|
[1]Liu, B., Lin, M., & Li, H. (2010). Potential of SERS for rapid detection of melamine and cyanuric acid extracted from milk. Sensing and Instrumentation for Food Quality and Safety, 4(1), 13-19. [2]Moisoiu, V., Iancu, S. D., Stefancu, A., Moisoiu, T., Pardini, B., Dragomir, M. P., ... & Leopold, N. (2021). SERS liquid biopsy: An emerging tool for medical diagnosis. Colloids and Surfaces B: Biointerfaces, 208, 112064. [3]Tian, C., Zhao, L., Zhu, J., & Zhang, S. (2021). Ultrasensitive detection of trace Hg2+ by SERS aptasensor based on dual recycling amplification in water environment. Journal of Hazardous Materials, 416, 126251. [4]Al Balushi, B. S., Al Marzouqi, F., Al Wahaibi, B., Kuvarega, A. T., Al Kindy, S. M., Kim, Y., & Selvaraj, R. (2018). Hydrothermal synthesis of CdS sub-microspheres for photocatalytic degradation of pharmaceuticals. Applied Surface Science, 457, 559-565. [5]Kaur, J., & Singhal, S. (2014). Facile synthesis of ZnO and transition metal doped ZnO nanoparticles for the photocatalytic degradation of Methyl Orange. Ceramics international, 40(5), 7417-7424. [6]宗成慶. (2013). 統計自然語言處理(第二版) [7]Ghosh, A., De, C. K., Chatterjee, T., Das, A., Roy, D., Routh, T., & Mandal, P. K. (2021). Correlation between size of nano-aggregates and excitation wavelength dependent fluorescence emission in room temperature ionic liquids: A case study with emim [FAP]. Chemical Physics Impact, 3, 100054. [8]Konishi, T., Kiguchi, M., & Murakoshi, K. (2008). Stable iron-group metal nano contact showing quantized conductance in solution. Surface science, 602(13), 2333-2336. [9]Krans, J. M., Van Ruitenbeek, J. M., Fisun, V. V., Yanson, I. K., & De Jongh, L. A. J. (1995). The signature of conductance quantization in metallic point contacts. Nature, 375(6534), 767-769. [10]Sandelic, M., Peyghami, S., Sangwongwanich, A., & Blaabjerg, F. (2022). Reliability aspects in microgrid design and planning: Status and power electronics-induced challenges. Renewable and Sustainable Energy Reviews, 159, 112127. [11]Markovich, G., Collier, C. P., Henrichs, S. E., Remacle, F., Levine, R. D., & Heath, J. R. (1999). Architectonic quantum dot solids. Accounts of Chemical Research, 32(5), 415-423. [12]Chen, J., Reed, M. A., Rawlett, A. M., & Tour, J. M. (1999). Large on-off ratios and negative differential resistance in a molecular electronic device. science, 286(5444), 1550-1552. [13]Papadopoulos, C., Rakitin, A., Li, J., Vedeneev, A. S., & Xu, J. M. (2000). Electronic transport in Y-junction carbon nanotubes. Physical Review Letters, 85(16), 3476. [14]Zhu, J., Zhang, P., Ding, J., Dong, Y., Cao, Y., Dong, W., ... & Camaiti, M. (2021). Nano Ca (OH) 2: A review on synthesis, properties and applications. Journal of Cultural Heritage, 50, 25-42. [15]Sangwan, A., & Jornet, J. M. (2021). Beamforming optical antenna arrays for nano-bio sensing and actuation applications. Nano Communication Networks, 29, 100363. [16]Bayat, F., & Tajalli, H. (2020). Nanosphere lithography: the effect of chemical etching and annealing sequence on the shape and spectrum of nano-metal arrays. Heliyon, 6(2), e03382. [17]Mizutani, S., Murata, M., Taniai, N., Sukegawa, M., Nakata, R., Furuki, H., & Yoshida, H. (2020). Förster resonance energy transfer (FRET)-Labeled nanoprobe enables real-time diagnosis of pancreatic juice activation due to postoperative pancreatic fistula. Pancreatology, 20(5), 960-967. [18]Cho, S., Kim, W., Hong, J., & Hong, J. P. (2021). One-dimensional nano-structured copper sulfide electrodes for efficient energy storage by surface activation and corrosion. Applied Surface Science, 546, 149006. [19]Zhuiykov, S., Kawaguchi, T., Hai, Z., Akbari, M. K., & Heynderickx, P. M. (2017). Interfacial engineering of two-dimensional nano-structured materials by atomic layer deposition. Applied Surface Science, 392, 231-243. [20]Kondo, T., & Kasai, W. (2014). Autonomous bottom-up fabrication of three-dimensional nano/microcellulose honeycomb structures, directed by bacterial nanobuilder. Journal of bioscience and bioengineering, 118(4), 482-487. [21]Shi, J., & Xu, B. (2015). Nanoscale assemblies of small molecules control the fate of cells. Nano Today, 10(5), 615-630. [22]上海市政工程設計研究總院(2007) 245. [23]Afzali, R., Ebrahimian, N., & Eghbalifar, B. (2016). Quantum information aspects on bulk and nano interacting Fermi system: A spin-space density matrix approach. Physics Letters A, 380(41), 3394-3403. [24]Depeursinge, A., Racoceanu, D., Iavindrasana, J., Cohen, G., Platon, A., Poletti, P. A., & Müller, H. (2010). Fusing visual and clinical information for lung tissue classification in high-resolution computed tomography. Artificial intelligence in medicine, 50(1), 13-21. [25]Dai, H. L., & Wang, L. (2015). Surface effect on the pull-in instability of cantilevered nano-switches based on a full nonlinear model. Physica E: Low-dimensional Systems and Nanostructures, 73, 141-147. [26]Fakhrabadi, M. M. S. (2016). Prediction of small-scale effects on nonlinear dynamic behaviors of carbon nanotube-based nano-resonators using consistent couple stress theory. Composites Part B: Engineering, 88, 26-35. [27]Sheu, C. R., Wang, T. J., & Lin, C. H. (2021). Homeotropic liquid crystal alignments through periodically unidirectional nano-wedges patterned by nanoimprint lithography. Micro and Nano Engineering, 12, 100090. [28]Zarrabi, F. B., & Moghadasi, M. N. (2017). Investigated the Fano resonance in the nano ring arrangement. Optik, 138, 80-86. [29]Shi, L., Wang, J., Li, N., & Lin, S. (2017). Direct synthesis of monolithic nano-sized ZSM-5 aggregates possessing ordered mesoporosity by controlling arrangement of nanoparticles. Journal of Alloys and Compounds, 695, 2488-2498. [30]Prasad, U. S., Mishra, R. S., & Das, R. K. (2021). Experimental studies of vapour compression refrigeration system with eco-Friendly primary refrigerant and brine mixed with nano particles as secondary refrigerant. Materials Today: Proceedings, 45, 3857-3859. [31]Weber, A., Remfort, R., Woehrl, N., Assenmacher, W., & Schulz, S. (2015). Chemical vapor deposition of Si/SiC nano-multilayer thin films. Thin Solid Films, 593, 44-52. [32]He, D., Hao, H., Chen, D., Lu, J., Zhong, L., Chen, R., ... & Luo, Y. (2016). Rapid synthesis of nano-scale CeO2 by microwave-assisted sol–gel method and its application for CH3SH catalytic decomposition. Journal of environmental chemical engineering, 4(1), 311-318. [33]Li, X., Zhang, X., Li, L., Huang, L., Zhang, W., Ye, J., & Hong, J. (2016). Preparation of nano-ZnO/regenerated cellulose composite particles via co-gelation and low-temperature hydrothermal synthesis. Materials Letters, 175, 122-125. [34]Ashar, A., Bhatti, I. A., Siddique, T., Ibrahim, S. M., Mirza, S., Bhutta, Z. A., ... & Mohsin, M. (2021). Integrated hydrothermal assisted green synthesis of ZnO nano discs and their water purification efficiency together with antimicrobial activity. Journal of Materials Research and Technology, 15, 6901-6917. [35]Raja, A., Selvakumar, K., Swaminathan, M., & Kang, M. (2021). Redox additive based rGO-Dy2WO6-ZnO nanocomposite for enhanced electrochemical supercapacitor applications. Synthetic Metals, 276, 116753. [36]R.Feynman, F.Voyage, 奈米材料在生活上的應用, (2020) 12–16. [37]Jeong, J. S., Lee, J. Y., Cho, J. H., Lee, C. J., An, S. J., Yi, G. C., & Gronsky, R. (2005). Growth behaviour of well-aligned ZnO nanowires on a Si substrate at low temperature and their optical properties. Nanotechnology, 16(10), 2455. [38]Wang, D., Chu, X., & Gong, M. (2007). Hydrothermal growth of ZnO nanoscrewdrivers and their gas sensing properties. Nanotechnology, 18(18), 185601. [39]Kong, X. Y., & Wang, Z. L. (2003). Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano letters, 3(12), 1625-1631. [40]Kong, X. Y., Ding, Y., Yang, R., & Wang, Z. L. (2004). Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science, 303(5662), 1348-1351. [41]Buchine, B. A., Hughes, W. L., Degertekin, F. L., & Wang, Z. L. (2006). Bulk acoustic resonator based on piezoelectric ZnO belts. Nano letters, 6(6), 1155-1159. [42]Gao, P. X., Ding, Y., Mai, W., Hughes, W. L., Lao, C., & Wang, Z. L. (2005). Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science, 309(5741), 1700-1704. [43]Chang, Y. C., & Chen, L. J. (2007). ZnO nanoneedles with enhanced and sharp ultraviolet cathodoluminescence peak. The Journal of Physical Chemistry C, 111(3), 1268-1272. [44]Tak, Y., & Yong, K. (2005). Controlled growth of well-aligned ZnO nanorod array using a novel solution method. The journal of physical chemistry B, 109(41), 19263-19269. [45]Wang, Z. L. (2007). The new field of nanopiezotronics. Materials today, 10(5), 20-28. [46]Zhou, J., Xu, N. S., & Wang, Z. L. (2006). Dissolving behavior and stability of ZnO wires in biofluids: a study on biodegradability and biocompatibility of ZnO nanostructures. Advanced Materials, 18(18), 2432-2435. [47]Wang, Z. L. (2004). Zinc oxide nanostructures: growth, properties and applications. Journal of physics: condensed matter, 16(25), R829. [48]Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M., Doğan, S., ... & Morkoç, A. H. (2005). A comprehensive review of ZnO materials and devices. Journal of applied physics, 98(4), 11. [49]Agulto, V. C., Empizo, M. J. F., Shinohara, K., Inguito, J. M. L., Magallanes, B. J., Nalayog, M. B., ... & Sarukura, N. (2021). Low-threshold amplified UV emission of optically pumped ZnO-polymer nanocomposites. Journal of Crystal Growth, 573, 126328. [50]Dai, K., Ying, M., Lian, J., Shi, Y., Cao, Z., Song, H., ... & Zhang, C. (2019). Optical properties of polar thin films: ZnO (0001) and ZnO (000–1) on sapphire substrate. Optical Materials, 94, 272-276. [51]Thabit, H. A., & Kabir, N. A. (2018). The study of X-ray effect on structural, morphology and optical properties of ZnO nanopowder. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 436, 278-284. [52]Dong, H., Zhou, B., Li, J., Zhan, J., & Zhang, L. (2017). Ultraviolet lasing behavior in ZnO optical microcavities. Journal of Materiomics, 3(4), 255-266. [53]Gu, Y., Kuskovsky, I. L., Yin, M., O’Brien, S., & Neumark, G. F. (2004). Quantum confinement in ZnO nanorods. Applied physics letters, 85(17), 3833-3835. [54]Shalish, I., Temkin, H., & Narayanamurti, V. (2004). Size-dependent surface luminescence in ZnO nanowires. Physical Review B, 69(24), 245401. [55]PRENSKY, H. (1971). Conference on the Biology of the Human Dental Pulp. International Endodontic Journal, 5(1), 10-15. [56]Huang, M. H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., ... & Yang, P. (2001). Room-temperature ultraviolet nanowire nanolasers. science, 292(5523), 1897-1899. [57]Davoodabadi, A., & Ghasemi, H. (2021). Evaporation in nano/molecular materials. Advances in Colloid and Interface Science, 290, 102385. [58]Tugwell-Wootton, T., Skrzypek, G., Dogramaci, S., McCallum, J., & Grierson, P. F. (2020). Soil moisture evaporative losses in response to wet-dry cycles in a semiarid climate. Journal of Hydrology, 590, 125533. [59]Mehr, A. K., Meymian, M. R. Z., & Mehr, A. K. (2018). Nanoindentation and nanoscratch studies of submicron nanostructured Ti/TiCrN bilayer films deposited by RF-DC co-sputtering method. Ceramics International, 44(17), 21825-21834. [60]Lu, J. G., Chang, P., & Fan, Z. (2006). Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications. Materials Science and Engineering: R: Reports, 52(1-3), 49-91. [61]Meyerson, B. S. (1986). Low‐temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition. Applied Physics Letters, 48(12), 797-799. [62]Chang, Y. C. (2014). ZnO nanopinecone arrays with enhanced photocatalytic performance in sunlight. RSC advances, 4(39), 20273-20280. [63]Heo, S. N., Ahmed, F., & Koo, B. H. (2014). Growth temperature dependent properties of ZnO nanorod arrays on glass substrate prepared by wet chemical method. Ceramics International, 40(4), 5467-5471. [64]Chen, C. Y., Tseng, T. K., Tsay, C. Y., & Lin, C. K. (2008). Formation of irregular nanocrystalline CeO2 particles from acetate-based precursor via spray pyrolysis. Journal of Materials Engineering and Performance, 17(1), 20-24. [65]Hadi, I. H., Khashan, K. S., & Sulaiman, D. (2021). Cadmium sulphide (CdS) nanoparticles: Preparation and characterization. Materials Today: Proceedings, 42, 3054-3056. [66]Jayaramaiah, J. R., Jayanth, V., & Shamanth, R. (2020). Structural elucidation and optical analysis on europium doped cadmium sulphide nano thin films. Optik, 208, 164079. [67]Gupta, S. M., & Tripathi, M. (2011). A review of TiO2 nanoparticles. chinese science bulletin, 56(16), 1639-1657. [68]Shangguan, W. (2007). Hydrogen evolution from water splitting on nanocomposite photocatalysts. Science and Technology of Advanced Materials, 8(1-2), 76-81. [69]Hsieh, P. T., Chen, Y. C., Kao, K. S., & Wang, C. M. (2008). Luminescence mechanism of ZnO thin film investigated by XPS measurement. Applied Physics A, 90(2), 317-321.
|