跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/23 07:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俊傑
研究生(外文):CHAN CHON KIT
論文名稱:以大數據分析平台JarviX與機器學習進行生產問題分析
論文名稱(外文):Production Problem Analysis Through Big Data Analysis Platform JarviX With Machine Learning
指導教授:黃錦煌黃錦煌引用關係
指導教授(外文):Jin H. Huang
口試委員:袁長安張宗堯
口試委員(外文):Cadmus C.A. YuanTsung-Yao Chang
口試日期:2022-01-03
學位類別:碩士
校院名稱:逢甲大學
系所名稱:機械與電腦輔助工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:111
中文關鍵詞:數據分析平台JarviX大數據分析精進回圈機器學習數位轉型
外文關鍵詞:JarviXBig data analysisAdvanced loopMachine learningDigital transformation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:1
本文以大數據分析平台JarviX成功協助串連某製造公司各部門數據,打通了該公司各部門的橫向關聯與提供自動化數據管理,簡化了過往需花很多時間處理的繁瑣程序。文中也提出一套標準作業程序,解決了目前該公司遇到客戶下單量少、產能不足、產品品質低、不良率高、人員操作不當、異常發現緩慢、庫存安全性低等生產七大問題,再透過關聯、異常偵測、回歸、預測等演算法,從歷史生產數據中,挖掘出有價值的資訊來優化生產規劃。最後配合文中所提出的精進回圈與機器學習預測,可即時處理及預防異常再次發生。相信本文提出的方法與成果可有效減少人力與時間成本,並使企業具備即時發現生產、銷售、人事、研發及財務問題與解決的能力,協助企業做數位轉型。
This thesis utilizes the big data analysis platform JarviX to successfully connect the data from various departments of a manufacturing company. The platform delivers horizontal linkages across each department provides automatic data management, while simplifying tedious and time-consuming procedures. The proposed set of standard operating procedures enables the company to solve the seven major production problems currently encountered: small customer orders, insufficient production capacity, low product quality, high defect rate, improper operation, insensitive to abnormal condition, and low inventory security. Through correlation analysis, anomaly detection, regression, prediction and other algorithms, valuable information is explored from historical production data and applied to optimize production planning as well. Finally, with the advanced looping and machine learning predictions proposed in the article, abnormalities can be resolved in real-time and prevented from recurring. It is believed that the methods and results presented in the thesis can effectively reduce labor and time costs, and enable enterprises to instantly discover and solve problems in production, sales, personnel, R&D, and finance during the digital transformation.
第一章 緒論 ............................................. 1
1.1 研究背景與動機 ............................................................................ 1
1.2 研究目的與方法 ............................................................................ 3
1.2.1 研究目的 ............................................................................ 3
1.2.2 研究方法 ............................................................................ 7
1.3 文獻回顧 ............................................................................ 9
1.4 論文架構 ............................................................................ 15

第二章 數據分析與規劃及平台介紹 ......................... 17
2.1 數據分析的四個層次 ............................................................................ 17
2.2 數據分析種類 ............................................................................ 19
2.3 為甚麼要做數據分析 ............................................................................ 21
2.4 數據分析平台介紹 ............................................................................ 22
2.4.1 智能分析 ............................................................................ 22
2.4.2 應用程式 ............................................................................ 28
2.5 數據分析規劃 ............................................................................ 32
2.5.1 精進回圈 ............................................................................ 41
2.6 模擬器 ............................................................................ 42

第三章 分析流程與原理 ................................... 44
3.1 常用演算法原理 ............................................................................ 44
3.2 機器學習模型 ............................................................................ 60
3.3 分析流程 ............................................................................ 61
3.3.1 客戶明細分析 ............................................................................ 61
3.3.2 機台產能分析 ............................................................................ 67
3.4庫存量分析 ............................................................................ 89

第四章 分析結果與討論 ................................... 94
4.1 建立模組化與標準作業程序(SOP) ............................................ 94
4.2 解決生產七大問題 ............................................................................ 95
4.3 精實生產 ............................................................................ 97
4.4 正式流程 ............................................................................ 98

第五章 結論與未來展望 .................................. 100
5.1 結論 ........................................................................... 100
5.2 未來展望 ........................................................................... 101

參考文獻 .............................................. 102

附錄 ............................................... 102
[1]Wikipedia(2021). c. Abacus Wikipedia, The Free Encyclopedia. Retrieved December 25,2021, from https://en.wikipedia.org/wiki/Abacus

[2]Wikipedia(2021). c. Library of Alexandria Wikipedia, The Free Encyclopedia. Retrieved December 25,2021, from
https://en.wikipedia.org/wiki/Library_of_Alexandria

[3]Ober, W. B. J. J. (1972). A Bibliography of Sir William Petty, FRS and of, JAMA The Journal of the American Medical Association, 220(10), 1366-1366.

[4]Devens, R. M. (1865). Cyclopaedia of commercial and business anecdotes. New York & London: D. Appleton and Company.

[5]Hollerith, H. J. J. o. t. R. S. S. (1894). The electrical tabulating machine, Journal of the Royal Statistical Society, 57(4), 678-689.

[6]Luhn, H. P. J. I. J. o. r., & development. (1958). A business intelligence system, 2(4), 314-319.

[7]Codd, E. F. (1970). A relational model of data for large shared data banks, Communications of the ACM ,13(6) ,377–387.

[8]Devlin, B. A., & Murphy, P. T. (1988). An architecture for a business and information system, IBM Systems Journal, 27(1), 60-80.

[9]Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. J. A. m. (1996). From data mining to knowledge discovery in databases, AI Magazine,
17(3), 37-37.

[10]Ularu, E. G., Puican, F. C., Apostu, A., & Velicanu, M. J. D. S. J.
(2012).Perspectives on big data and big data analytics, Database Systems Journal, 3(4), 3-14.

[11] Erraissi, A., Belangour, A., Tragha, A. J. I. J. o. C. T., & June, T. A.
(2017).A big data hadoop building blocks comparative study, International Journal of Computer Trends and Technology (IJCTT), 48(1).

[12] Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Hung Byers, A. (2011). Big data: The next frontier for innovation, competition, and productivity. Washington, District of Columbia: McKinsey Global Institute.

[13]網路資料:百度百科。張宗堯(麻省理工電機與計算器科學博士)。上網日期:2021/12/21,檢自
https://baike.baidu.hk/item/%E5%BC%B5%E5%AE%97%E5%A0%AF/50051100?lang=zh_HK#reference-[12]-25496522-wrap

[14]網路資料:鈦媒體(2020) 。 如何用 AI 幫企業做決策,這是郭台銘口中鴻海之 子的創業實踐。上網日期:2021/12/21,檢自https://news.futunn.com/hk/post/5532634?report_type=stock&report _id=11672215&seo_redirect=1&level=1&data_ticket=16401778543 57356

[15] 網路資料:劉中興(2021) 。訊能集思用JarviX 重新定義數據分析。 上網日期:2021/12/21,檢自
https://www.digitimes.com.tw/iot/article.asp?cat=130&cat1=40&id=0000 602864_14198G8T5QL5EB537P19T

[16]Deborah Gage(2014). Former Googlers Create ThoughtSpot for Google-Like Enterprise Search. Retrieved December 25,2021,from https://www.wsj.com/articles/BL-VCDB-13959

[17]Eric Avidon(2019). ThoughtSpot 6 advances AI power of BI platform. Retrieved December 25,2021,from
https://searchbusinessanalytics.techtarget.com/news/252472221/Tho ughtSpot-6-advances-AI-power-of-BI-platform

[18]Brad Stone(2013). The Everything Store: Jeff Bezos and the Age of Amazon. Retrieved December 25,2021,from
https://books.google.com.tw/books?id=yG3PAK6ZOucC&redir_esc =y

[19]Amazon News(2002). Amazon.com Launches Web Services; Developers Can Now Incorporate Amazon.com Content and Features into Their Own Web Sites; Extends ''Welcome Mat'' for Developers. Retrieved December 25,2021,from
https://press.aboutamazon.com/news-releases/news-release-details/amazoncom-launches-web-services

[20] Stacy Cowley(2004). Amazon lauds Linux infrastructure. Retrieved December 25,2021,from
https://www.computerweekly.com/news/2240054229/Amazon-lauds-Linux-infrastructure

[21]Amazon News(2006). Amazon Web Services Launches. Retrieved December 25,2021,from https://press.aboutamazon.com/news-releases/news-release-details/amazon-web-services-launches-amazon-s3-simple-storage-service

[22]Jeff Barr(2006). Amazon EC2 Beta. Retrieved December 25,2021,from
https://aws.amazon.com/tw/blogs/aws/amazon_ec2_beta/

[23]Microsoft News(2010). A Glimpse at Project Crescent. Retrieved December 25,2021,from https://docs.microsoft.com/zh-
tw/archive/blogs/sqlrsteamblog/a-glimpse-at-project-crescent

[24]Pieter Schaap(2020). The 4 levels of data maturity that you should absolutely know about. Retrieved December 25,2021,from
https://computd.nl/demystification/4-levels-of-data-maturity/

[25]Hair, J.F., Money, A.H., Samouel, P. and Page, M. (2007). Research Methods for Business, Education + Training, 49(4),336-337.

[26] 網路資料:工作熊(2016) 。SPC(統計製程管制)、Cpk、製程能力之解說與整理。 上網日期:2021/12/21,檢自
https://www.researchmfg.com/2016/01/spccpk/

[27] 王秉融(2019)。利用大數據分析於智能工廠之研究,國立高雄大學電機工程學系。

[28] 王宥璿(2019)。利用大數據分析預測產品品質與生產設備的策略分析,中原大學工業與系統工程研究所。

[29] 朱佳荷(2020)。應用量產數據分析 PCBA 自動測試設備誤判原因與改善,國立臺北科技大學工業工程與管理系。

[30] 吳思緯(2021)。企業導入大數據分析系統的流程與影響因素之探討,國立政治大學科技管理與智慧財產研究所。

[31] 范遠哲(2019)。以大數據分析方法建構刀具磨耗量預測模型,中原大學工業與系統工程研究所。

[32] 廖柏豪(2018)。基於深度學習之大數據分析平台整合與優化,國立高雄大學資訊工程學系碩士班。

[33] 簡亦楚(2021)。應用數據分析改進製程良率之研究,國立中央大學企業管理學系在職專班。

[34] Bordeleau, F. E., Mosconi, E., & Santa-Eulalia, L. A. (2018).
Business Intelligence in Industry 4.0: State of the art and research
opportunities, Sherbrooke University, Canada- Quebec

[35] Chen, F., Deng, P., Wan, J., Zhang, D., Vasilakos, A. V., & Rong, X.
J. I. J. o. D. S. N. (2015). Data mining for the internet of things:
literature review and challenges, International Journal of Distributed
Sensor Networks, 11(8), 431047.

[36] Jiang, D., Wang, Y., Lv, Z., Qi, S., & Singh, S. J. I. T. o. I. I. (2019).
Big data analysis based network behavior insight of cellular
networks for industry 4.0 applications, IEEE Transactions on
Industrial Informatics, 16(2), 1310-1320.

[37] Lakshmi, M. P., SanthiSri, M. K., & Veeranjaneyulu, M. N. (2015).
A Study on Real-Time Business Intelligence and Big Data,
Information Engineering, 4,1-6.

[38] Niesen, T., Houy, C., Fettke, P., & Loos, P. (2016, January). Towards
an integrative big data analysis framework for data-driven risk
management in industry 4.0, 49th Hawaii international conference on
system sciences (HICSS), 5065-5074.

[39] Zheng, Y. J. A. T. o. I. S., & Technology. (2015). Trajectory data
mining: an overview. 6(3), 1-41.

[40] Alekseev, A., Campana, S., Espinal, X., Jezequel, S., Kirianov, A.,
Klimentov, A., . . . Smirnov, S. J. I. J. o. M. P. A. (2020). On the road
to a scientific data lake for the High Luminosity LHC era,
International Journal of Modern Physics A, 35(33), 2030022.

[41] Athey, S. J. S. (2017). Beyond prediction: Using big data for policy
problems, SCIENCE, 355(6324), 483-485.

[42] Golfarelli, M., & Rizzi. (2018). From star schemas to big data:
20+years of data warehouse research. Heidelberg: Springer .

[43] Hamoud, A., Hashim, A. S., Awadh, W. A. J. I. J. f. C., &
Informatics. (2018). Clinical data warehouse: a review, Iraqi Journal for
Computers and Informatics, 44(2).

[44] Lei, Y., Li, N., Guo, L., Li, N., Yan, T., Lin, J. J. M. s., & processing,
s. (2018). Machinery health prognostics: A systematic review from
data acquisition to RUL prediction, Mechanical Systems and Signal
Processing, 104, 799-834.

[45] Moalla, I., Nabli, A., Bouzguenda, L., Hammami, M. J. S. N. A., &
Mining. (2017). Data warehouse design approaches from social
media: review and comparison, Social Network Analysis and
Mining, 7(1), 5.

[46] Sreekala, P., & Ratheesh, K. J. L. H. (2018). Data Lake in The Big
Data Era: An Overview, Library Herald, 56(1), 11-15.

[47] Smiti, A. J. C. S. R. (2020). A critical overview of outlier detection
methods, Computer Science Review, 38, 100306.

[48] Boukerche, A., Zheng, L., & Alfandi, O. J. A. C. S. (2020). Outlier
detection: Methods, models, and classification, ACM Computing
Surveys, 53(3), 1-37.

[49] Emami, P., Pardalos, P. M., Elefteriadou, L., & Ranka, S. J. A. C. S.
(2020). Machine learning methods for data association in multiobject
tracking, ACM Computing Surveys, 53(4), 1-34.

[50] Emmert-Streib, F., Dehmer, M. J. M. l., & extraction, k. (2019).
Evaluation of regression models: Model assessment, model selection
and generalization error,Machine learning & knowledge extraction,
1(1), 521-551.

[51] Grömping, U. J. W. i. r. C. s. (2015). Variable importance in
regression models, WIREs Computational Statistics, 7(2), 137-152.

[52] Pavlou, M., Ambler, G., Seaman, S., De Iorio, M., & Omar, R. Z. J.
S. i. m. (2016). Review and evaluation of penalised regression
methods for risk prediction in low‐dimensional data with few events,
Statistics in Medicine, 35(7), 1159-1177.

[53] Safaei, M., Asadi, S., Driss, M., Boulila, W., Alsaeedi, A., Chizari,
H., . . . Safaei, M. J. S. (2020). A systematic literature review on
outlier detection in wireless sensor networks, symmetry, 12(3), 328.

[54] Zimek, A., Filzmoser, P. J. W. I. R. D. M., & Discovery, K. (2018).
There and back again: Outlier detection between statistical reasoning
and data mining algorithms, WIREs Data Mining and Knowledge
Discovery, 8(6), e1280.

[55] Fernández, A., del Río, S., Chawla, N. V., Herrera, F. J. C., &
Systems, I. (2017). An insight into imbalanced big data classification:
outcomes and challenges, Complex Intell. Syst, 3(2), 105-120.

[56] Griffiths, D., & Boehm, J. J. R. S. (2019). A review on deep learning
techniques for 3D sensed data classification, remote sensing, 11(12),
1499.

[57] Kumar, A., Kumar, D., Jarial, S. J. C., & Technologies, I. (2017). A
review on artificial bee colony algorithms and their applications to
data clustering, CYBERNETICS AND INFORMATION
TECHNOLOGIES, 17(3), 3-28.

[58] Lashari, S. A., Ibrahim, R., Senan, N., & Taujuddin, N. (2018).
Application of data mining techniques for medical data classification:
a review, MATEC Web of Conferences, 150.

[59] Mohebi, A., Aghabozorgi, S., Ying Wah, T., Herawan, T., Yahyapour,
R. J. S. P., & Experience. (2016). Iterative big data clustering
algorithms: a review, Software: Practice and Experience, 46(1), 107-
129.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊