|
1. 曾鈺涓(2010)。當代數位互動藝術之特質。國立交通大學,應用藝術研究所。 2. 楊景亮, et al. (2020)。基於 Attention-LSTM 的有載調容變壓器運行方式優化研究。 電網技術, 44(7),2449-2456。 3. 21c Museum Hotel(2000). Text Rain. Camille Utterback website. Retrieved December,10,2021, from http://camilleutterback.com/projects/text-rain/ 4. Bonnie Eisenman(2020). Is Processing Java? Bonnie Eisenman website. Retrieved December,10,2021, from https://blog.bonnieeisenman.com/blog/what-is-processing/ 5. Barron, J. L., Fleet, D. J., & Beauchemin, S. S. (1994). Performance of optical flow techniques. International journal of computer vision, 12(1), 43-77. 6. Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M. J., & Szeliski, R. (2011). A database and evaluation methodology for optical flow. International journal of computer vision, 92(1), 1-31. 7. Baradel, F., Wolf, C., & Mille, J. (2017). Human action recognition: Pose-based attention draws focus to hands. In Proceedings of the IEEE International Conference on Computer Vision Workshops (pp. 604-613). 8. Cao, Z., Simon, T., Wei, S. E., & Sheikh, Y. (2017). Realtime multi-person 2d pose estimation using part affinity fields. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7291-7299). 9. Cao, Z., Hidalgo, G., Simon, T., Wei, S. E., & Sheikh, Y. (2019). OpenPose: realtime multi-person 2D pose estimation using Part Affinity Fields. IEEE transactions on pattern analysis and machine intelligence, 43(1), 172-186. 10. Deng, X., Yang, S., Zhang, Y., Tan, P., Chang, L., & Wang, H. (2017). Hand3d: Hand pose estimation using 3d neural network. arXiv preprint arXiv:1704.02224. 11. Fan, Z., Zhao, X., Lin, T., & Su, H. (2018). Attention-based multiview re-observation fusion network for skeletal action recognition. IEEE Transactions on Multimedia, 21(2), 363-374. 12. Horn, B. K., & Schunck, B. G. (1981). Determining optical flow. Artificial intelligence, 17(1-3), 185-203.
13. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). 14. Kim, H. I., & Park, R. H. (2018). Residual LSTM attention network for object tracking. IEEE Signal Processing Letters, 25(7), 1029-1033. 15. Li, J., Zhang, S., & Huang, T. (2019, July). Multi-scale 3d convolution network for video based person re-identification. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 8618-8625). 16. Liu, J., Wang, G., Hu, P., Duan, L. Y., & Kot, A. C. (2017). Global context-aware attention lstm networks for 3d action recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1647-1656). 17. Luvizon, D. C., Picard, D., & Tabia, H. (2018). 2d/3d pose estimation and action recognition using multitask deep learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 5137-5146). 18. Park, S., Hwang, J., & Kwak, N. (2016, October). 3d human pose estimation using convolutional neural networks with 2d pose information. In European Conference on Computer Vision (pp. 156-169). Springer, Cham. 19. Pavllo, D., Feichtenhofer, C., Grangier, D., & Auli, M. (2019). 3d human pose estimation in video with temporal convolutions and semi-supervised training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 7753-7762). 20. Piper, Andrew(2012).Book Was There: Reading in Electronic Times. Chicago, IL and London: The University of Chicago Press 21. Song, S., Lan, C., Xing, J., Zeng, W., & Liu, J. (2018). Spatio-temporal attention-based LSTM networks for 3D action recognition and detection. IEEE Transactions on image processing, 27(7), 3459-3471. 22. Wang, Y., Huang, M., Zhu, X., & Zhao, L. (2016, November). Attention-based LSTM for aspect-level sentiment classification. In Proceedings of the 2016 conference on empirical methods in natural language processing (pp. 606-615). 23. Xiu, Y., Li, J., Wang, H., Fang, Y., & Lu, C. (2018). Pose Flow: Efficient online pose tracking. arXiv preprint arXiv:1802.00977. 24. Xiao, B., Wu, H., & Wei, Y. (2018). Simple baselines for human pose estimation and tracking. In Proceedings of the European conference on computer vision (ECCV) (pp. 466-481). 25. Xie, Y., Liang, R., Liang, Z., Huang, C., Zou, C., & Schuller, B. (2019). Speech emotion classification using attention-based LSTM. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 27(11), 1675-1685.
|