跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/23 07:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張霆䨒
研究生(外文):CHANG, TING-YU
論文名稱:應用於5G智慧型手機之寬頻帶8天線陣列設計
論文名稱(外文):Wideband Eight-Antenna Array Designs for 5G Smartphone Application.
指導教授:沈昭元
指導教授(外文):SIM, CHOW-YEN-DESMOND
口試委員:黃定彝韓端勇
口試委員(外文):HUANG, TING-YIHAN, TUAN-YUNG
口試日期:2022-06-17
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:120
中文關鍵詞:第五代行動通訊多輸入多輸出系統開槽寬頻帶天線
外文關鍵詞:5th Generation Mobile Communication (5G)Muti-Input Muti-Output system (MIMO)Wideband Antennas
相關次數:
  • 被引用被引用:0
  • 點閱點閱:265
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出兩支寬頻帶的八天線陣列設計(提出天線A與提出天線B),適用於第五代新電信(Fifth Generation New Radio,簡稱5G NR)之行動通訊智慧型手機。提出天線A的操作頻帶可涵蓋5G新電信所提出之n77 (3.3–4.2 GHz)、n78 (3.3–3.8 GHz)、n79 (4.4–5 GHz)以及5G NR-U提出之n46 (5.15–5.925 GHz)頻帶,其中n46頻帶亦為無須授權之免執照國際資訊基礎建設(Unlicensed National Information Infrastructure, 簡稱U-NII)頻帶,也稱為LTE band-46頻帶,而n96頻帶亦同為WIFI 6E所屬之高頻帶範圍。提出天線B的操作頻帶可涵蓋5G NR所提出之n77 (3.3–4.2 GHz)、n78 (3.3–3.8 GHz)、n79 (4.4–5 GHz),及5G NR-U提出之n46 (5.15–5.925 GHz)、n96 (5.925–7.125 GHz)頻帶。
首先,提出天線A元件為一修正型的環形結構,此單天線元件藉由微帶線饋入,使其在3.2–6 GHz之間產生三個不同的環形模態,因此可涵蓋5G NR n77/n78/n79以及5G NR-U n46之頻帶,且單天線元件效率皆在70%以上。在八天線陣列之實作結果證明,其重疊6-dB頻寬皆能涵蓋5G NR n77/n78/n79以及5G NR-U n46之頻帶,並具有良好的隔離度(>10 dB),且天線總效率為40%–90%。最後提出天線A於8×8 MIMO系統擁有良好的MIMO性能,其中封包相關係數(Envelope Correlation Coefficient, 簡稱ECC)在操作頻帶內皆低於0.1,通道容量為37–40 bps/Hz。
提出天線B適用於5G智慧型手機之寬頻帶八天線陣列,其單天線元件為倒F型結構,並在元件內埋入一倒L型閉槽孔結構,藉由微帶線直接饋入,使其於3.3至7.2 GHz之間產生四個模態,可涵蓋5G NR n77/n78/n79 和5G NR-U n46/n96之頻帶,其天線效率皆在70%以上。從八天線陣列實作結果證明,相鄰兩天線之間的隔離度皆可大於11 dB,且各別天線效率皆為45%以上。封包相關係數在操作頻帶內皆低於0.1,且通道容量為38–41 bps/Hz,以此可知陣列性能表現良好。

This thesis proposes two broadband eight-antenna array designs (proposed antenna A and proposed antenna B) suitable for Fifth Generation New Radio (5G NR) smartphone applications. The operating band of proposed Antenna A can cover the 5G NR band n77 (3.3–4.2 GHz), n78 (3.3–3.8 GHz), n79 (4.4–5 GHz), and 5G NR-U (new radio unlicensed) band n46 (5.15–5.925 GHz). Notably, this 5 GHz unlicensed band (5G NR-U band n46) is included in the Unlicensed National Information Infrastructure (U-NII) frequency band, and it is also known as the LTE band-46. As for the n96 frequency band (5.925–7.125 GHz), it was also released recently but is included within the WIFI 6E frequency band. As for the proposed Antenna B, it can cover the 5G NR band n77, n78, and n79, as well as 5G NR-U band n46 and n96.
The Antenna A element is initially introduced and can be seen as a modified loop antenna element. By feeding this element via a microstrip line, it can generate three different loop modes between 3.2–6 GHz, which can cover the 5G NR n77/n78/n79 and 5G NR-U n46 bands, and the antenna efficiency of this element is above 70%. The modified loop antenna element is further arranged as an eight-antenna array, and the experimental results show that the overlapping 6-dB bandwidth can cover the frequency bands of 5G NR n77/n78/n79 and 5G NR-U n46 with good isolation (>10 dB), and the overall antenna efficiency is 40%–90%. From the simulation and experimental results, it can be proven that the proposed Antenna A has good MIMO performance in an 8×8 MIMO system. The Envelope Correlation Coefficient (ECC) is lower than 0.1 across the operating frequency, and the channel capacity is 37–40 bps/Hz.
The proposed Antenna B is a wideband eight-antenna array suitable for 5G smartphone applications. The array element is a modified inverted-F antenna (IFA) fed by a microstrip line, and an inverted L-shaped slot is loaded into the main radiating element of the modified IFA to induce four resonant modes that can cover 3.3–7.2 GHz. Therefore, the array element's operating frequency bands can well satisfy the desired 5G NR n77/n78/n79 and 5G NR-U n46/n96, and its corresponding antenna efficiency is above 70%. The proposed array element is further arranged as an eight-antenna array (proposed Antenna B), and the experimental results show that the isolation between any two adjacent antenna elements can be greater than 11 dB, and the efficiency of each antenna element is more than 45%. By observing the MIMO performances of the proposed Antenna B, the ECC is well below 0.1 across the operating frequency band, and the channel capacity is 38–41 bps/Hz, which shows that the MIMO performances of the proposed Antenna B are satisfactory.

誌 謝 i
摘 要 ii
Abstract iv
目 錄 vi
圖目錄 ix
表目錄 xii
縮寫及符號對照表 xiii
第一章 緒論 1
1.1 前言 1
1.2研究動機 6
1.3本文架構 7
第二章 修正型環形結構 8
2.1天線結構 8
2.2天線元件 10
2.2.1天線設計流程 10
2.2.2天線效能 11
2.2.3天線重要參數分析 15
2.3天線陣列 17
2.3.1天線陣列效能 19
2.3.2輻射效能 22
2.3.3 MIMO效能 28
2.3.4實務應用與探討 31
(a) 單手模式 32
(b) 雙手模式 34
(c) 電池影響之探討 36
(d) 實際應用探討之結論 38
2.4 效能比較 39
第三章 倒F形天線 41
3.1天線結構 41
3.2天線元件 43
3.2.1天線設計流程 43
3.2.2 天線效能 45
3.2.3 天線重要參數分析 49
(a) L1參數分析 49
(b) L2參數分析 50
(c) L3參數分析 51
(d)參數分析之結論 52
3.3天線陣列 53
3.3.1天線陣列效能 57
3.3.2輻射效能 60
3.3.3 MIMO效能 67
3.3.4 實務應用與探討 70
(a) 單手模式 71
(b) 雙手模式 73
(c) 電池影響之探討 75
(d) 實際應用探討之結論 77
3.4 效能比較 78
第四章 結論 80
參考文獻 82
附錄 A 封包相關係數計算公式 91
附錄 B 通道容量計算公式 92
附錄 C 平均有效增益計算公式 98
附錄 D 天線3D球面場型展開圖 101
作者簡介 103



[1]A. Bleicher, “The 5G phone future,” IEEE Spectrum, vol. 50, no. 7, pp. 15–16, Jul. 2013.
[2]M. S. Sharawi, “Printed multi-band MIMO antenna systems and their performance metrics,” IEEE Antennas Propag. Mag. , vol. 55, Issue 5, pp. 218–232, Oct. 2013.
[3]E. Dahlman and S. Parkvall, “NR – The new 5G radio-access technology,” in IEEE 87th Vehicular Technol. Conf., Porto, 2018.
[4]Ericsson. (Jun. 2018) 3GPP Spectrum Bands Release 15. [Online]. Available: https://www.ericsson.com/assets/local/policy-makers-and-regulators/180119-3gpp-spectrum-bands.pdf
[5]Qualcomm_tech, “Global update on spectrum for 4G & 5G”. Accessed: Dec. 2020. [Online]. Available: https://www.qualcomm. com/media/documents/files/spectrum-for-4g-and-5g.pdf
[6]3GPP, TR 21.916 “3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Release 16 Description; Summary of Rel-16 Work Items(Release 16)” Dec. 2020. [Online]. Available: https://www.3gpp.org/release-16
[7]G. Naik, J. M. Park, J. Ashdown, and W. Lehr, “Next Generation Wi-Fi and 5G NR-U in the 6 GHz Bands: Opportunities and Challenges,” IEEE Access, vol. 8, pp. 153027–153056, 2020.
[8]Report and Order and Further Notice of Proposed Rulemaking; In the Matter of Unlicensed Use of the 6 GHz Band (ET Docket No. 18–295); Expanding Flexible Use in Mid-Band Spectrum Between 3.7 and 24 GHz (GN Docket No. 17–183), Apr. 2020, [online] Available: https://docs.fcc.gov/public/attachments/FCC-20-51A1.pdf
[9]CEPT ECC, “CEPT Report 75”, Nov. 2020. [Online]. Available: https://docdb.cept.org/document/16734
[10]Gizchina. (Feb. 2018) Huawei Balong 765, World’s First 8-Antenna 4.5G Baseband Chip Announced. [Online] Available: https://www.gizchina.com/2018/02/27/huawei-balong-765-worlds-first-8-antenna-4-5g-baseband-chip-announced
[11]Qualcomm_tech, “Global update on spectrum for 4G & 5G”. Accessed: Feb. 2020. [Online]. Available: https://www.qualcomm.com/products/snapdragon-x60-5g-modem
[12]J. Y. Lu, K. L. Wong, and W. Y. Li, “Compact eight-antenna array in the smartphone for the 3.5-GHz LTE 8 × 8 MIMO operation,” in IEEE 5th Asia-Pacific Conf. Antennas and Prop., pp. 323-324, Jul. 2016.
[13]J. Y. Lu, H. J. Chang, and K. L. Wong, “10-antenna array in the smartphone for the 3.6 GHz MIMO operation,” in Proc. IEEE Int. Symp. Antennas Propag. USNC/URSI Nat. Radio Sci. Meeting, Vancouver, BC, Canada, pp. 1220–1221, Jul. 2015.
[14]H. Shi, X. Zhang, J. Li, P. Jia, J. Chen, and A. Zhang, “3.6-GHz eight-antenna MIMO array for mobile terminal applications,” AEU Int. J Electron Commun., vol. 95, pp. 342–348, Oct. 2018.
[15]Y. L. Ban, C. Li, C. Y. D. Sim, G. Wu, and K. L. Wong, “4G/5G multiple antennas for future multi-mode smartphone applications,” IEEE Access, vol. 4, pp. 2981–2988, Jun. 2016.
[16]A. A. Al‐Hadi, J. Ilvonen, R. Valkonen, and V. Viikari, “Eight‐element antenna array for diversity and mimo mobile terminal in LTE 3500 MHz band.” Microw., Opt. Technol. Lett., vol. 56, pp. 1323–1327, Mar. 2014.
[17]K. L. Wong, C. Y. Tsai, and J. Y. Lu, ‘‘Two asymmetrically mirrored gap-coupled loop antennas as a compact building block for eight-antenna MIMO array in the future smartphone,’’ IEEE Trans. Antennas Propag., vol. 65, no. 4, pp. 1765–1778, Apr. 2017.
[18]Y. Li, C. Y. D. Sim, Y. Luo, and G. Yang, “12-Port 5G massive MIMO antenna array in Sub-6GHz mobile handset for LTE bands 42/43/46 applications,” IEEE Access, vol. 6, pp. 344–354, Oct. 2017.
[19]Y. Li, C. Y. D. Sim, Y. Luo, and G. Yang, “Multiband 10-antenna array for Sub-6 GHz MIMO applications in 5G smartphones,” IEEE Access, vol. 6, pp. 28041–28053, May 2018.
[20]Y. Li and G. Yang, “Dual‐mode and triple‐band 10‐antenna handset array and its multiple‐input multiple‐output performance evaluation in 5G,” Int. J. RF Microw. Comput. Aided. Eng. vol. 29, Feb. 2019.
[21]H. Zou, Y. Li, C. Y. D. Sim, and G. Yang, “Design of 8 × 8 dual‐band MIMO antenna array for 5G smartphone applications,” Int. J. RF Microw Comput Aided Eng., vol. 28, Jun. 2018.
[22]X. Zhang, Y. Li, W. Wang, and W. Shen, “Ultra wideband 8-port MIMO antenna array for 5G metal-frame smartphones,” IEEE Access, vol. 7, pp. 72273–72282, May 2019.
[23]Q. Cai, Y. Li, X. Zhang, and W. Shen, “Wideband MIMO antenna array covering 3.3–7.1 GHz for 5G metal-rimmed smartphone applications,” IEEE Access, vol. 7, pp. 142070–142084, Sep. 2019.
[24]C. Y. D. Sim, H. Y. Liu, and C. J. Huang, “Wideband MIMO antenna array design for future mobile devices operating in the 5G NR frequency bands n77/n78/n79 and LTE band 46,” IEEE Antennas Wireless Propag. Lett., vol. 19, pp. 74–78, Jan. 2020.
[25]H. Wang, R. Zhang, Y. Luo, and G. Yang, “Compact eight-element antenna array for triple-band MIMO operation in 5G mobile terminals,” IEEE Access, vol. 8, pp. 19433–19449, Jan. 2020.
[26]H. D. Chen, Y. C. Tsai, C. Y. D. Sim, and C. Kuo, “Broadband eight-antenna array design for Sub-6 GHz 5G NR bands metal-frame smartphone applications,” IEEE Antennas Wireless Propag. Lett., vol. 19, Issue 7, pp. 1078–1082, Jul. 2020.
[27]K. L. Wong, J. Y. Lu, L. Y. Chen, W. Y. Li, and Y. L. Ban, “8-antenna and 16-antenna arrays using the quad-antenna linear array as a building block for the 3.5-GHz LTE MIMO operation in the smartphone,” Microw. Opt. Technol. Lett., vol. 58, pp. 174–181, Nov. 2015.
[28]W. Jiang, B. Liu, Y. Cui, and W. Hu, “High-isolation eight-element MIMO array for 5G smartphone applications,” IEEE Access, vol. 7, pp. 34104–34112, Mar. 2019.
[29]M, Wang, B. Xu, Y. Li, Y. Luo, H. Zou, and G. Yang, “Multiband multiple‐input multiple‐output antenna with high isolation for future 5G smartphone applications.” Int. J. RF Microw. Comput. Aided Eng., vol. 29, Apr. 2019.
[30]W. Hu, L. Qian, S. Gao, L. H. Wen, Q. Luo, H. Xu, X. Liu, Y. Liu, and W. Wang, “Dual-band eight-element MIMO array using multi-slot decoupling technique for 5G terminals,” IEEE Access, vol. 7, pp. 153910–153920, Sep. 2019.
[31]Y. Li, C. Y. D. Sim, Y. Luo, and G. Yang, “Metal‐frame‐integrated eight‐element multiple‐input multiple‐output antenna array in the long term evolution bands 41/42/43 for fifth generation smartphones,” Int. J. RF. Microw. Comput. Aided. Eng., vol. 29, Nov. 2018.
[32]H. Zou, Y. Li, B. Xu, Y. Luo, M. Wang, and G. Yang, “A dual‐band eight‐antenna multi‐input multi‐output array for 5G metal‐framed smartphones.” Int. J. RF. Microw. Comput. Aided. Eng., vol. 29, Apr. 2019.
[33]L. Cui, J. Guo, Y. Liu, and C. Y. D. Sim, “An 8-element dual-band MIMO antenna with decoupling stub for 5G smartphone applications,” IEEE Antennas Wireless Propag. Lett., vol. 18, pp. 2095–2099, Oct. 2019.
[34]W. Hu, X. Liu, S. Gao, L. H. Wen, L. Qian, T. Feng, R. Xu, P. Fei, and Y. Liu, “Dual-band ten-element MIMO array based on dual-mode IFAs for 5G terminal applications,” IEEE Access, vol. 7, pp. 178476–178485, Dec. 2019.
[35]X. T. Yuan, W. He, K. D. Hong, C. Z. Han, Z. Chen, and T. Yuan, “Ultra-wideband MIMO antenna system with high element-isolation for 5G smartphone application,” IEEE Access, vol. 8, pp. 56281–56289, Mar. 2020.
[36]D. Serghiou, M. Khalily, V. Singh, A. Araghi, and R. Tafazolli, “Sub-6 GHz dual-band 8 × 8 MIMO antenna for 5G smartphones,” IEEE Antennas Wireless Propag. Lett., vol. 19, pp. 1546–1550, Jul. 2020.
[37]S. C. Chen, L. C. Chou, C. G. Hsu, and S. M. Li, “Compact Sub-6-GHz four-element MIMO slot antenna system for 5G tablet devices,” IEEE Access, vol. 8, pp. 154652–154662, Aug. 2020.
[38]L. Sun, H. Feng, Y. Li, and Z. Zhang, “Tightly arranged orthogonal mode antenna for 5G MIMO mobile terminal,” Microw. Opt. Technol. Lett., vol. 60, pp. 1751–1756, May 2018.
[39]L. Sun, H. Feng, Y. Li, and Z. Zhang, “Compact 5G MIMO mobile phone antennas with tightly arranged orthogonal-mode pairs,” IEEE Trans. Antennas Propag., vol. 66, pp. 6364–6369, Nov. 2018.
[40]Y. Li, C. Y. D. Sim, Y. Luo, and G. Yang, “High-isolation 3.5 GHz eight-antenna MIMO array using balanced open-slot antenna element for 5G smartphones,” IEEE Trans. Antennas Propag., vol. 67, pp. 3820–3830, Jun. 2019.
[41]A. Ren, Y. Liu, and C. Y. D. Sim, “A compact building block with two shared-aperture antennas for eight-antenna MIMO array in metal-rimmed smartphone,” IEEE Trans. Antennas Propag., vol. 67, pp. 6430–6438, Oct. 2019.
[42]M. Abdullah, S. H. Kiani, and A. Iqbal, “Eight element multiple-input multiple-output (MIMO) antenna for 5G mobile applications,” IEEE Access, vol. 7, pp. 134488–134495, Sep. 2019.
[43]H. Zou, Y. Li, B. Xu, Y. Chen, H. Jin, G. Yang, and Y. Luo,“Dual-functional MIMO antenna array with high isolation for 5G/WLAN applications in smartphones,” IEEE Access, vol. 7, pp. 167470–167480, Nov. 2019.
[44]L. Sun, Y. Li, Z. Zhang, and Z. Feng, “Wideband 5G MIMO antenna with integrated orthogonal-mode dual-antenna pairs for metal-rimmed smartphones,” IEEE Trans. Antennas Propag., vol. 68, pp. 2494–2503, Apr. 2020.
[45]N. O. Parchin, Y. I. A. Al-Yasir, H. J. Basherlou, R. A. Abd-Alhameed, and J. M. Noras, “Orthogonally dual-polarised MIMO antenna array with pattern diversity for use in 5G smartphones,” IET Microw. Antennas Propag., vol. 14, pp. 457–467, Feb. 2020.
[46]N. O. Parchin, Y. I. A. Al-Yasir, A. M. Abdulkhaleq, H. J. Basherlou, A. Ullah, and R. A. Abd-Alhameed, “A new broadband MIMO antenna system for Sub 6 GHz 5G cellular communications,” in Proc.14th European Conference on Antennas and Propag., Copenhagen, Denmark, pp. 1–4, Mar. 2020.
[47]C. Z. Han, L. Xiao, Z. Chen, and T. Yuan, “Co-located self-neutralized handset antenna pairs with complementary radiation patterns for 5G MIMO applications,” IEEE Access, vol. 8, pp. 73151–73163, Apr. 2020.
[48]H. Piao, Y. Jin, and L. Qu, “A compact and straightforward self-decoupled MIMO antenna system for 5G applications,” IEEE Access, vol. 8, pp. 129236–129245, Jul. 2020.
[49]K. L. Wong, C. Y. Tsai, and J. Y. Lu, “Two asymmetrically mirrored gap-coupled loop antennas as a compact building block for eight antenna MIMO array in the future smartphone,” IEEE Trans. Antennas Propag., vol. 65, pp. 1765–1778, Feb. 2017.
[50]K. L. Wong, B. W. Lin, and W. Y. Li, “Dual-band dual inverted-F/loop antennas as a compact decoupled building block for forming eight 3.5/5.8-GHz MIMO antennas in the future smartphone,” Microw. Opt. Technol. Lett., vol. 59, pp. 2715–2721, Aug. 2017.
[51]K. L. Wong, Y. H. Chen, and W. Y. Li, “Decoupled compact ultra‐wideband MIMO antennas covering 3300~6000 MHz for the fifth‐generation mobile and 5GHz‐WLAN operations in the future smartphone,” Microw. Opt. Technol. Lett., vol. 60, Issue 10, pp. 2345–2351, Sep. 2018.
[52]X. T. Yuan, Z. Chen, T. Gu, and T. Yuan, “A wideband PIFA-pair-based MIMO antenna for 5G smartphones,” IEEE Antennas Wireless Propag. Lett., vol. 20, Issue 3, pp. 371–375, Mar. 2021.
[53]Z. Ren, A. Zhao, and S. Wu, “MIMO antenna with compact decoupled antenna pairs for 5G mobile terminals,” IEEE Antennas Wireless Propag. Lett., vol. 18, pp. 1367–1371, May 2019.
[54]Z. Ren and A. Zhao, “Dual-band MIMO antenna with compact self-decoupled antenna pairs for 5G mobile applications,” IEEE Access, vol. 7, pp. 82288–82296, Jun. 2019.
[55]A. Zhao and Z. Ren, “Multiple‐input and multiple‐output antenna system with self‐isolated antenna element for fifth‐generation mobile terminals.” Microw. Opt. Technol. Lett. Nov. 2019.
[56]A. Zhao and Z. Ren, “Size reduction of self-isolated MIMO antenna system for 5G mobile phone applications,” IEEE Antennas Wireless Propag. Lett., vol. 18, pp. 152–156, Jan. 2019.
[57]A. Zhao and Z. Ren, “Wideband MIMO antenna systems based on coupled-loop antenna for 5G N77/N78/N79 applications in mobile terminals,” IEEE Access, vol. 7, pp. 93761–93771, May 2019.
[58]X. Zhao, S. P. Yeo, and L. C. Ong, “Decoupling of inverted-F antennas with high-order modes of ground plane for 5G mobile MIMO platform,” IEEE Trans. Antennas Propag., vol. 66, pp. 4485–4495, Sep. 2018.
[59]A. Ren, Y. Liu, H. W. Yu, Y. Jia, C. Y. D. Sim, and Y. Xu, “A high-isolation building block using stable current nulls for 5G smartphone applications,” IEEE Access, vol. 7, pp. 170419–170429, Nov. 2019.
[60]C. Deng, D. Liu, and X. Lv, “Tightly arranged four element MIMO antennas for 5G mobile terminals,” IEEE Trans. Antennas Propag., vol. 67, pp. 6353–6361, Oct. 2019.
[61]L. Sun, Y. Li, and Z. Zhang, “Wideband decoupling of integrated slot antenna pairs for 5G smartphones,” IEEE Trans. Antennas Propag., vol. 69, pp. 2386–2391, Apr. 2021.
[62]B. Satyanarayana, S. K. Srivastava, A. K. Saurabh, R. Dubey, P. K. Bharti, and M. K. Meshram, “Side-edge frame coupled-fed printed eight-port MIMO antenna array for Sub-6 GHz 5G smartphone applications,” in Proc. IEEE MTT-S Int. Microw. RF. Conf., Mumbai, India, pp. 1–4, Dec. 2019.
[63]Speag. SHO-V3RW-C/LW-C and SHO3TO6-V3RW-C/LW-C. [Online]. Available:https://www.speag.com/products/emphantom/phantoms/sho-v3rw-c-lw-c


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊