跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/03/31 16:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張育瑋
研究生(外文):CHANG, YU-WEI
論文名稱:3300 V 溝槽式閘極場截止型絕緣閘極雙極性電晶體結合分離浮接 P 柱設計改善導通電壓及短路能力與更高壓 4500 V 元件之研究與分析
論文名稱(外文):3300 V Up to 4500 V Insulated Gate Bipolar Transistor (IGBT) with Separate Floating P Pillar Design to Improvement On-state Voltage and Short Circuit Capability
指導教授:簡鳳佐簡鳳佐引用關係
指導教授(外文):CHIEN, FENG-TSO
口試委員:陳啟文邱顯欽
口試委員(外文):CHEN, CHII-WENCHIU, HSIEN-CHIN
口試日期:2022-07-11
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:103
中文關鍵詞:絕緣閘極雙極性電晶體功率元件導通電壓短路能力TCAD 模擬軟體3300 V
外文關鍵詞:Insulated Gate Bipolar TransistorIGBTPower DeviceOn-state VoltageShort Circuit Capability3300 VTCAD Simulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:82
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
絕緣閘雙極性電晶體 (Insulated Gate Bipolar Transistor, IGBT) 是中高功率電子產品中最常使用的開關元件,為了改善關斷損耗 (Eoff) 和導通電壓 (VCE(sat)) 之間的權衡,許多的技術被陸續提出,例如:場截止 (Field Stop, FS) 型 IGBT、載子儲存溝槽式閘極雙極性電晶體 (Carrier Stored Trench Gate Bipolar Transistor, CSTBT)、閘極注入增強型電晶體 (Injection Enhanced Gate Transistor, IEGT)…等,因為在導通時 IGBT 經常需承受很大的電流,若導通電壓大,則 IGBT 本身所消耗的功率也大,這不僅影響能源利用效率,同時對於本身的散熱也是一個大問題。
IGBT 另一重要指標為元件短路能力,在外接電路故障短路時,此時流經 IGBT 之電流即為該集極電壓下的飽和電流,為避免燒毀通常會設計保護電路,但是啟動保護需要時間,所以定義當 IGBT 可同時承受高電壓及高電流操作的時間越久,即為有更好的短路能力,而其中一種改善方法是想辦法降低元件的飽和電流,所以如何在提升短路能力的情況下同時保持低導通電壓成為學術界的一大研究重點。
過去國內論文較少對於高壓 IGBT 研究,尤其是對於 3300 V 級距的 IGBT 元件,由於此級距元件經常需要操作在較大的電壓電流,同樣的導通電壓對於元件的損耗值也會跟著放大,並且短路能力也會變得非常脆弱,為了改善此缺點本篇將提出新設計,並且研究新設計對於高壓元件能有多少改善能力,所以我們將 IGBT 元件設計在 3300 V 耐壓下,並且提出一新結構改善導通電壓及短路能力,最後我們利用模擬軟體 ISE-TCAD 進行各種特性研究及分析,並與傳統溝槽式閘極結構 IGBT 進行比較。
The insulated gate bipolar transistor (IGBT) is the most common-ly switching device used in medium and high power electronics. To improve the trade-off between the on-state voltage (VCE(sat)) and turn-off loss (Eoff), many research have been proposed, e.g., field stop (FS) IGBT, the carrier stored trench-gate bipolar transistor (CSTBT), the injection enhanced gate transistor (IEGT), etc. The IGBT often needs to withstand a large current when it is turned on. If the on-state volt-age is large, the power dissipation by the IGBT is also large. This not only affects the efficiency of energy, but also a big problem for its heat dissipation.
Another important point of IGBT is the short-circuit capability of the devices. When the external circuit is faulty and short circuited, the current through the IGBT is the saturation current at the collector voltage. Protection circuits are usually designed to avoid burnout, but it takes time to activate the protection. Therefore, it is defined that the longer the IGBT can withstand high voltage and high current opera-tion at the same time, the better the short circuit capability. The one improvement way is to reduce the saturation current of the device. How to keep low on-state voltage while improving the short circuit capability has become major research for academia.
In the past, there were few domestic papers on high-voltage IGBT research, especially for IGBT device with a 3300 V. Due to the device often operation at a large voltage and current, the power loss of the same on-state voltage for the device will also be amplified, and the short circuit capability will also become very weak. To research how much the proposed new design can improve in the high voltage devic-es, we designed an IGBT under 3300 V, and proposed a new structure to improve the on-state voltage and short-circuit capability. Finally, we use the ISE-TCAD simulation to research and analysis its charac-teristics and compare with traditional trench gate IGBT.
誌謝 i
摘要 iii
Abstract v
目錄 vii
圖目錄 viii
表目錄 x
第一章 緒論 1
1-1 研究背景與動機 1
1-2 IGBT 應用範圍 4
1-3 論文架構 6
第二章 IGBT技術發展與文獻回顧 7
2-1 前言 7
2-2 各功率元件比較 8
2-3 IGBT 特性與運作原理 12
2-3.1 IGBT 工作原理 12
2-3.2 續流二極體 (Freewheeling Diode, FWD) 13
2-3.3 導通特性 (On-state Characteristics) 14
2-3.4 耐壓特性 (Forward Blocking Characteristics) 15
2-3.5 開關特性 (Switching Characteristics) 16
2-3.6 短路能力 (Short Circuit Capability) 23
2-3.7 崩潰機制 (Breakdown) 24
2-3.8 閂鎖效應 (Latch-up) 25
2-3.9 額定集極電流 (Collector Current Rating , IC) 26
2-4 IGBT 表面閘極結構發展 29
2-4.1 平面式結構 (Planar) IGBT 30
2-4.2 溝槽式結構 (Trench) IGBT 33
2-5 IGBT 背部集極端結構發展 35
2-5.1 穿透型 (Punch Through, PT) IGBT 36
2-5.2 非穿透型 (Non Punch Through, NPT) IGBT 38
2-5.3 場截止型 (Field Stop, FS) IGBT 40
2-5.4 逆向導通 (Reverse Conducting, RC) IGBT 43
2-6 IGBT 歷史文獻回顧 44
2-6.1 電子注入增強型 IGBT (Injection Enhanced IGBT, IEGT) 45
2-6.2 溝槽式載子儲存 IGBT (Carrier Stored Trench Bipolar Transistor, CSTBT) 46
2-6.3 具有雙閘極之溝槽式 IGBT (Double Gate Trench IGBT, DG-TIGBT) 47
2-6.4 溝槽式高導電度 IGBT (Trench High Conductivity, HiGT) 49
第三章 新式 IGBT 元件設計與模擬分析 51
3-1 前言 51
3-2 元件結構設計 52
3-3 元件模擬製程步驟 53
3-4 P 柱設計結構比較 59
3-5 P 柱設計調變分析 66
3-6 傳統溝槽式與新式元件分析比較 88
3-7 終端區結構設計 91
第四章 結論 95
參考文獻 96


[1] 王怡婷, “600 V 溝渠式逆向導通絕緣閘雙極性電晶體設計與分析,” 國立中央大學電機工程學系碩士論文, 2012。
[2] 簡潔, “600-V 溝渠式絕緣閘雙極性電晶體設計、分析與短路能力探討,” 國立中央大學電機工程學系碩士論文, 2013。
[3] B. J. Baliga, M. S. Adler, P. V. Gray, R. P. Love and N. Zommer, “The insulated gate rectifier (IGR): a new power switching device,” in Proc. IEEE Int. Electron Devices Meeting, pp. 264-267, 1982.
[4] B. J. Baliga, M. S. Adler, R. P. Love, P. V. Gray, and N. D. Zom-mer, “The insulated gate transistor: A new three-terminal MOS-controlled bipolar power device,” IEEE Trans. Electron Devices, vol. 31, no. 6, pp. 821-828, 1984.
[5] K. S. Oh, “Application Note 9016: IGBT Basic 1,” Fairchild Sem-iconductor, Feb. 2001.
[6] B. J. Baliga, “The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor,” Elsevier Science, 2015.
[7] R. Matsui et al., “Modeling of reverse recovery effect for embed-ded diode in SJ MOSFET,” IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), pp. 375-378, 2015.
[8] Z. Lin, S. Hu, Q. Yuan, X. Zhou and F. Tang, “Low-Reverse Re-covery Charge Superjunction MOSFET With a p-Type Schottky Body Diode,” IEEE Electron Device Letters, vol. 38, no. 8, pp. 1059-1062, 2017.
[9] O. Häberlen et al., “95% DC-DC conversion efficiency by novel trench power MOSFET with dual channel structure to cut body diode losses,” IEEE 27th International Symposium on Power Sem-iconductor Devices & ICs (ISPSD), pp. 65-68, 2015.
[10] S. Yang, A. Bryant, P. Mawby, D. Xiang, L. Ran and P. Tavner, “An industry-based survey of reliability in power electronic con-verters”, IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1441-1451, May.-June. 2011.
[11] H. Oh, B. Han, P. McCluskey, C. Han and B. D. Youn, “Physics-of-failure condition monitoring and prognostics of insulated gate bipolar transistor modules: A review”, IEEE Trans. Power Elec-tron., vol. 30, no. 5, pp. 2413-2426, May 2015.
[12] Y. Yang and P. Zhang, “In Situ Junction Temperature Monitoring and Bond Wire Detecting Method Based on IGBT and FWD on-State Voltage Drops,” IEEE Transactions on Industry Applications, vol. 58, no. 1, pp. 576-587, Jan.-Feb. 2022.
[13] M. Huang, B. Gao, Z. Yang, L. Lai and M. Gong, “A Carrier-Storage-Enhanced Superjunction IGBT With Ultralow Loss and On-State Voltage,” IEEE Electron Device Letters, vol. 39, no. 2, pp. 264-267, Feb. 2018.
[14] R. Chen, B. Yi and X. B. Chen, “Trench Shielded Planar Gate IGBT (TSPG-IGBT) With Self-Biased pMOS Realizing Both Low On-State Voltage and Low Saturation Current,” IEEE Journal of the Electron Devices Society, vol. 8, pp. 195-199, 2020.
[15] J. Zhu et al., “Investigation on the Breakdown Failure in Stripe Trench-Gate Field-Stop Insulated Bipolar Transistor With Low-Saturation Voltage,” IEEE Transactions on Device and Materials Reliability, vol. 16, no. 3, pp. 384-387, Sept. 2016.
[16] S. Castagno, R. D. Curry and E. Loree, “Analysis and Compari-son of a Fast Turn-On Series IGBT Stack and High-Voltage-Rated Commercial IGBTS,” IEEE Transactions on Plasma Science, vol. 34, no. 5, pp. 1692-1696, Oct. 2006.
[17] A. F. Guerrero-Guerrero, A. J. Ustariz-Farfan, H. E. Tacca and E. A. Cano-Plata, “IGBT Series Connection With Soft Switching and Power Recovery in Driver Power Supply,” IEEE Transactions on Power Electronics, vol. 34, no. 12, pp. 11679-11691, Dec. 2019.
[18] “IGBTs (Insulated Gate Bipolar Transistor) Application Note,” Toshiba Electronic Devices & Storage Corporation, 2018.
[19] Hanna Al Fahel, “Evaluate Power Device Efficiency with Double-Pulse Testing Using an AFG,” Electronic Design, Dec. 2019.
[20] R. Letor and G. Candeloro Aniceto, “Short circuit behavior of IGBTs correlated to the intrinsic device structure and on the ap-plication circuit,” IEEE Transactions on Industry Applications, vol. 31, no. 2, pp. 234-239, Mar.-Apr. 1995.
[21] S. Mohsenzade, M. Zarghany and S. Kaboli, “A Series Stacked IGBT Switch With Robustness Against Short-Circuit Fault for Pulsed Power Applications,” IEEE Transactions on Power Elec-tronics, vol. 33, no. 5, pp. 3779-3790, May. 2018.
[22] Y. Chen, W. Li, F. Iannuzzo, H. Luo, X. He and F. Blaabjerg, “In-vestigation and Classification of Short-Circuit Failure Modes Based on Three-Dimensional Safe Operating Area for High-Power IGBT Modules,” IEEE Transactions on Power Electronics, vol. 33, no. 2, pp. 1075-1086, Feb. 2018.
[23] Z. Wang, Z. Lin, W. Zeng, S. Hu and J. Zhou, “Comparison of Short-Circuit Safe Operating Areas Between the Conventional Field-Stop IGBT and the Superjunction Field-Stop IGBT,” IEEE Journal of the Electron Devices Society, vol. 10, pp. 146-151, 2022.
[24] P. Rose, D. Silber, A. Porst and F. Pfirsch, “Investigations on the stability of dynamic avalanche in IGBTs,” Proceedings of the 14th International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 165-168, 2002.
[25] M. Riccio, A. Irace, G. Breglio, P. Spirito, E. Napoli and Y. Mizu-no, “Electro-thermal instability in multi-cellular Trench-IGBTs in avalanche condition: Experiments and simulations,” IEEE 23rd International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 124-127, 2011.
[26] P. Spirito, G. Breglio, A. Irace, L. Maresca, E. Napoli and M. Ric-cio, “Physics of the Negative Resistance in the Avalanche I-V Curve of Field Stop IGBTs: Collector Design Rules for Improved Ruggedness,” IEEE Transactions on Electron Devices, vol. 61, no. 5, pp. 1457-1463, May. 2014.
[27] L. Benbahouche, A. Merabet and A. Zegadi, “A comprehensive analysis of failure mechanisms: Latch up and second breakdown in IGBT(IXYS) and improvement,” 19th International Conference on Microwaves, Radar & Wireless Communications, 2012.
[28] D. W. Brown, M. Abbas, A. Ginart, I. N. Ali, P. W. Kalgren and G. J. Vachtsevanos, “Turn-Off Time as an Early Indicator of Insulat-ed Gate Bipolar Transistor Latch-up,” IEEE Transactions on Power Electronics, vol. 27, no. 2, pp. 479-489, Feb. 2012.
[29] F. Yang et al., “A Novel IGBT Structure With Floating N-Doped Buried Layer in P-Base to Suppress Latch-Up,” IEEE Electron Device Letters, vol. 37, no. 9, pp. 1174-1177, Sept. 2016.
[30] STMicroelectronics Corporation, “AN4544 Application note IGBT datasheet tutorial,” Sept. 2014.
[31] L. Lu, A. Bryant, J. L. Hudgins, P. R. Palmer and E. Santi, “Phys-ics-Based Model of Planar-Gate IGBT Including MOS Side Two-Dimensional Effects,” IEEE Transactions on Industry Applications, vol. 46, no. 6, pp. 2556-2567, Nov.-Dec. 2010.
[32] H. -R. Chang and B. J. Baliga, “500-V n-channel insulated-gate bipolar transistor with a trench gate structure,” IEEE Transactions on Electron Devices, vol. 36, no. 9, pp. 1824-1829, Sept. 1989.
[33] S. Kyoung, J. Lee, S. Kwak, E. Kang and M. Y. Sung, “A Novel Trench IGBT With a Deep P+ Layer Beneath the Trench Emitter,” IEEE Electron Device Letters, vol. 30, no. 1, pp. 82-84, Jan. 2009.
[34] J. Wei, M. Zhang, H. Jiang, B. Li and K. J. Chen, “Gate Structure Design of SiC Trench IGBTs for Injection-Enhancement Effect,” IEEE Transactions on Electron Devices, vol. 66, no. 7, pp. 3034-3039, July. 2019.
[35] A. Nakagawa, “Theoretical Investigation of Silicon Limit Charac-teristics of IGBT,” IEEE International Symposium on Power Semi-conductor Devices and ICs (ISPSD), pp. 1-4, 2006.
[36] Chung-Hee Kim and Sang-Koo Chung, “Impurity profile effects of buffer layer on PT-IGBT characteristics,” IEEE Transactions on Electron Devices, vol. 50, no. 2, pp. 513-516, Feb. 2003.
[37] Y. Duan, F. Xiao, Y. Luo and F. Iannuzzo, “A Lumped-Charge Approach Based Physical SPICE-Model for High Power Soft-Punch Through IGBT,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 1, pp. 62-70, Mar. 2019.
[38] 林偉捷, “應用電子束輻射提昇絕緣閘雙極性電晶體切換速度之研究與分析,” 國立清華大學電子工程學系碩士論文, 2000。
[39] A. Elasser, V. Parthasarathy and D. A. Torrey, “A study of the in-ternal device dynamics of punch-through and nonpunch-through IGBTs under zero-current switching,” IEEE Transactions on Pow-er Electronics, vol. 12, no. 1, pp. 21-35, Jan. 1997.
[40] A. Balachandran et al., “Performance Evaluation of 3.3-kV Planar CIGBT in the NPT Technology With RTA Anode,” IEEE Transac-tions on Electron Devices, vol. 59, no. 5, pp. 1439-1444, May. 2012.
[41] T. Laska, M. Munzer, F. Pfirsch, C. Schaeffer and T. Schmidt, “The Field Stop IGBT (FS IGBT). A new power device concept with a great improvement potential,” 12th International Symposi-um on Power Semiconductor Devices & ICs (ISPSD), pp. 355-358, 2000.
[42] K. Ma, W. Zhang and W. T. Ng, “Novel Low Turn-Off Loss Trench-Gate FS-IGBT With a Hybrid p+/n Collector Structure,” IEEE Journal of the Electron Devices Society, vol. 7, pp. 677-681, 2019.
[43] R. Jin et al., “The Study on the 3300V Low Loss FS-IGBT,” 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE), pp. 746-749, 2019.
[44] Takahashi, Yamamoto, Aono and Minato, “1200V reverse con-ducting IGBT,” Proceedings of the 16th International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 133-136, 2004.
[45] H. Jiang et al., “A Snapback Suppressed Reverse-Conducting IGBT With a Floating p-Region in Trench Collector,” IEEE Elec-tron Device Letters, vol. 33, no. 3, pp. 417-419, Mar. 2012.
[46] E. M. Findlay and F. Udrea, “Reverse-Conducting Insulated Gate Bipolar Transistor: A Review of Current Technologies,” IEEE Transactions on Electron Devices, vol. 66, no. 1, pp. 219-231, Jan. 2019.
[47] X. Xu and Z. Chen, “Simulation Study of a Novel Full Turn-On RC-IGBT With Ultralow Energy Loss,” IEEE Electron Device Let-ters, vol. 40, no. 5, pp. 757-760, May. 2019.
[48] N. Iwamuro and T. Laska, “IGBT History, State-of-the-Art, and Future Prospects,” IEEE Transactions on Electron Devices, vol. 64, no. 3, pp. 741-752, Mar. 2017.
[49] M. Kitagawa, I. Omura, S. Hasegawa, T. Inoue and A. Nakagawa, “A 4500 V injection enhanced insulated gate bipolar transistor (IEGT) operating in a mode similar to a thyristor,” Proceedings of IEEE International Electron Devices Meeting, pp. 679-682, 1993.
[50] T. Inoue, H. Ninomiya, K. Sugiyama, K. Matsusihta, T. Ogura and H. Ohashi, “New collector design concept for 4.5 kV injection enhanced gate transistor (IEGT),” Proceedings of the 14th Interna-tional Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 49-52, 2002.
[51] J. Wei et al., “Ultrafast and Low-Turn-OFF Loss Lateral IEGT With a MOS-Controlled Shorted Anode,” IEEE Transactions on Electron Devices, vol. 66, no. 1, pp. 533-538, Jan. 2019.
[52] X. Liu, L. Wang, G. Liang and L. Qi, “An IEGT Model for Analyz-ing the High Current Turn-off Characteristics in DC Circuit Breaker Applications,” IEEE Access, vol. 8, pp. 131327-131339, 2020.
[53] H. Takahashi, H. Haruguchi, H. Hagino and T. Yamada, “Carrier stored trench-gate bipolar transistor (CSTBT)-a novel power de-vice for high voltage application,” 8th International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 349-352, 1996.
[54] T. Takahashi, Y. Tomomatsu and K. Sato, “CSTBT (III) as the next generation IGBT,” 20th International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 72-75, 2008.
[55] H. Xu, D. -H. Zhao, H. Zhu, Q. -Q. Sun and D. W. Zhang, “A pro-cess optimization method for carrier stored trench bipolar transis-tor (CSTBT) device,” IEEE 14th International Conference on ASIC (ASICON), pp. 1-4, 2021.
[56] Wesley Chih-Wei Hsu, F. Udrea, Ho-Tai Chen and Wei-Chieh Lin, “A novel double-gate Trench Insulated Gate Bipolar transistor with ultra-low on-state voltage,” 21st International Symposium on Power Semiconductor Devices & ICs (ISPSD), pp. 291-294, 2009.
[57] W. Chen et al., “Low Loss Insulated Gate Bipolar Transistor With Electron Injection (EI-IGBT),” IEEE Journal of the Electron De-vices Society, vol. 5, no. 4, pp. 275-282, July. 2017.
[58] Tiger Arai, S. Watanabe, K. Ishibashi, Y. Toyoda, T. Oda, K. Saito and M. Mori, “The Advanced Trench HiGT with Separate Float-ing p-Layer for Easy Controllability and Robustness,” Hitachi Re-search Laboratory, 2011.
[59] K. Oyama et al., “Novel 600-V trench high-conductivity IGBT (Trench HiGT) with short-circuit capability,” Proceedings of the 13th International Symposium on Power Semiconductor Devices & ICs (ISPSD), pp. 417-420, 2001.
[60] M. Mori et al., “A Trench-Gate High-Conductivity IGBT (HiGT) With Short-Circuit Capability,” IEEE Transactions on Electron Devices, vol. 54, no. 8, pp. 2011-2016, Aug. 2007.
[61] S. Watanabe et al., “1.7kV trench IGBT with deep and separate floating p-layer designed for low loss, low EMI noise, and high re-liability,” IEEE 23rd International Symposium on Power Semicon-ductor Devices and ICs (ISPSD), pp. 48-51, 2011.
[62] Y. Toyota et al., “Novel 3.3-kV advanced trench HiGT with low loss and low dv/dt noise,” 25th International Symposium on Pow-er Semiconductor Devices & ICs (ISPSD), pp. 29-32, 2013.
[63] X. Peng et al., “A Novel 3300V Trench IGBT with Hole Extrac-tion Structure for Low Power Loss,” 31st International Symposi-um on Power Semiconductor Devices and ICs (ISPSD), pp. 51-54, 2019.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊