|
1.Abate, D. (2019). Built-heritage multi-temporal monitoring through photogrammetry and 2D/3D change detection algorithms. Studies in Conservation, 64(7), 423-434. 2.Altman, S., Xiao, W., & Grayson, B. (2017). Evaluation of low-cost terrestrial photogrammetry for 3D reconstruction of complex buildings. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 4. 3.Antón, D., Medjdoub, B., Shrahily, R., & Moyano, J. (2018). Accuracy evaluation of the semi-automatic 3D modeling for historical building information models. International Journal of Architectural Heritage, 12(5), 790-805. 4.Antón, D., Pineda, P., Medjdoub, B., & Iranzo, A. (2019). As-built 3D heritage city modelling to support numerical structural analysis: Application to the assessment of an archaeological remain. Remote Sensing, 11(11), 1276. 5.Asvadi, A., Garrote, L., Premebida, C., Peixoto, P., & Nunes, U. J. (2018). Multimodal vehicle detection: fusing 3D-LIDAR and color camera data. Pattern Recognition Letters, 115, 20-29. 6.Benedek, C., Majdik, A., Nagy, B., Rozsa, Z., & Sziranyi, T. (2021). Positioning and perception in LIDAR point clouds. Digital Signal Processing, 119, 103193. 7.Caciora, T., Herman, G. V., Ilieș, A., Baias, Ș., Ilieș, D. C., Josan, I., & Hodor, N. (2021). The use of virtual reality to promote sustainable tourism: A case study of wooden churches historical monuments from Romania. Remote Sensing, 13(9), 1758. 8.Capolupo, A. (2021). Accuracy Assessment of Cultural Heritage Models Extracting 3D Point Cloud Geometric Features with RPAS SfM-MVS and TLS Techniques. Drones, 5(4), 145. 9.Carfagni, M., Furferi, R., Governi, L., Servi, M., Uccheddu, F., & Volpe, Y. (2017). On the performance of the Intel SR300 depth camera: metrological and critical characterization. IEEE Sensors Journal, 17(14), 4508-4519. 10.Chen, C., Jafari, R., & Kehtarnavaz, N. (2017). A survey of depth and inertial sensor fusion for human action recognition. Multimedia Tools and Applications, 76(3), 4405-4425. 11.Chiabrando, F., Chiabrando, R., Piatti, D., & Rinaudo, F. (2009). Sensors for 3D imaging: Metric evaluation and calibration of a CCD/CMOS time-of-flight camera. Sensors, 9(12), 10080-10096. 12.Chiabrando, F., Sammartano, G., Spanò, A., & Spreafico, A. (2019). Hybrid 3D models: When geomatics innovations meet extensive built heritage complexes. ISPRS International Journal of Geo-Information, 8(3), 124. 13.Dlesk, A., Vach, K., & Holubec, P. (2019). Analysis of Possibilities of Low-Cost Photogrammetry for Interior Mapping. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 27-31. 14.Drouin, M. A., & Seoud, L. (2020). Consumer-Grade RGB-D Cameras. In 3D Imaging, Analysis and Applications (pp. 215-264). Springer, Cham. 15.Fernandez, J. C., Singhania, A., Caceres, J., Slatton, K. C., Starek, M., & Kumar, R. (2007). An overview of lidar point cloud processing software. GEM Center Report No. Rep_2007-12-001, University of Florida, 27. 16.Genovese, R. A. (2005). Architectural, archaeologic and environmental restoration planning methodology: historic researches and techniques of survey aiming to conservation. In Proc. CIPA (Vol. 5, pp. 295-299). 17.Georgopoulos, A., & Ioannidis, C. (2004). Photogrammetric and surveying methods for the geometric recording of archaeological monuments. FIG Working Week (Vol. 22, p. 27). 18.Ghilani, C. D., & Wolf, P. R. (2012). Elementary surveying. An Introduction to Geomatics. Edition: 13th. Upper Saddle River, New Jersey: Pearson Education. 19.Guidi, G., Remondino, F., Morlando, G., Del Mastio, A., Uccheddu, F., & Pelagotti, A. (2007). Performances evaluation of a low-cost active sensor for cultural heritage documentation. 8th Conference on Optical 3D Measurement Techniques (pp. 59-69). 20.Guidi, G., Gonizzi Barsanti, S., & Micoli, L. L. (2016). 3D capturing performances of low-cost range sensors for mass-market applications. 23rd International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Congress, ISPRS 2016 (pp. 33-40). International Society for Photogrammetry and Remote Sensing. 21.Historic England. (2017). Photogrammetric Applications for Cultural Heritage. Guidance for Good Practice. Swindon. Historic England. 22.JJP A&P (2014). Xue Si Building, Feng Chia University. JJP Architects and Planners Portafolio. https://www.jjpan.cn/en/portfolio/xue-si-building-feng-chia-university/ 23.Horaud, R., Hansard, M., Evangelidis, G., & Ménier, C. (2016). An overview of depth cameras and range scanners based on time-of-flight technologies. Machine vision and applications, 27(7), 1005-1020. 24.ISO. (2021). Standard ISO 13060-13:2021. 1st Edition 2021-09. Reference Number: ISO 13060-13:2021(E). Switzerland: International Organization for Standards. 25.Kadobayashi, R., Kochi, N., Otani, H., & Furukawa, R. (2004). Comparison and evaluation of laser scanning and photogrammetry and their combined use for digital recording of cultural heritage. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 35(5), 401-406. 26.Kazhdan, M., Bolitho, M., & Hoppe, H. (2006). Poisson surface reconstruction. Proceedings of the fourth Eurographics symposium on Geometry processing (Vol. 7). 27.Kazhdan, M., & Hoppe, H. (2013). Screened poisson surface reconstruction. ACM Transactions on Graphics (ToG), 32(3), 1-13. 28.Kushwaha, S. K. P., Dayal, K. R., Raghavendra, S., Pande, H., Tiwari, P. S., Agrawal, S., & Srivastava, S. K. (2020). 3D Digital documentation of a cultural heritage site using terrestrial laser scanner—A case study. Applications of Geomatics in Civil Engineering (pp. 49-58). Springer, Singapore. 29.Lachat, E., Landes, T., & Grussenmeyer, P. (2019). Comparison of point cloud registration algorithms for better result assessment–towards an open-source solution. ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020 (Vol. 42, pp. 551-558). Copernicus Publications. 30.Li, J., Qian, F., & Chen, X. (2020). Point cloud registration algorithm based on overlapping region extraction. Journal of Physics: Conference Series (Vol. 1634, No. 1, p. 012012). IOP Publishing. 31.Li, L. (2014). Time-of-flight camera–an introduction. Technical white paper, (SLOA190B). 32.Li, P., Wang, R., Wang, Y., & Tao, W. (2020). Evaluation of the ICP algorithm in 3D point cloud registration. IEEE Access, 8, 68030-68048. 33.Lourenço, F., & Araujo, H. (2021). Intel RealSense SR305, D415 and L515: Experimental Evaluation and Comparison of Depth Estimation. VISIGRAPP (4: VISAPP) (pp. 362-369). 34.Moyano, J., Nieto-Julián, J. E., Bienvenido-Huertas, D., & Marín-García, D. (2020). Validation of close-range photogrammetry for architectural and archaeological heritage: Analysis of point density and 3D mesh geometry. Remote Sensing, 12(21), 3571. 35.Nex, F., & Rinaudo, F. (2010). Photogrammetric and LiDAR integration for the cultural heritage metric surveys. International archives of photogrammetry, remote sensing and spatial information sciences, 38(Part 5), 490-495. 36.Paoli, A., Neri, P., Razionale, A. V., Tamburrino, F., & Barone, S. (2020). Sensor architectures and technologies for upper limb 3D surface reconstruction: a review. Sensors, 20(22), 6584. 37.Rabbani, T., Van Den Heuvel, F., & Vosselmann, G. (2006). Segmentation of point clouds using smoothness constraint. International archives of photogrammetry, remote sensing and spatial information sciences, 36(5), 248-253. 38.Řezníček, J., & Pavelka, K. (2008). New Low-cost 3D Scanning Techniques for Cultural Heritage Documentation. The International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences, 37, 237-240. 39.Servi, M., Mussi, E., Profili, A., Furferi, R., Volpe, Y., Governi, L., & Buonamici, F. (2021). Metrological Characterization and Comparison of D415, D455, L515 RealSense Devices in the Close Range. Sensors, 21(22), 7770. 40.Tatoglu, A., & Pochiraju, K. (2012). Point cloud segmentation with LIDAR reflection intensity behavior. 2012 IEEE International Conference on Robotics and Automation (pp. 786-790). IEEE. 41.VDI. (2012). VDI/VDE 2634 Blatt 2/Blatt 3. 2021 English Edition. Berlin: Verein Deutscher Ingenieure e.V. 42.Wolf, P. R., Dewitt, B. A., & Wilkinson, B. E. (2014). Elements of Photogrammetry with Applications in GIS. McGraw-Hill Education. 43.Worboys, M. (2011). Modeling indoor space. Proceedings of the 3rd ACM SIGSPATIAL international workshop on indoor spatial awareness (pp. 1-6). 44.Xin, W., & Pu, J. (2010). An improved ICP algorithm for point cloud registration. 2010 International Conference on Computational and Information Sciences (pp. 565-568). IEEE 45.Yilmaz, H. M., Yakar, M., Gulec, S. A., & Dulgerler, O. N. (2007). Importance of digital close-range photogrammetry in documentation of cultural heritage. Journal of Cultural Heritage, 8(4), 428-433. 46.Zlatanova, S., Sithole, G., Nakagawa, M., & Zhu, Q. (2013). Problems in indoor mapping and modelling. Acquisition and Modelling of Indoor and Enclosed Environments 2013, Cape Town, South Africa, 11-13 December 2013, ISPRS Archives Volume XL-4/W4, 2013.
|