Balushi, B. S., Al Marzouqi, F., Al Wahaibi, B., Kuvarega, A. T., Al Kindy, S. M., Kim, Y., & Selvaraj, R. (2018). Hydrothermal synthesis of CdS sub-microspheres for photocatalytic degradation of pharmaceuticals. Applied Surface Science, 457, 559-565.
[5]Kaur, J., & Singhal, S. (2014). Facile synthesis of ZnO and transition metal doped ZnO nanoparticles for the photocatalytic degradation of Methyl Orange. Ceramics international, 40(5), 7417-7424.
[6]宗成慶. (2013). 統計自然語言處理(第二版)
[7]Ghosh, A., De, C. K., Chatterjee, T., Das, A., Roy, D., Routh, T., & Mandal, P. K. (2021). Correlation between size of nano-aggregates and excitation wavelength dependent fluorescence emission in room temperature ionic liquids: A case study with emim [FAP]. Chemical Physics Impact, 3, 100054.
[8]Konishi, T., Kiguchi, M., & Murakoshi, K. (2008). Stable iron-group metal nano contact showing quantized conductance in solution. Surface science, 602(13), 2333-2336.
[9]Krans, J. M., Van Ruitenbeek, J. M., Fisun, V. V., Yanson, I. K., & De Jongh, L. A. J. (1995). The signature of conductance quantization in metallic point contacts. Nature, 375(6534), 767-769.
[10]Sandelic, M., Peyghami, S., Sangwongwanich, A., & Blaabjerg, F. (2022). Reliability aspects in microgrid design and planning: Status and power electronics-induced challenges. Renewable and Sustainable Energy Reviews, 159, 112127.
[11]Markovich, G., Collier, C. P., Henrichs, S. E., Remacle, F., Levine, R. D., & Heath, J. R. (1999). Architectonic quantum dot solids. Accounts of Chemical Research, 32(5), 415-423.
[12]Chen, J., Reed, M. A., Rawlett, A. M., & Tour, J. M. (1999). Large on-off ratios and negative differential resistance in a molecular electronic device. science, 286(5444), 1550-1552.
[13]Papadopoulos, C., Rakitin, A., Li, J., Vedeneev, A. S., & Xu, J. M. (2000). Electronic transport in Y-junction carbon nanotubes. Physical Review Letters, 85(16), 3476.
[14]Zhu, J., Zhang, P., Ding, J., Dong, Y., Cao, Y., Dong, W., ... & Camaiti, M. (2021). Nano Ca (OH) 2: A review on synthesis, properties and applications. Journal of Cultural Heritage, 50, 25-42.
[15]Sangwan, A., & Jornet, J. M. (2021). Beamforming optical antenna arrays for nano-bio sensing and actuation applications. Nano Communication Networks, 29, 100363.
[16]Bayat, F., & Tajalli, H. (2020). Nanosphere lithography: the effect of chemical etching and annealing sequence on the shape and spectrum of nano-metal arrays. Heliyon, 6(2), e03382.
[17]Mizutani, S., Murata, M., Taniai, N., Sukegawa, M., Nakata, R., Furuki, H., & Yoshida, H. (2020). Förster resonance energy transfer (FRET)-Labeled nanoprobe enables real-time diagnosis of pancreatic juice activation due to postoperative pancreatic fistula. Pancreatology, 20(5), 960-967.
[18]Cho, S., Kim, W., Hong, J., & Hong, J. P. (2021). One-dimensional nano-structured copper sulfide electrodes for efficient energy storage by surface activation and corrosion. Applied Surface Science, 546, 149006.
[19]Zhuiykov, S., Kawaguchi, T., Hai, Z., Akbari, M. K., & Heynderickx, P. M. (2017). Interfacial engineering of two-dimensional nano-structured materials by atomic layer deposition. Applied Surface Science, 392, 231-243.
[20]Kondo, T., & Kasai, W. (2014). Autonomous bottom-up fabrication of three-dimensional nano/microcellulose honeycomb structures, directed by bacterial nanobuilder. Journal of bioscience and bioengineering, 118(4), 482-487.
[21]Shi, J., & Xu, B. (2015). Nanoscale assemblies of small molecules control the fate of cells. Nano Today, 10(5), 615-630.
[22]上海市政工程設計研究總院(2007) 245.
[23]Afzali, R., Ebrahimian, N., & Eghbalifar, B. (2016). Quantum information aspects on bulk and nano interacting Fermi system: A spin-space density matrix approach. Physics Letters A, 380(41), 3394-3403.
[24]Depeursinge, A., Racoceanu, D., Iavindrasana, J., Cohen, G., Platon, A., Poletti, P. A., & Müller, H. (2010). Fusing visual and clinical information for lung tissue classification in high-resolution computed tomography. Artificial intelligence in medicine, 50(1), 13-21.
[25]Dai, H. L., & Wang, L. (2015). Surface effect on the pull-in instability of cantilevered nano-switches based on a full nonlinear model. Physica E: Low-dimensional Systems and Nanostructures, 73, 141-147.
[26]Fakhrabadi, M. M. S. (2016). Prediction of small-scale effects on nonlinear dynamic behaviors of carbon nanotube-based nano-resonators using consistent couple stress theory. Composites Part B: Engineering, 88, 26-35.
[27]Sheu, C. R., Wang, T. J., & Lin, C. H. (2021). Homeotropic liquid crystal alignments through periodically unidirectional nano-wedges patterned by nanoimprint lithography. Micro and Nano Engineering, 12, 100090.
[28]Zarrabi, F. B., & Moghadasi, M. N. (2017). Investigated the Fano resonance in the nano ring arrangement. Optik, 138, 80-86.
[29]Shi, L., Wang, J., Li, N., & Lin, S. (2017). Direct synthesis of monolithic nano-sized ZSM-5 aggregates possessing ordered mesoporosity by controlling arrangement of nanoparticles. Journal of Alloys and Compounds, 695, 2488-2498.
[30]Prasad, U. S., Mishra, R. S., & Das, R. K. (2021). Experimental studies of vapour compression refrigeration system with eco-Friendly primary refrigerant and brine mixed with nano particles as secondary refrigerant. Materials Today: Proceedings, 45, 3857-3859.
[31]Weber, A., Remfort, R., Woehrl, N., Assenmacher, W., & Schulz, S. (2015). Chemical vapor deposition of Si/SiC nano-multilayer thin films. Thin Solid Films, 593, 44-52.
[32]He, D., Hao, H., Chen, D., Lu, J., Zhong, L., Chen, R., ... & Luo, Y. (2016). Rapid synthesis of nano-scale CeO2 by microwave-assisted sol–gel method and its application for CH3SH catalytic decomposition. Journal of environmental chemical engineering, 4(1), 311-318.
[33]Li, X., Zhang, X., Li, L., Huang, L., Zhang, W., Ye, J., & Hong, J. (2016). Preparation of nano-ZnO/regenerated cellulose composite particles via co-gelation and low-temperature hydrothermal synthesis. Materials Letters, 175, 122-125.
[34]Ashar, A., Bhatti, I. A., Siddique, T., Ibrahim, S. M., Mirza, S., Bhutta, Z. A., ... & Mohsin, M. (2021). Integrated hydrothermal assisted green synthesis of ZnO nano discs and their water purification efficiency together with antimicrobial activity. Journal of Materials Research and Technology, 15, 6901-6917.
[35]Raja, A., Selvakumar, K., Swaminathan, M., & Kang, M. (2021). Redox additive based rGO-Dy2WO6-ZnO nanocomposite for enhanced electrochemical supercapacitor applications. Synthetic Metals, 276, 116753.
[36]R.Feynman, F.Voyage, 奈米材料在生活上的應用, (2020) 12–16.
[37]Jeong, J. S., Lee, J. Y., Cho, J. H., Lee, C. J., An, S. J., Yi, G. C., & Gronsky, R. (2005). Growth behaviour of well-aligned ZnO nanowires on a Si substrate at low temperature and their optical properties. Nanotechnology, 16(10), 2455.
[38]Wang, D., Chu, X., & Gong, M. (2007). Hydrothermal growth of ZnO nanoscrewdrivers and their gas sensing properties. Nanotechnology, 18(18), 185601.
[39]Kong, X. Y., & Wang, Z. L. (2003). Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano letters, 3(12), 1625-1631.
[40]Kong, X. Y., Ding, Y., Yang, R., & Wang, Z. L. (2004). Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science, 303(5662), 1348-1351.
[41]Buchine, B. A., Hughes, W. L., Degertekin, F. L., & Wang, Z. L. (2006). Bulk acoustic resonator based on piezoelectric ZnO belts. Nano letters, 6(6), 1155-1159.
[42]Gao, P. X., Ding, Y., Mai, W., Hughes, W. L., Lao, C., & Wang, Z. L. (2005). Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science, 309(5741), 1700-1704.
[43]Chang, Y. C., & Chen, L. J. (2007). ZnO nanoneedles with enhanced and sharp ultraviolet cathodoluminescence peak. The Journal of Physical Chemistry C, 111(3), 1268-1272.
[44]Tak, Y., & Yong, K. (2005). Controlled growth of well-aligned ZnO nanorod array using a novel solution method. The journal of physical chemistry B, 109(41), 19263-19269.
[45]Wang, Z. L. (2007). The new field of nanopiezotronics. Materials today, 10(5), 20-28.
[46]Zhou, J., Xu, N. S., & Wang, Z. L. (2006). Dissolving behavior and stability of ZnO wires in biofluids: a study on biodegradability and biocompatibility of ZnO nanostructures. Advanced Materials, 18(18), 2432-2435.
[47]Wang, Z. L. (2004). Zinc oxide nanostructures: growth, properties and applications. Journal of physics: condensed matter, 16(25), R829.
[48]Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M., Doğan, S., ... & Morkoç, A. H. (2005). A comprehensive review of ZnO materials and devices. Journal of applied physics, 98(4), 11.
[49]Agulto, V. C., Empizo, M. J. F., Shinohara, K., Inguito, J. M. L., Magallanes, B. J., Nalayog, M. B., ... & Sarukura, N. (2021). Low-threshold amplified UV emission of optically pumped ZnO-polymer nanocomposites. Journal of Crystal Growth, 573, 126328.
[50]Dai, K., Ying, M., Lian, J., Shi, Y., Cao, Z., Song, H., ... & Zhang, C. (2019). Optical properties of polar thin films: ZnO (0001) and ZnO (000–1) on sapphire substrate. Optical Materials, 94, 272-276.
[51]Thabit, H. A., & Kabir, N. A. (2018). The study of X-ray effect on structural, morphology and optical properties of ZnO nanopowder. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 436, 278-284.
[52]Dong, H., Zhou, B., Li, J., Zhan, J., & Zhang, L. (2017). Ultraviolet lasing behavior in ZnO optical microcavities. Journal of Materiomics, 3(4), 255-266.
[53]Gu, Y., Kuskovsky, I. L., Yin, M., O’Brien, S., & Neumark, G. F. (2004). Quantum confinement in ZnO nanorods. Applied physics letters, 85(17), 3833-3835.
[54]Shalish, I., Temkin, H., & Narayanamurti, V. (2004). Size-dependent surface luminescence in ZnO nanowires. Physical Review B, 69(24), 245401.
[55]PRENSKY, H. (1971). Conference on the Biology of the Human Dental Pulp. International Endodontic Journal, 5(1), 10-15.
[56]Huang, M. H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., ... & Yang, P. (2001). Room-temperature ultraviolet nanowire nanolasers. science, 292(5523), 1897-1899.
[57]Davoodabadi, A., & Ghasemi, H. (2021). Evaporation in nano/molecular materials. Advances in Colloid and Interface Science, 290, 102385.
[58]Tugwell-Wootton, T., Skrzypek, G., Dogramaci, S., McCallum, J., & Grierson, P. F. (2020). Soil moisture evaporative losses in response to wet-dry cycles in a semiarid climate. Journal of Hydrology, 590, 125533.
[59]Mehr, A. K., Meymian, M. R. Z., & Mehr, A. K. (2018). Nanoindentation and nanoscratch studies of submicron nanostructured Ti/TiCrN bilayer films deposited by RF-DC co-sputtering method. Ceramics International, 44(17), 21825-21834.
[60]Lu, J. G., Chang, P., & Fan, Z. (2006). Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications. Materials Science and Engineering: R: Reports, 52(1-3), 49-91.
[61]Meyerson, B. S. (1986). Low‐temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition. Applied Physics Letters, 48(12), 797-799.
[62]Chang, Y. C. (2014). ZnO nanopinecone arrays with enhanced photocatalytic performance in sunlight. RSC advances, 4(39), 20273-20280.
[63]Heo, S. N., Ahmed, F., & Koo, B. H. (2014). Growth temperature dependent properties of ZnO nanorod arrays on glass substrate prepared by wet chemical method. Ceramics International, 40(4), 5467-5471.
[64]Chen, C. Y., Tseng, T. K., Tsay, C. Y., & Lin, C. K. (2008). Formation of irregular nanocrystalline CeO2 particles from acetate-based precursor via spray pyrolysis. Journal of Materials Engineering and Performance, 17(1), 20-24.
[65]Hadi, I. H., Khashan, K. S., & Sulaiman, D. (2021). Cadmium sulphide (CdS) nanoparticles: Preparation and characterization. Materials Today: Proceedings, 42, 3054-3056.
[66]Jayaramaiah, J. R., Jayanth, V., & Shamanth, R. (2020). Structural elucidation and optical analysis on europium doped cadmium sulphide nano thin films. Optik, 208, 164079.
[67]Gupta, S. M., & Tripathi, M. (2011). A review of TiO2 nanoparticles. chinese science bulletin, 56(16), 1639-1657.
[68]Shangguan, W. (2007). Hydrogen evolution from water splitting on nanocomposite photocatalysts. Science and Technology of Advanced Materials, 8(1-2), 76-81.
[69]Hsieh, P. T., Chen, Y. C., Kao, K. S., & Wang, C. M. (2008). Luminescence mechanism of ZnO thin film investigated by XPS measurement. Applied Physics A, 90(2), 317-321.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊