跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/27 09:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳 遠
研究生(外文):Chen, Yuan
論文名稱:多孔空間中重力位能場的數值模擬
論文名稱(外文):Numerical Simulations for Gravitational Potential Fields in Space with Multiple Circular Holes
指導教授:嚴健彰嚴健彰引用關係
指導教授(外文):Yen, Chien-Chang
口試委員:鄧君豪吳金典
口試委員(外文):Teng, Jun-HaoWu, Jin-Dian
口試日期:2022-07-26
學位類別:碩士
校院名稱:輔仁大學
系所名稱:數學系碩士班
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:25
中文關鍵詞:數值模擬位能
外文關鍵詞:numerical simulationpotential
相關次數:
  • 被引用被引用:0
  • 點閱點閱:25
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在工業工程及食品製造業中管子穩定狀態的熱傳導與一個包含孔洞的無限平面相關。這裡探討許多在特定形狀的孔洞假設下的理論研究。

然而,平面上孔洞的一般形狀的解必須使用數值方法。拉普拉斯方程(Laplace’s equation)的解由緊緻的電荷密度可以得到基函數及電荷密度相乘的積分。基於均勻網格離散化及泰勒級數展開,所提出的數值方法具有二階精度,通過解析位能密度在廣義麥克勞林(Maclaurin)圓盤的驗證。

在快速傅里葉變換(FFT)的幫助下,數值計算複雜度從O(N2)降低到O(N log2 N),其中N是一維區域的數量。最後,我們將其數值方法應用於多個圓形孔洞的現實中的工程問題上。
An infinite plane containing holes are related to steady state heat conduction of tube in engineering industry and food manufacturing industry. There many theoretical studies under the assumption of particular shapes of the holes are
explored.

However, the solutions of the plane of general shapes of holes have to employ the numerical approach. The solutions of Laplace’s equation given by the charge density of compact supported can be obtained by the integration of the product of the fundamental function and charge density. Based on the uniform grid discretization and Taylor series expansion, the proposed numerical method has the accuracy of second order verified by the analytic potential-density pair, the generalized Maclaurin disks.

With the help of fast Fourier transform, the numerical computation complexity is reduced from O(N2) to O(N log2 N), where N the total number of grid zones. Finally, we apply the numerical approach in the reality engineering problems of multiple circular holes.
1 Introduction.............................1
2 Potential and its calculation............2
3 Numerical Simulations....................8
4 Applications............................17
4.1 One hole..............................17
4.2 Multiple holes........................18
4.3 Two circles...........................22
5 Conclusion..............................23
[1] M. A. Abdou and A. A. Badr, Boundary value problems of an infinite plate
weekened by arbitrary shape hole, J. India Acad. Sci., 27 (1999) 215-227.

[2] T. Belytschko and T. Black, Elastic crack grow thin finite elements with minimal remeshing, Int. J. Numer. Methods Eng., 45 (1999) 601-620.

[3] J. Caldwell, Elastic analysis of a square plate with circular holes subjected to uniform pressure, Transactions on Modelling and Simulation, 3 (1993), 169-180.

[4] M. R. Barone and D. A. Caulk, Special boundary integral equations for approximate solution of Laplace’s equation in two-dimensional regions with circular holes, Q. Jl Mech. Appl. Math., 34 (1981), 265-286.

[5] D. A. Caulk, Analysis of elastic torsion in a bar with circular holes by a special boundary integral method, J. Appl. Mecch., 50 (1983), 101-108.

[6] D. A. Caulk, Analysis of Steady Heat Conduction in Regions with Circular Holes
by a Special Boundary-integral Method, IMA Journal of Applied Mathematics, 30 (1983), 231-246.

[7] D. A. Caulk, Special boundary integral equations for potential problems in regions with circular holes, Journal of Applied Mechanics, 51 (1984), 713-716.

[8] J. George, Boundary methods back in favour, (1985) Engineering Computers.

[9] W. M. Lee and J. T. Chen, Free vibration analysis of a circular plate with multiple circular holes by using the multipole Trefftz method, CMES, 1403 (2009) 1, 1-19.

[10] A. E. H. Love, A treatise on the mathematial theory of elasticity, (1934) 4th
edition, Univ. Press Cambridge. 24

[11] N. Moes, J. Dolbow, and T. Belytschko, A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng., 46 (1999) 131-150.

[12] A. K. Singh, Rashid Ali, V. K. Singh, An infinite plate weakened by a circular hole, International Journal of Engineering Science Invention, 2 (2013) 2, 32-39.

[13] S. P. Timoshenko and J. N. Goodier, Theory of elasticity, (1951) IInd edition, McGraw Hill Book Co. Inc., New York, Toronto, London.

[14] V. G. UKadˆgaonker, P. R. Avargerimath, and S. D. Koranne, Stress analysis
of an infinite plate containing two unequal collinear elliptical holes under inplane stresses at infinity, Indian Journal of Engineering and Materials Sciences, 2 (1995), 62-79.

[15] Q. Yang, H. Cao, Y. Tang, and B. Yang, Out-of-Plane bending of functionally
graded thin plates with a circular hole, Applied Sciences, 10 (2020), 2231: doi:10.3390/app10072231

[16] C. C. Yen, R. E. Taam, K. H. C. Yeh, K. C.), Self-gravitational force calculation of infinitesimally thin gaseous disks, Journal of Computational Physics, 231 (2012), 8246-8261.
電子全文 電子全文(網際網路公開日期:20230823)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top