跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 03:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王博琛
研究生(外文):WANG, PO-CHEN
論文名稱:5G NR毫米波半模基板集成波導天線之頻寬改善研究
論文名稱(外文):Research on Bandwidth Improvement of 5G NR Millimeter-Wave Half-Mode Substrate integrated Waveguide Antenna
指導教授:彭嘉美
指導教授(外文):PENG, CHIA-MEI
口試委員:陳一鋒蕭富仁
口試委員(外文):CHEN. I-FONGHSIAO, FU-JEN
口試日期:2022-07-15
學位類別:碩士
校院名稱:逢甲大學
系所名稱:通訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:代替論文:專業實務報告(專業實務類)
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:88
中文關鍵詞:半模基板集成波導天線5G NR開放槽縫寬頻
外文關鍵詞:HMSIW5G NROpen slotBroadband
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本文以小型化半模基板集成波導天線結構[10]作為原型結構,透過在半模基板集成波導天線主體上蝕刻一開放槽縫,接著通過調整槽縫的長度及天線主體寬度,針對5G NR的28 GHz毫米波頻段範圍進行頻寬改善設計。本結構繼承文獻[10]之小型化半模基板集成波導天線諸多優點,比如低損耗、低成本、易於製造以及低剖面等等特性。
考慮到高頻材料多數採用頂針饋入之方式,因此本研究亦進行兩種饋入方式之分析,結果顯示兩者之趨勢相似,並仍維持洩漏特徵。另外也考慮到整體頻寬之最大增益及實作誤差,本研究將天線結構放大1.01倍,尺寸為64.9435x9.32x0.15 mm3,較原型結構多1%的面積,然而頻寬達到26.24 ~ 29.75 GHz,滿足n257之頻段規格,相較文獻[10]之頻寬增加2.41 GHz。而在增益的表現上,26.5 ~ 29.5 GHz之增益皆高於10 dBi,半功率波束寬為10.5⁰~17.5⁰。
本研究並進行1x4陣列天線分析,整體尺寸為 64.9435 x 32.852 x 0.15 mm3,¬天線間距為2.678 mm (約0.25 λ28)。模擬的結果顯示,由於天線左側貫孔列等效完美電導體(Perfect Electric Conductor, PEC)壁,因此在隔離度的表現良好。此外,在增益的表現上,在26.5 GHz ~ 29.75 GHz之最大增益皆高於15 dBi ,半功率波束寬為10⁰ ~ 15.5⁰。
在單支天線的實作及量測時,其結果顯示,實作天線在S11< -10 dB的條件下,頻寬為25.785 GHz ~ 30.14 GHz,約5.645 GHz;而最佳化模擬天線在S11< -5 dB的條件下,頻寬為26.24 GHz ~ 29.75 GHz,約3.51 GHz,皆有涵蓋n257: 26.5 GHz ~ 29.5 GHz之頻段範圍,滿足本文之目標規格。實作與模擬比對結果有所差異,推測原因為:1.饋入接頭在模擬時並無考慮實作所用接頭;2.實作誤差,包括板材送洗、焊接,兩大因素所導致。
In this paper, the the miniaturized Half-Mode Substrate Integrated Waveguide antenna structure of the reference [10] is used as the prototype structure. By etching an open slot on the main structure of the Half-Mode Substrate Integrated Waveguide antenna, and then by adjusting the length of the slot and the width of the antenna body, the antenna for bandwidth improvement in the 28 GHz mmWave frequency range for 5G NR is designed. This structure inherits many advantages of the miniaturized Half-Mode Substrate Integrated Waveguide antenna of the reference [10], such as low loss, low cost, easy manufacturing and low profile.
Considering that most of the high-frequency materials use the pin feeding method, the analysis of the two feeding methods is also executed in this study. The results show that the trends between two ways are similar, and the leakage characteristics are still maintained. In addition, considering the peak gain and implementation error of the overall bandwidth, in this study, the antenna structure is enlarged by 1.01 times, and the size is 64.9435x9.32x0.15 mm3, which is 1% more than the prototype structure, but the bandwidth reaches 26.24 GHz ~ 29.75 GHz, which meets the frequency band specification of n257. Compared with reference [10], the bandwidth is increased by 2.41 GHz. In terms of peak gain performance, the peak gain from 26.5 to 29.5 GHz is higher than 10 dBi, and the half-power beamwidth is 10.5⁰~17.5⁰.
A 1x4 array antenna analysis is also performed in this study, with an overall size of 64.9435 x 32.852 x 0.15 mm3 and the spacing of antennas is 2.678 mm (about 0.25 λ28). The simulation results indicate that since the equivalent perfect electric conductor (PEC) wall of the vias on the left side of the antenna, the isolation performance is good. In addition, in terms of peak gain performance, the peak gain at 26.5 GHz ~ 29.75 GHz is higher than 15 dBi, and the half power beam width is 10⁰ ~ 15.5⁰.
In the implementation and measurement of a single antenna, the results reveal that the bandwidth of the implemented antenna is 25.785 GHz ~ 30.14 GHz, about 5.645 GHz under the condition of S11 < -10 dB. Under the condition of S11<-5 dB, the optimized antenna has a bandwidth of 26.24 GHz ~ 29.75 GHz and about 3.51 GHz, both covering the frequency range of n257: 26.5 GHz ~ 29.5 GHz, which meets the target specification of this paper. However, the results of the comparison between the implementation and the simulation did not achieve good consistency. It is speculated that the reasons are caused by implementation errors and environmental factors.
第一章 緒論
第一節 研究動機及背景
第二節 研究目的
第三節 論文架構

第二章 文獻回顧
第一節 適用於穿戴式裝置之5G NR 毫米波小型化HMSIW天線設計
第二節 橫向槽縫陣列HMSIW天線
第三節 天線陣列

第三章 研究設計與實施
第一節 HMSIW 融入 OPEN SLOT 之效應分析
第二節 HMSIW 融入 OPEN SLOT 之頻寬調整分析
第三節 HMSIW 融入 OPEN SLOT 之饋入方式分析
第四節 HMSIW 融入 OPEN SLOT 之優化結果
第五節 陣列天線分析

第四章 模擬與實作比較
第一節 模擬與實作比較

第五章 結論

參考文獻


[1]Murtaza Ahmed Siddiqi, Heejung Yu, and Jingon Joung. (2019). 5G Ultra-Reliable Low-Latency Communication Implementation Challenges and Operational Issueswith IoT Devices., vol. 8, pp.981.

[2]Amitabha Ghosh, Andreas Maeder, Matthew Baker, and Devaki Chandramouli (2019). 5G Evolution: A View on 5G Cellular Technology Beyond 3GPP Release 15., IEEE Access, vol. 7, pp. 127639 - 127651.

[3] Kuo Sheng Chin, Ho Ting Chang, and Jia An Liu. (2010). Design of
LTCC Wideband Patch Antenna for LMDS Band Applications. IEEE Antenna Wireless Propag. Lett., vol. 9, pp. 1111-1114.

[4] Jang Soon Park, Jun Bong Ko, Heon Kook Kwon, Byung Su Kang,
Bonghyuk Park, and Dongho Kim. (2016). A Tilted Combined Beam Antenna for 5G Communications Using a 28-GHz Band. IEEE Antenna Wireless Propag. Lett., vol. 15, pp. 1685-1688.

[5] Pengfei Liu, Xiao Wei Zhu, Yan Zhang, Xiang Wang, Chunfeng Yang, and Zhi Hao Jiang. (2020). Patch Antenna Loaded With Paired Shorting Pins and H-Shaped Slot for 28/38 GHz Dual-Band MIMO Applications. IEEE Access, vol. 8, pp.23705-23712.

[6]Gyoungdeuk Kim and Sangkil Kim. (2021). Design and Analysis of Dual Polarized Broadband Microstrip Patch Antenna for 5G mmWave Antenna Module on FR4 Substrate. IEEE Access, vol. 9, pp. 64306-64316.

[7] Jun Xu, Wei Hong, Zhi Hao Jiang, and Hui Zhang. (2018). Wideband, Low-Profile Patch Array Antenna With Corporate Stacked Microstrip and Substrate Integrated Waveguide Feeding Structure. IEEE Transactions on Antennas and Propagation, vol. 67, pp. 1368-1373.

[8] Jun Xu, Wei Hong, Zhi Hao Jiang, Hui Zhang, and Ke Wu. (2020). Low-Profile Wideband Vertically Folded Slotted Circular Patch Array for Ka-Band Applications. IEEE Transactions on Antennas and Propagation, vol. 68, pp. 6844-6849.

[9]Nghia Nguyen-Trong, Christophe Fumeaux. (2018). Half-Mode Substrate-Integrated Waveguides and Their Applications for Antenna Technology: A Review of the Possibilities for Antenna Design. IEEE Antennas and Propagation Magazine, 60 (6), pp. 20-31.

[10]黎庭任 (2020)。 適用於穿戴式裝置之5G NR 毫米波小型化半模基板集成波導天線設計。逢甲大學通訊工程學系,台中市。

[11] Junfeng Xu, Wei Hong, Hongjun Tang, Zhenqi Kuai, and Ke Wu.
(2008). Half-mode substrate integrated waveguide (HMSIW) leaky-
wave antenna for millimeterwave applications. IEEE Antenna
Wireless Propag. Lett., vol. 7, pp. 85–88.

[12] Syed Muhammad Ammar Ali, Zubair Ahmed, and Mojeeb Bin Ihsan.
(2016). Beam Steering in HMSIW LWA at Fixed Millimeter Wave
Frequency. 2015 12th International Conference on High-capacity
Optical Networks and Enabling/Emerging Technologies.

[13] Nima Javanbakht, Rony E. Amaya, Jafar Shaker, and Barry Syrett.
(2021). Fixed Frequency Beam-Scanning HMSIW-Based Leaky-Wave Antenna Composed of Circular Slots in V-Shape Configuration. IEEE Access, vol. 9, pp. 52891-52901.

[14] Asanee Suntives, and Sean V. Hum. (2012). A Fixed-Frequency
Beam-Steerable Half-Mode Substrate Integrated Waveguide Leaky-
Wave Antenna. IEEE Transactions on Antennas and Propagation, vol.
60 , pp. 2540-2544.

[15] Debabrata. K. Karmokar, and Karu P. Esselle. (2015). Periodic U-
Slot-Loaded Duel-Band Half-Width Microstrip Leaky-Wave Antenna For Forward and Backward Beam Scanning. IEEE Transactions on Antennas and Propagation, vol. 63, pp. 5372-5381.

[16] WIKIPEDIA. (2016). 5G NR frequency bands. Retrieved February
21, 2022, from https://en.wikipedia.org/wiki/5G_NR_frequency_bands

[17] Making 5G NR a Commercial Reality A unified, more capable 5G
air interface. (2020). Fututre Of 5G. Retrieved March 16, 2022, from https://www.qualcomm.com/media/documents/files/making-5g-nr-a-commercial-reality.pdf

[18] Qing Hua Lai, Wei Hong, Zhen Qi Kuai, Ying Song Zhang, and Ke
Wu (2009). “Half-Mode Substrate Integrated Waveguide Transverse Slot Array Antennas,” IEEE Transactions on Antennas and Propagation, vol. 57, pp. 1064-1072.

[19] Analysis of Uniform Phased Arrays, Retrieved February 21, 2022,
from https://www.antenna-theory.com/arrays/weights/uniform2.php

[20] VR, Retrieved February 21, 2022, from
https://tw.images.search.yahoo.com/search/images;_ylt=AwrtFp_XEp9iWuEAyTBr1gt.;_ylu=Y29sbwN0dzEEcG9zAzEEdnRpZAMEc2VjA3BpdnM-?p=VR&fr2=piv-web&type=E211TW885G0&fr=mcafee

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top