跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/28 00:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊詠荏
研究生(外文):YANG, YONG-REN
論文名稱:界面改質對In-Bi-Sn合金熱傳及接合強度的影響
論文名稱(外文):Effects of Interface Modification on Heat Transfer and Lap Strength of In-Bi-Sn Alloys
指導教授:王振興王振興引用關係
指導教授(外文):WANG, JENN-SHING
口試委員:呂英治陳惠俐
口試委員(外文):LEU, ING-CHICHEN, HUI-LI
口試日期:2022-07-11
學位類別:碩士
校院名稱:遠東科技大學
系所名稱:機械工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:180
中文關鍵詞:熱界面材料In-Bi-Sn合金熱傳界面改質
外文關鍵詞:Thermal Interface MaterialIn-Bi-Sn AlloyHeat TransferInterface Modification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:62
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
3C電子產品的尺寸逐漸縮小,功率卻大增,散熱效果間接影響性能與使用期限,過熱會損壞其元件,甚至使其爆炸或著火。常見的熱界面材料為散熱膏成分多為矽膠和矽脂等,在高溫環境下易乾裂,破壞其鍵結,導致廢熱淤積,因而縮短設備壽命,因此,為了提高熱傳效果,兼顧壽命,金屬基熱界面材料是另一種選擇。
本實驗選用In-Bi-Sn合金作為熱界面材料,熔點分別為60℃、70℃和80℃。常見的散熱材多為銅基和鋁基,其表面自然生成氧化層,影響In-Bi-Sn合金與基材的潤濕性,研究界面改質的效果,探討3種熔點的In-Bi-Sn合金與基材的界面接合強度及熱傳效率。
將三種 In-Bi-Sn合金,以100 ℃持溫0~3hr後取出量測其系統總熱傳變化,在水平情況下,60℃ In-Bi-Sn合金/松香/銅的總熱傳係數由最初的29.77 W/m²℃提升至3hr的34.17 W/m²℃, 70℃ In-Bi合金/松香/銅的總熱傳係數由最初的29.17 W/m²℃提升至3hr的32.62 W/m²℃, 80℃ In-Bi-Sn合金/松香/銅的總熱傳係數由最初的29.71 W/m²℃提升至3hr的32.19 W/m²℃,使用In-Bi-Sn合金與搭配松香,隨時間增長有提升熱傳的趨勢。
進行薄板散熱,在水平情況下,銅/松香/70℃ In-Bi合金/松香/薄板的總熱傳係數為30.08 W/m²℃,銅/松香/70℃ In-Bi合金/松香/薄板電鍍銅層的總熱傳係數為31.35 W/m²℃,皆高於70℃ In-Bi合金/松香/銅0hr的總熱傳係數,確認薄板有助於提升系統散熱,薄板電鍍銅層與70℃ In-Bi合金接合強度增加,熱傳效果進一步的提升。

The size of 3C electronic products is gradually smaller than before, but the power is greatly increased. The heat dissipation effect indirectly affects the performance and service life. In most cases, for the 3C electronics that need heat dissipation, overheating can slow them down and damage their components, or even cause them to explode or catch fire. The common thermal interface material is heat dissipation paste. Most of its components are silicone gel and silicone grease, etc., which are easy to dry and fail in high temperature environment, thus shortening the life of the equipment. Therefore, in order to satisfy heat transfer effect and take into account the life, metal-based thermal interface materials are another possible choice.
In this experiment, In-Bi-Sn alloy can be melted in the range of 60℃, 70℃and 80℃ as thermal interface material. Common heat dissipation materials are mostly copper-based and aluminum-based, and there is an oxide layer on the surface, which affects the wettability of the In-Bi-Sn alloy on the heat dissipation materials. The effect of modifying wetting is studied with three melting points of In-Bi-Sn alloy on the properties of interfacial bonding strength and heat transfer efficiency.
As the temperature kept at 100 ℃ for 0~3hrs, the 60℃, 70℃, 80℃ In-Bi-Sn alloys were coated with rosin and citric acid on the copper substrate, and then the total heat transfer changes of the system were measured. Under the horizontal condition, the total heat transfer coefficient of 60℃ In-Bi-Sn alloy/rosin/copper increased from 29.77 W/m²℃ to 34.17 W/m²℃ after 3hr. The overall heat transfer coefficient of 70℃ In-Bi alloy/rosin/copper increased from 29.17 W/m²℃ to 32.62 W/m²℃ after 3hr. And the overall heat transfer coefficient of 80℃ In-Bi-Sn alloy/rosin/copper from 29.71 W/m²°C to 32.19 W/m²°C after 3hr. Among them, the best total heat transfer coefficient 36.07 W/m²℃ was measured for 70In-Bi alloy/citric acid/copper after 3hr. As the thin plate used with for thin plate heat dissipation under the horizontal condition, the total heat transfer coefficient of 70℃ In-Bi alloy-copper/rosin/thin plate is 30.08 W/m²℃. The total heat transfer coefficient of 70℃ In-Bi alloy-copper/rosin/ electroplated copper layer thin plate is 31.35 W/m²°C, which is higher than the total heat transfer coefficient of 70°C In-Bi alloy/rosin/copper 0hr. It is confirmed that the thin plate helps to improve the heat dissipation of the system. The bonding strength between the electroplated copper layer of the thin plate and the 70℃ In-Bi alloy was increased.

致謝i
摘要ii
ABSTRACT iii
目錄vi
表目錄ix
圖目錄xi
第一章 緒論1
1-1 前言1
1-2 前人研究1
1-2-1熱界面材料簡介1
1-2-2熱界面材料種類3
1-2-3熱界面材料的相關回顧 7
1-2-4焊料TIM簡介及低溫焊料10
1-2-5低熔點合金12
1-2-6 In-Bi-Sn合金13
1-2-7松香助焊劑15
1-2-8潤濕性16
1-3 研究動機18
第二章 文獻回顧19
2-1 基本熱傳原理19
2-1-1熱傳導19
2-1-2熱對流21
2-1-3熱輻射22
2-2表面處理技術22
2-2-1塗層(膜)的性能檢測24
2-2-1-1緻密性25
2-2-1-2接合力26
2-2-1-3特殊性能檢驗26
2-3塗層強度試驗27
2-3-1拉伸試驗法27
2-3-2剪切試驗法28
2-3-3壓縮試驗法28
2-4黏接技術的基本理論29
2-5接合黏接頭的剪切強度計算30
2-6陽極處理32
2-2 基本電鍍33
第三章 實驗方法及步驟34
3-1 實驗流程34
3-1-1 In-Bi-Sn合金材料與製備35
3-1-2 微孔板36
3-1-3 松香熱損失實驗36
3-1-4 鋁片電鍍銅37
3-1-5 鋁片陽極處理後電鍍銅層38
3-1-6 松香/檸檬酸/草酸於銅表面變化39
3-1-7 松香/檸檬酸於In-Bi-Sn合金表面變化40
3-1-8 In-Bi-Sn合金/銅,鋁基材潤濕觀察41
3-1-9 In-Bi-Sn合金液相流出量測41
3-1-10 In-Bi-Sn合金/銅,鋁基材接合強度試驗42
3-1-11 In-Bi-Sn合金/銅,鋁基材接合界面觀察43
3-1-12 In-Bi-Sn合金/松香/銅接合斷面觀察43
3-2 In-Bi-Sn合金三明治結構熱傳與熱阻分析44
3-2-1 In-Bi-Sn合金固液相熱傳分析44
3-2-2 In-Bi-Sn合金散熱系統總熱傳與總熱阻分析45
3-2-3 以紅外線熱像儀分析In-Bi-Sn合金熱傳行為45
3-2-4 In-Bi-Sn合金三明治結構放射率分析46
3-3實驗儀器47
第四章 結果與討論49
4-1 松香重量熱損失變化49
4-2 鋁片電鍍50
4-3 松香/檸檬酸/草酸於銅表面的變化54
4-4 松香/檸檬酸於In-Bi-Sn合金表面變化63
4-5 銅、鋁基材與In-Bi-Sn合金接觸角觀察93
4-6 量化In-Bi-Sn合金液相流出現象和行為114
4-7 In-Bi-Sn合金/銅與In-Bi-Sn合金/鋁的接合強度試驗117
4-8 In-Bi-Sn合金/銅與In-Bi-Sn合金/鋁的接合界面觀察129
4-9 In-Bi-Sn合金/松香/銅接合截面觀察136
4-10 In-Bi-Sn合金固液相之材料熱傳 143
4-11 In-Bi-Sn合金散熱系統總熱傳與總熱阻分析148
4-12 以紅外線熱像儀分析In-Bi-Sn合金界面熱傳行為159
4-13 In-Bi-Sn合金三明治結構放射率分析169
第五章 結論174
參考文獻176

[1]Ma, H. B., & Peterson, G. P. (2002). The Influence of the Thermal Conductivity on the Heat Transfer Performance in a Heat Sink. Transactions of the ASME 124, pp.164-169.
[2]Yovanovich, M. M., Culham, J. R., & Teertstra, P., P. (1997). Calculating Interface Resistance. ElectronicsCooling, Vol. 3,pp.24-29.
[3]Gwinn, J. P., & Webb, R. L. (2003). Performance and Testing of Thermal Interface Materials. Microelectronics Journal, pp.215-222.
[4]Daniel Blazej, Ph.D.Emerson & Cuming. (2003). Thermal Interface Materials. Electronics-Cooling Volume 9 .
[5]Sarvar, F., Whalley, D. C., & Conway, P. P. (2006). Thermal Interface Materials - A Review of the State of the Art. 2006 Electronics System Integration Technology Conference, pp.1293-1295.
[6]Viswanath, R., Wakharkar, V., Watwe, A., & Lebonheur, V. (2000) . Thermal Performance Challenges from Silicon to Systems. Intel Technology Journal Q3,pp.6,pp.1-16.
[7]Singhal, V., Siegmund, T., & Garimella, S. V. (2004) . Optimization of Thermal Interface Materials for Electronics Cooling Applications. IEEE Transactions on Components and Packaging Technologies.Vol.27 ,pp.244-252.
[8]Rauch, B. (2000). Understanding The Performance Characteristics of Phase-Change Thermal Interface Materials. Inter Society Conference on Thermal Phenomena, pp.42-47.
[9]Eric , C ., Samson , et.al. (2005). Interface Material Selection and a Thermal Management Technique. Intel Technololgy journal Volume9 Issue 1.
[10]F. Mills. (1995). Basic Heat and Mass Transfer. Irwin.
[11]Chiu, C. P., Solbrekken, G. L., & Chung, Y. D. (1997). Thermal Modeling of Grease-Type Interface Material in PPGA Application. Proc. 13th IEEE Semi-Therm. pp.57–63.
[12]Mahajan, R., Chiu, C., & Prasher, R. (2004). Thermal Interface Materials: A Brief Review of Design Characteristics and Materials. Electron. Cooling.
[13]Prasher, R. S. (2001). Surface Chemistry and Characteristics Based Model for the Thermal Contact Resistance of Fluidic Interstitial Thermal Interface Materials. J. Heat Transf.pp. 969–975.
[14]Grujicic, M., Zhao, C. L., & Dusel, E. C. (2005). The Effect of Thermal Contact Resistance on Heat Management in the Electronic Packaging. Applied Surface Science 246 ,pp. 290–302.
[15]Martin Y, Kessel T V. (2007). High performance liquid metal thermal interface for large volume production . Ibm Corporation.
[16]Chiu C P, Maveety J G, Quan A T. (2002). Characterization of solder interfaces using laser flash metrology. Microelectronics Reliability , 42(1): pp. 93-100.
[17]Sharma D, Tiwari R K, Sharma R, et al. (2016). Two-Phase Metallic Thermal Interface Materials Processed Through Liquid Phase Sintering Followed by Accumulative Roll Bonding . IEEE Transactions on Components Packaging & Manufacturing Technology, 6(1): pp. 58-66.
[18]Karl J P , Kathleen A S. (2004). Handbook of Lead-free Solder Technology for Microelectronic Assemblies. New York . Marcel Dekker Inc . pp. 281-300.
[19]Mulugeta A , Guna S . (2000) .Lead-free Sokders in Microelctronics . Materials Science and Enginerring , 27 pp. 95-141.
[20]Cook R.S., Token, K. H. & Calkins, R.L. (1984). A Novel Concept for Reducing Thermal Resistance. J. Spacecraft, Vol.21, pp.122-124.
[21]Cook R.S. & Token, K.H. (1983). Simple Thermal Joint. U.S. Patent 4,384,610.
[22]Webb, R. L., & Gwinn, J. P. (2002). Low Melting Point Thermal Interface Material. Proc.ITherm. , pp. 671–676.
[23]Lee, N. C. (1999). Lead-Free Soldering–Where the World is Going. Adv. Microelectron. ,pp.29-35.
[24]Yoon, S. W., Rho, B. S., Lee, H. M., Kim, C. U., & Lee, B. J. (1999). Investigation of the Phase Equilibria in the Sn-Bi-In Alloy System. Metallurgical and Materials Transactions. pp. 1503.
[25]Witusiewicz, V. T., Hecht, U., Böttger, B. (2007). Thermodynamic Reoptimisation of the Bi–In–Sn System Based on New Experimental Data. Journal of Alloys and Compounds. pp. 115.
[26]莊玟寧(2014/6)。無助焊劑下錫鎳與錫銅合金在鎳金與鎳鈀金上之濕潤行為研究。國立中央大學化學工程與材料工程學系碩士論文,桃園市。
取自https://hdl.handle.net/11296/6rqphg
[27]陳志䋯(2017/8)。不同組成In-Bi-Sn熱界面材料的熱導行為之研究。遠東科技大學機械工程系碩士論文,台南市。取自https://hdl.handle.net/11296/bukv9k
[28]李祥(2010)。熱傳學分析。鼎茂圖書出版股份有限公司,pp. 1-2~1-47,p.3-61。
[29]王曉剛(2009)。熱傳學講義。pp. 23~25。檢自
網址: http://www.isu.edu.tw/upload/81201/-1/news/postfile_19733.pdf
[30]胡傳炘(2005.1重印)。表面處理手冊。北京工業大學出版社出版發行,pp. 1-2, pp. 562-619, pp. 602-605。
[31]王生軍( 2014/04)。平面光學元件黏接工藝與應力分析研究。中國四川成都電子科技大學電子與通訊工程系, pp.9-10。
[32]G. E. Thompson, G. C.Wood. (1983) . Anodic films on aluminum. in Corrosion:Aqueous Processes and Passive Films—Treatise of Material Science Technoloy, J. C. Scully, Ed, NewYork: Academic Press 23, 205.
[33]V. P. Parkhutik, V. I. Shershulsky. (1992) . Theoretical modelling of porous oxide growth on aluminium. J. Phys. D: Appl. Phys. 25, 1258.
[34]O. Jessensky, F. Mu¨ ller and U. Go¨sele. (1998). Self-organized formation of hexagonal pore arrays in anodic alumina. App. Phys. Lett. 72, 1173.
[35]侯映君(2014)。電鍍參數對鎳在多晶銅基板上電鍍磊晶成長的研究。國立中山大學材料與電光科學學系碩士論文,高雄市。取自https://hdl.handle.net/11296/e6e86u
[36]吳家毓(2015)。創新熱傳機構和其材料設計對鋁薄板散熱效果之影響。遠東科技大學機械工程系碩士論文,台南市。取自https://hdl.handle.net/11296/f23vkr
[37]Z. Jin, Y. Pan, J. Liu, D. Xu. (2000). Separation of rosin acids by molecular recognition: crystal structure of the complex of neoabietic acid with 2-amino-6-methyl-pyridine. Journal of Chemical Crystallography 30, 195–198.
[38]L. Qu, H. Ma, H. Zhao, A. Kunwar, N. Zhao. (2014). In site study on growth behavior of interfacial bubbles and its effect on interfacial reaction during a soldering porcess. Applied Surface Science 305 . 133–138.

電子全文 電子全文(網際網路公開日期:20270802)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top