跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 01:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江建華
研究生(外文):CHIANG, CHIEN-HUA
論文名稱:質譜技術於濫用藥物及微量元素檢測之應用研究
論文名稱(外文):Applications of mass spectrometry to the study of methods for abused drugs and trace elements
指導教授:黃友利黃友利引用關係
指導教授(外文):HUANG, YEOU-LIH
口試委員:張懿欣趙玉英林清江萬孟瑋
口試委員(外文):CHANG, YIH-HSINCHAO, YU-YINGLIN, CHING-CHIANGWAN, MENG-WEI
口試日期:2022-07-15
學位類別:博士
校院名稱:高雄醫學大學
系所名稱:醫學檢驗生物技術學系博士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:93
中文關鍵詞:氣相層析質譜法鴉片劑干擾酮基-鴉片類藥物硫酸氫鈉常態游離質譜法違禁藥物液相層析-串聯質譜法熱脫附電灑游離質譜法25-OH-維生素D妊娠糖尿病葡萄糖挑戰試驗微量元素丙二醛
外文關鍵詞:gas chromatography-mass spectrometryopiateinterferenceketo-opioidsodium bisulfateambient ionization mass spectrometryillicit drugliquid chromatography mass/massthermal desorption-electrospray ionization mass spectrometry25-OH-vitamin Dcoppergestational diabetes mellitusglucose challenge testtrace elementsmalonaldehyde
相關次數:
  • 被引用被引用:0
  • 點閱點閱:44
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
質譜分析技術因應各領域的檢測與分析需求,目前已發展出應用不同游離源的各類儀器設備。鑑於分析物的多樣性,並無單一形式的游離法能適用在各種分析領域。因此本研究探討了多種質譜分析技術在尿液濫用藥物、司法證物及血液中微量元素檢測上之應用。研究中依據儀器設備、樣品及分析物特性,改善了質譜法的方法學限制;利用新穎的質譜分析方法,提出能改善時效性及更具專一性的多功能分析模式;以及結合質譜法和臨床檢驗數據來達成臨床研究成果。
第一個實驗中,我們探討了傳統藥物確認測試之黃金標準-氣相層析質譜法 (gas chromatography-mass spectrometry, GC-MS),在定量尿液中嗎啡 (morphine) 和可待因 (codeine) 時,排除酮基-鴉片類藥物 (keto-opioids) 和甲基可待因 (norcodeine) 干擾的方法。我們設計在慣用的檢測流程中,於尿液樣本水解之後,以硫酸氫鈉 (sodium bisulfate) 進行尿液樣品前處理,改變酮基-鴉片類藥物的分子結構,以去除來自此類藥物之干擾。此方法分析可待因及嗎啡的線性範圍、檢測極限及定量極限分別為50-3000 ng/mL及120-3000 ng/mL、50 ng/mL及120 ng/mL、120 ng/mL及120 ng/mL。校正曲線呈現出良好線性,嗎啡和可待因的r2值均大於0.9987。兩者之分析精密度均小於5.61%,而準確度範圍則在91.67%至99.6%。在去除干擾的表現上、嗎啡及可待因在各種干擾物濃度為5000 ng/mL存在之狀況下,當濃度為120 ng/mL (40%閾值) 時均可得到準確的定量。同時研究結果顯示,此方法並無殘留污染的現象,而且對嗎啡和可待因的回收率分別為85.4%和89.3%。
第二個實驗中,我們利用了最近開發的熱脫附電灑游離質譜法 (thermal desorption electrospray ionization/mass spectrometry, TD-ESI/MS) 來快速分析多種管制藥品。通過重新分配安裝質譜游離源部件﹝從標準的電灑游離法源 (electrospray ionization, ESI) 耦合液相層析儀 (liquid chromatography, LC) 轉換為常態熱脫附電灑游離源 (ambient TD-ESI )﹞,此項直接分析法具有無須樣品前處理的定性篩選及常規定量確認之雙工模式 (dual-working mode),因此能識別更廣泛的違禁藥物。通過60-多重反應監測 (multiple reaction monitoring, MRM),在此分析方法,設定為順序掃描60個母離子/產物離子之離子轉換 (ion transition),從而辨識30種化合物 (每個化合物鑑定需兩對母離子/產物離子之離子轉換),應用此監測模式檢測含有四種藥物組成之標準品,每個藥物之離子轉換訊號強度的比率,可比得上經由8-MRM分析所獲得的訊號強度,由此可證明此方法對多種藥物檢測的選擇性 (selectivity)。而經由對含有不同活性成分的藥片進行連續分析,樣品與樣品之間沒有交叉污染或干擾現象,由此證明了此分析模式用於快速採樣 (兩個樣品/每分鐘) 的可靠性 (reliability) 。而在緝獲的藥物物質中,即使在總樣品重量其活性成分含量低於2mg/g時也可被檢測出,由此證明靈敏度 (sensitivity) 是足夠的。熱脫附電灑游離質譜法結合了可互換游離源 (ion source) 的 "即插即用 (plug-and-play)" 設計功能,具有能快速識別多種藥物的能力,因而此質譜法具有巨大的潛力,可推廣應用於目前使用液相串聯質譜法的實驗室,作為非法藥物檢測免前處理步驟的定性篩選工具。
第三個實驗中,我們利用感應耦合電漿質譜法 (inductively coupled plasma mass spectrometry, ICP-MS),進行人體血液中微量元素分析,結合其他臨床醫學分析儀器的檢測結果,探討了懷孕期間孕婦體內與葡萄糖代謝相關的賀爾蒙和元素之間的關係。研究中調查在妊娠中期及產後期間沒有妊娠糖尿病的孕婦,依據其葡萄糖挑戰試驗 (glucose challenge test, GCT) 正常與否,確定了各種參與葡萄糖調節因素之間的差異。本研究募集了在醫院接受常規產前及產後檢查的孕婦106名。使用臨床自動分析儀進行醣類相關項目、妊娠相關荷爾蒙和25-OH-維生素D檢測;使用石墨爐原子吸收光譜法或ICP-MS對6種元素進行了評估。葡萄糖挑戰試驗異常的孕婦 (n=27) 其25-OH-維生素D (p=0.006) 和銅 (p<0.001) 的濃度顯著高於葡萄糖挑戰試驗正常的孕婦 (n=79)。在調整可能的妊娠因子後,異常GCT仍然是妊娠期間25-OH-維生素D和銅濃度升高的重要促成因素 (分別為p=0.046和p=0.002)。此外,在經50-g GCT後之葡萄糖和25-OH-維生素D濃度 (p=0.001)、25-OH-維生素D和醣化血色素 (HbA1C) ( p=0.004)、血清銅和經50-g GCT後之葡萄糖濃度 (p=0.003) 及血清銅和HbA1C ( p<0.001) 之間,存在顯著的正相關。我們得出結論,血液中的25-OH-維生素D和銅與妊娠期間葡萄糖濃度密切相關;這兩個因素是孕婦葡萄糖耐受性不良 (impaired glucose tolerance) 的潛在臨床預測因素,並且間接降低圍產期的風險和新生兒併發症。
Due to the needs of detection and analysis from many fields, mass spectrometry analysis technology has developed a variety of instruments using different ionization sources. However, due to the diversity of specimen and analytes, there is no single form of ionization source that can be applied in all conditions. Therefore, in our study, the application of various mass spectrometry techniques in the detection of drugs abuse in urine, forensic evidence and trace elements in blood was investigated. Based on the characteristics of equipment, samples and analytes, the methodological limitations of mass spectrometry have been improved; based on the new approach on mass spectrometry, we propose the flexible and versatile analytical mode with improved specificity and turnaround time; and by the combination of data from the test of mass spectrometry and clinical laboratory instruments to achieve preliminary clinical research results.
In the first experiment, we explored the gold standard of traditional confirmatory test for forensic substance, gas chromatography mass spectrometry (GC-MS), in the quantification of morphine and codeine in urine to eliminate the interference from keto-opioids and norcodeine. We designed a pretreatment process with sodium bisulfate after the hydrolysis procedure of urine sample in the usual detection process to change the molecular structure of keto-opioid drugs in order to remove the disturbance from such drugs. After method verification, the linear range, limit of detection and limit of quantification of codeine and morphine were 50-3000 ng/mL, 50 ng/mL, 50 ng/mL and 120-3000 ng/mL, 120 ng/mL, 120 ng/mL, respectively. The calibration curves showed good linearity with r2 values greater than 0.9987 for both analytes. The analytical precisions were all less than 5.61%, while the accuracy ranged from 91.67% to 99.6%. In the performance of removing interference, morphine and codeine could be accurately quantified at a concentration of 120ng/mL (40% threshold) in the presence of various interfering substance at a concentration of 5,000 ng/mL. At the same time, the results showed that there was no carryover contamination in this method, and the recoveries of morphine and codeine were 85.4% and 89.3%, respectively.
In the second experiment, the recently developed technique of the thermal desorption electrospray ionization/mass spectrometry (TD-ESI/MS) was applied to the rapid analysis of multiple controlled substances. With the reallocation of mass spectral resources [from a standard ESI source coupled with liquid chromatography (LC) to an ambient TD-ESI source], this direct-analysis technique allows the identification of a wider range of illicit drugs through a dual-working mode (pretreatment-free qualitative screening/conventional quantitative confirmation). Through 60-MRM (multiple reaction monitoring) analysis - in which the MS/MS process was programmed to sequentially scan 60 precursor ion/product ion transitions and, thereby, identify 30 compounds (two precursor/product ion transitions per compound) - of a four-component (drug) standard, the signal intensity ratios of each drug transition were comparable with those obtained through 8-MRM analysis, demonstrating the selectivity of TD-ESI/MS for the detection of multiple drugs. The consecutive analyses of tablets containing different active components occurred with no cross-contamination or interference from sample to sample, demonstrating the reliability of the TD-ESI/MS technique for rapid sampling (two sample min-1). The active ingredients in seized drug materials could be detected even when they represented less than 2 mg g-1 of the total sample weight, demonstrating the sensitivity of TD-ESI/MS. Combining the ability to rapidly identify multiple drugs with the “plug-and-play” design of the interchangeable ion source, TD-ESI/MS has great potential for use as a pretreatment-free qualitative screening tool for laboratories currently using LC-MS/MS technique to analyze illicit drugs.
In the third experiment, we used inductively coupled plasma mass spectrometry (ICP-MS) to analyze trace elements in human blood, combined with the detection results of other clinical medical analytical instrument to investigate hormones and elements which are involved in the homeostasis of glucose metabolism during pregnancy. This present study determined the differences among the factors involved in glucose regulation for pregnant women with and without an abnormal glucose challenge test (GCT), but without gestational diabetes mellitus, during the second trimester of gestation and postpartum period. One hundred and six pregnant women who had received routine prenatal and postpartum examinations at our hospital were recruited. Sugar-related tests and the levels of pregnancy-associated hormones and 25-OH-vitamin D were performed using a clinical autoanalyzer; six elements were assessed using graphite furnace atomic absorption spectrometry or inductively coupled plasma mass spectrometry. The women in the abnormal GCT group (n=27) featured significantly higher levels of 25-OH-vitamin D (p=0.006) and copper (p<0.001) than those in the normal GCT group (n=79). After adjusting for possible pregnancy factors, abnormal GCT remained the significant contributing factor for the elevated levels of 25-OH-vitamin D and copper during gestation (p=0.046 and 0.002, respectively). Furthermore, significant positive correlations existed between 25-OH-vitamin D and glucose after a 50-g GCT (p=0.001), 25-OH-vitamin D and HbA1C (p=0.004), serum copper and glucose after a 50-g GCT (p=0.003), and serum copper and HbA1C (p<0.001). We conclude that blood 25-OH-vitamin D and copper are strongly correlated with glucose levels during gestation; these two factors are potential clinical predictors for maternal impaired glucose tolerance and, indirectly, for reducing perinatal risks and neonatal complications.
目錄 i
致謝 iii
中文摘要 iv
英文摘要 vi
縮寫表 ix
第一章 緒論 1
參考文獻 6
第二章 消除酮基-鴉片類藥物對氣相層析質譜尿液嗎啡與可待因分析的干擾
第一節 前言 9
第二節 材料與方法 10
第三節 結果與討論 15
第四節 結論 17
表與圖 18
參考文獻 27
第三章 使用常態質譜儀和液相串聯質譜儀快速檢測和鑑定多種街頭違禁藥品
第一節 前言 30
第二節 材料與方法 32
第三節 結果與討論 36
第四節 應用 40
第五節 結論 43
表與圖 45
參考文獻 57
第四章 葡萄糖挑戰試驗異常孕婦的體內25-OH-維生素D和銅含量高
第一節 前言 63
第二節 材料與方法 63
第三節 結果與討論 66
第四節 結論 69
表與圖 71
參考文獻 77
第五章 總結與未來展望 81
第一章
[1] A.J.T.L. Dempster, Edinburgh,, D.P. Magazine, J.o. Science, LII. The ionization and dissociation of hydrogen molecules and the formation of H 3, 31(185) (1916) 438-443.
[2] M.S. Munson, F.H.J.J.o.t.A.C.S. Field, Chemical ionization mass spectrometry. I. General introduction, 88(12) (1966) 2621-2630.
[3] J.B. Fenn, M. Mann, C.K. Meng, S.F. Wong, C.M. Whitehouse, Electrospray ionization for mass spectrometry of large biomolecules, Science 246(4926) (1989) 64-71.
[4] D. Carroll, I. Dzidic, R.N. Stillwell, K.D. Haegele, E.C. Horning, Atmospheric pressure ionization mass spectrometry. Corona discharge ion source for use in a liquid chromatograph-mass spectrometer-computer analytical system, Analytical Chemistry 47(14) (1975) 2369-2373.
[5] M. Posthumus, P. Kistemaker, H. Meuzelaar, M. Ten Noever de Brauw, Laser desorption-mass spectrometry of polar nonvolatile bio-organic molecules, Analytical chemistry 50(7) (1978) 985-991.
[6] Z. Takats, J.M. Wiseman, B. Gologan, R.G. Cooks, Mass spectrometry sampling under ambient conditions with desorption electrospray ionization, Science 306(5695) (2004) 471-473.
[7] R.B. Cody, J.A. Laramée, J.M. Nilles, H.D. Durst, Direct analysis in real time (DART) mass spectrometry, JEOL news 40(1) (2005) 8-12.
[8] R.S. Houk, V.A. Fassel, G.D. Flesch, H.J. Svec, A.L. Gray, C.E. Taylor, Inductively coupled argon plasma as an ion source for mass spectrometric determination of trace elements, Analytical Chemistry 52(14) (1980) 2283-2289.
[9] G.F. Grinstead, A closer look at acetyl and pentafluoropropionyl derivatives for quantitative analysis of morphine and codeine by gas chromatography/mass spectrometry, Journal of analytical toxicology 15(6) (1991) 293-298.
[10] A. Solans, R. De La Torre, J. Segura, Determination of morphine and codeine in urine by gas chromatography—mass spectrometry, Journal of pharmaceutical and biomedical analysis 8(8-12) (1990) 905-909.
[11] L.P. Hackett, L.J. Dusci, K.F. Ilett, G.M. Chiswell, Optimizing the hydrolysis of codeine and morphine glucuronides in urine, Therapeutic drug monitoring 24(5) (2002) 652-657.
[12] J. Fenton, J. Mummert, M. Childers, Hydromorphone and hydrocodone interference in GC/MS assays for morphine and codeine, Journal of analytical toxicology 18(3) (1994) 159-164.
[13] K.E. Brooks, N.B. Smith, Lack of hydrocodone and hydromorphone interference in the GC-MS detection of morphine and codeine, Journal of analytical toxicology 20(4) (1996) 269-270.
[14] J. Tettey, M. Collins, H. Salouras, H. Swan, Y. Wang, Recommended Methods for the Identification and Analysis of Cocaine in Seized Materials, Laboratory and Scientific Section United Nations Office on Drugs and Crime (2012).
[15] R.R. Steiner, R.L. Larson, Validation of the direct analysis in real time source for use in forensic drug screening, Journal of forensic sciences 54(3) (2009) 617-622.
[16] R.A. Musah, M.A. Domin, R.B. Cody, A.D. Lesiak, A. John Dane, J.R. Shepard, Direct analysis in real time mass spectrometry with collision‐induced dissociation for structural analysis of synthetic cannabinoids, Rapid Communications in Mass Spectrometry 26(19) (2012) 2335-2342.
[17] L. Leuthold, E. Varesio, G. Hopfgartner, Drug tablets instant analysis by desorption-electrospray ionisation mass spectrometry, Spectroscopy Europe 18(2) (2006) 8-12.
[18] K.E. Vircks, C.C. Mulligan, Rapid screening of synthetic cathinones as trace residues and in authentic seizures using a portable mass spectrometer equipped with desorption electrospray ionization, Rapid Communications in Mass Spectrometry 26(23) (2012) 2665-2672.
[19] M.Z. Huang, C.C. Zhou, D.L. Liu, S.S. Jhang, S.C. Cheng, J. Shiea, Rapid characterization of chemical compounds in liquid and solid states using thermal desorption electrospray ionization mass spectrometry, Analytical chemistry 85(19) (2013) 8956-8963.
[20] L. Gambling, C. Kennedy, H.J. McArdle, Iron and copper in fetal development, Seminars in cell & developmental biology, Elsevier, 2011, pp. 637-644.
[21] S. Swaminathan, V.A. Fonseca, M.G. Alam, S.V. Shah, The role of iron in diabetes and its complications, Diabetes care 30(7) (2007) 1926-1933.
[22] R.A. DiSilvestro, Zinc in relation to diabetes and oxidative disease, The Journal of nutrition 130(5) (2000) 1509S-1511S.
[23] K. Kostov, Effects of magnesium deficiency on mechanisms of insulin resistance in type 2 diabetes: focusing on the processes of insulin secretion and signaling, International journal of molecular sciences 20(6) (2019) 1351.
[24] Y. Hua, S. Clark, J. Ren, N. Sreejayan, Molecular mechanisms of chromium in alleviating insulin resistance, The Journal of nutritional biochemistry 23(4) (2012) 313-319.
[25] D. Bikle, Nonclassic actions of vitamin D, The Journal of Clinical Endocrinology & Metabolism 94(1) (2009) 26-34.
[26] B.E. Metzger, D.R. Coustan, O. Committee, Summary and recommendations of the fourth international workshop-conference on gestational diabetes mellitus, Diabetes care 21 (1998) B161.
[27] M.C. Al-Noaemi, M.H.F. Shalayel, Pathophysiology of gestational diabetes mellitus: The past, the present and the future, Gestational diabetes 6 (2011) 91-114.
[28] M. Li, Y. Song, S. Rawal, S.N. Hinkle, Y. Zhu, F. Tekola-Ayele, A. Ferrara, M.Y. Tsai, C. Zhang, Plasma prolactin and progesterone levels and the risk of gestational diabetes: a prospective and longitudinal study in a multiracial cohort, Frontiers in endocrinology 11 (2020) 83.
[29] S.A. Ahmed, M. Shalayel, Role of cortisol in the deterioration of glucose tolerance in Sudanese pregnant women, East African medical journal 76(8) (1999) 465-467.
[30] X. Chen, T.O. Scholl, T.P. Stein, Association of elevated serum ferritin levels and the risk of gestational diabetes mellitus in pregnant women: The Camden study, Diabetes care 29(5) (2006) 1077-1082.
[31] S. Genc, Z. Kusku-Kiraz, E. Dervisoglu, N. Oztop, N. Dinccag, F. Gurdol, The relation of oxidative stress biomarkers with proinflammatory cytokines in gestational diabetes, Clin Investig 7(2) (2017) 43-8.
第二章
[1] M. Van den Beuken-van Everdingen, J. De Rijke, A. Kessels, H. Schouten, M. Van Kleef, J. Patijn, Prevalence of pain in patients with cancer: a systematic review of the past 40 years, Annals of oncology 18(9) (2007) 1437-1449.
[2] A. Caraceni, G. Hanks, S. Kaasa, M.I. Bennett, C. Brunelli, N. Cherny, O. Dale, F. De Conno, M. Fallon, M. Hanna, Use of opioid analgesics in the treatment of cancer pain: evidence-based recommendations from the EAPC, The lancet oncology 13(2) (2012) e58-e68.
[3] N.J. Cherny, V. Chang, G. Frager, J.M. Ingham, P.J. Tiseo, B. Popp, R.K. Portenoy, K.M. Foley, Opioid pharmacotherapy in the management of cancer pain. A survey of strategies used by pain physicians for the selection of analgesic drugs and routes of administration, Cancer 76(7) (1995) 1283-1293.
[4] A. Rosenblum, L.A. Marsch, H. Joseph, R.K. Portenoy, Opioids and the treatment of chronic pain: controversies, current status, and future directions, Experimental and clinical psychopharmacology 16(5) (2008) 405.
[5] D.E. Joranson, K.M. Ryan, A.M. Gilson, J.L. Dahl, Trends in medical use and abuse of opioid analgesics, Jama 283(13) (2000) 1710-1714.
[6] L. Manchikanti, A. Singh, Therapeutic opioids: a ten-year perspective on the complexities and complications of the escalating use, abuse, and nonmedical use of opioids, Pain physician 11(2 Suppl) (2008) S63-S88.
[7] R. Heltsley, A. Zichterman, D.L. Black, B. Cawthon, T. Robert, F. Moser, Y.H. Caplan, E.J. Cone, Urine drug testing of chronic pain patients. II. Prevalence patterns of prescription opiates and metabolites, Journal of Analytical Toxicology 34(1) (2010) 32-38.
[8] A.B.M. Paul, L. Simms, A.A. Mahesan, E.C. Belanger, Teens, Drugs, & Vegas: Toxicological surveillance of illicit prescription and illegal drug abuse in adolescents (12–17 years) using post-mortem data in Clark County, Nevada from 2005 to 2015, Journal of forensic and legal medicine 58 (2018) 20-24.
[9] E.J. Cone, S. Dickerson, B.D. Paul, J.M. Mitchell, Forensic drug testing for opiates. IV. Analytical sensitivity, specificity, and accuracy of commercial urine opiate immunoassays, Journal of analytical toxicology 16(2) (1992) 72-78.
[10] J. Fenton, J. Mummert, M. Childers, Hydromorphone and hydrocodone interference in GC/MS assays for morphine and codeine, Journal of analytical toxicology 18(3) (1994) 159-164.
[11] K.E. Brooks, N.B. Smith, Lack of hydrocodone and hydromorphone interference in the GC-MS detection of morphine and codeine, Journal of analytical toxicology 20(4) (1996) 269-270.
[12] R. Coles, M.M. Kushnir, G.J. Nelson, G.A. McMillin, F.M. Urry, Simultaneous determination of codeine, morphine, hydrocodone, hydromorphone, oxycodone, and 6-acetylmorphine in urine, serum, plasma, whole blood, and meconium by LC-MS-MS, Journal of analytical toxicology 31(1) (2007) 1-14.
[13] M. Grabenauer, K.N. Moore, N.D. Bynum, R.M. White, J.M. Mitchell, E.D. Hayes, R. Flegel, Development of a quantitative LC–MS-MS assay for codeine, morphine, 6-acetylmorphine, hydrocodone, hydromorphone, oxycodone and oxymorphone in neat oral fluid, Journal of Analytical Toxicology 42(6) (2018) 392-399.
[14] M. Grabenauer, N.D. Bynum, K.N. Moore, R.M. White, J.M. Mitchell, E.D. Hayes, R. Flegel, Detection and quantification of codeine-6-glucuronide, hydromorphone-3-glucuronide, oxymorphone-3-glucuronide, morphine 3-glucuronide and morphine-6-glucuronide in human hair from opioid users by LC–MS-MS, Journal of Analytical Toxicology 42(2) (2018) 115-125.
[15] G.F. Grinstead, A closer look at acetyl and pentafluoropropionyl derivatives for quantitative analysis of morphine and codeine by gas chromatography/mass spectrometry, Journal of analytical toxicology 15(6) (1991) 293-298.
[16] A. Solans, R. De La Torre, J. Segura, Determination of morphine and codeine in urine by gas chromatography—mass spectrometry, Journal of pharmaceutical and biomedical analysis 8(8-12) (1990) 905-909.
[17] L.P. Hackett, L.J. Dusci, K.F. Ilett, G.M. Chiswell, Optimizing the hydrolysis of codeine and morphine glucuronides in urine, Therapeutic drug monitoring 24(5) (2002) 652-657.
[18] Mandatory guidelines for federal workplace drug testing programs., in: D.o.H.a.H. Services (Ed.) Fed. Regist., 1998, pp. 63483-63484.
[19] Mandatory Guidelines for Federal Workplace Drug Testing Programs. Available at:https://www.federalregister.gov/documents/2022/04/07/2022-06884/mandatory-guidelines-for-federal-workplace-drug-testing-programs [Accessed 28 July 2022].
[20] L.A. Broussard, L.C. Presley, T. Pittman, R. Clouette, G.H. Wimbish, Simultaneous identification and quantitation of codeine, morphine, hydrocodone, and hydromorphone in urine as trimethylsilyl and oxime derivatives by gas chromatography–mass spectrometry, Clinical Chemistry 43(6) (1997) 1029-1032.
[21] C. Meadway, S. George, R. Braithwaite, A rapid GC–MS method for the determination of dihydrocodeine, codeine, norcodeine, morphine, normorphine and 6-MAM in urine, Forensic science international 127(1-2) (2002) 136-141.
[22] D.-L. Lin, W.-T. Chang, T.-L. Kuo, R.H. Liu, Chemical derivatization and the selection of deuterated internal standard for quantitative determination—methamphetamine example, Journal of analytical toxicology 24(4) (2000) 275-280.
第三章
[1] The European monitoring centre for drugs and drug addiction (EMCDDA). Statistical bulletin 2017-seizures of drug, (2018).Available at: http://www.emcdda.europa.eu/data/stats2017/szr. [Accessed 3 June 2018].
[2] T.S. Qiu, Z.Y. Lin, W.Z. Pan, 2015 Anti-drug report. Taiwan:Ministry of Justice., (2015).
[3] J. Tettey, M. Collins, H. Salouras, H. Swan, Y. Wang, Recommended Methods for the Identification and Analysis of Cocaine in Seized Materials, Laboratory and Scientific Section United Nations Office on Drugs and Crime (2012).
[4] P. Jankovics, A. Váradi, L. Tölgyesi, S. Lohner, J. Németh-Palotás, J. Balla, Detection and identification of the new potential synthetic cannabinoids 1-pentyl-3-(2-iodobenzoyl) indole and 1-pentyl-3-(1-adamantoyl) indole in seized bulk powders in Hungary, Forensic science international 214(1-3) (2012) 27-32.
[5] Y. Machado, J.C. Neto, P.E.N. Barbosa, R.A. Lordeiro, R.B. Alves, Brephedrone: a new psychoactive substance seized in Brazil, Forensic science international 275 (2017) 302-307.
[6] B. Belafkih, S. Belouafa, A. Bennamara, A. Skalli, A. Abourriche, LC-MS/MS Analysis of MDMA in ecstasy tablets in Morocco, J Forensic Res 6(301) (2015) 2.
[7] T. Wang, Z. Yu, Y. Shi, P. Xiang, Enantiomer profiling of methamphetamine in white crystal and tablet forms (ma old) using LC–MS-MS, Journal of Analytical Toxicology 39(7) (2015) 551-556.
[8] E. Jagerdeo, A. Wriston, Rapid analysis of forensic‐related samples using two ambient ionization techniques coupled to high‐resolution mass spectrometers, Rapid Communications in Mass Spectrometry 31(9) (2017) 782-790.
[9] T.J. Kauppila, V. Arvola, M. Haapala, J. Pól, L. Aalberg, V. Saarela, S. Franssila, T. Kotiaho, R. Kostiainen, Direct analysis of illicit drugs by desorption atmospheric pressure photoionization, Rapid Communications in Mass Spectrometry 22(7) (2008) 979-985.
[10] L. Luosujärvi, U.M. Laakkonen, R. Kostiainen, T. Kotiaho, T.J. Kauppila, Analysis of street market confiscated drugs by desorption atmospheric pressure photoionization and desorption electrospray ionization coupled with mass spectrometry, Rapid Communications in Mass Spectrometry 23(9) (2009) 1401-1404.
[11] T.J. Kauppila, A. Flink, M. Haapala, U.-M. Laakkonen, L. Aalberg, R.A. Ketola, R. Kostiainen, Desorption atmospheric pressure photoionization–mass spectrometry in routine analysis of confiscated drugs, Forensic Science International 210(1-3) (2011) 206-212.
[12] T.J. Kauppila, A. Flink, U.M. Laakkonen, L. Aalberg, R.A. Ketola, Direct analysis of cannabis samples by desorption atmospheric pressure photoionization‐mass spectrometry, Drug Testing and Analysis 5(3) (2013) 186-190.
[13] R.R. Steiner, R.L. Larson, Validation of the direct analysis in real time source for use in forensic drug screening, Journal of forensic sciences 54(3) (2009) 617-622.
[14] R.A. Musah, M.A. Domin, R.B. Cody, A.D. Lesiak, A. John Dane, J.R. Shepard, Direct analysis in real time mass spectrometry with collision‐induced dissociation for structural analysis of synthetic cannabinoids, Rapid Communications in Mass Spectrometry 26(19) (2012) 2335-2342.
[15] R.A. Musah, M.A. Domin, M.A. Walling, J.R. Shepard, Rapid identification of synthetic cannabinoids in herbal samples via direct analysis in real time mass spectrometry, Rapid Communications in Mass Spectrometry 26(9) (2012) 1109-1114.
[16] S.J. Dunham, P.D. Hooker, R.M. Hyde, Identification, extraction and quantification of the synthetic cannabinoid JWH-018 from commercially available herbal marijuana alternatives, Forensic science international 223(1-3) (2012) 241-244.
[17] A.D. Lesiak, R.A. Musah, M.A. Domin, J.R. Shepard, DART‐MS as a preliminary screening method for “herbal incense”: Chemical analysis of synthetic cannabinoids, Journal of forensic sciences 59(2) (2014) 337-343.
[18] T. H. Chen, H.Y. Hsu, S.P. Wu, The detection of multiple illicit street drugs in liquid samples by direct analysis in real time (DART) coupled to Q-orbitrap tandem mass spectrometry, Forensic science international 267 (2016) 1-6.
[19] R. Lian, Z. Wu, X. Lv, Y. Rao, H. Li, J. Li, R. Wang, C. Ni, Y. Zhang, Rapid screening of abused drugs by direct analysis in real time (DART) coupled to time-of-flight mass spectrometry (TOF-MS) combined with ion mobility spectrometry (IMS), Forensic Science International 279 (2017) 268-280.
[20] M.K. McGonigal, J.A. Wilhide, P.B. Smith, N.M. Elliott, F.L. Dorman, Analysis of synthetic phenethylamine street drugs using direct sample analysis coupled to accurate mass time of flight mass spectrometry, Forensic science international 275 (2017) 83-89.
[21] S. Botch-Jones, J. Foss, D. Barajas, F. Kero, C. Young, J. Weisenseel, The detection of NBOMe designer drugs on blotter paper by high resolution time-of-flight mass spectrometry (TOFMS) with and without chromatography, Forensic science international 267 (2016) 89-95.
[22] L. Leuthold, E. Varesio, G. Hopfgartner, Drug tablets instant analysis by desorption-electrospray ionisation mass spectrometry, Spectroscopy Europe 18(2) (2006) 8-12.
[23] L.A. Leuthold, J.F. Mandscheff, M. Fathi, C. Giroud, M. Augsburger, E. Varesio, G. Hopfgartner, Desorption electrospray ionization mass spectrometry: direct toxicological screening and analysis of illicit Ecstasy tablets, Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up‐to‐the‐Minute Research in Mass Spectrometry 20(2) (2006) 103-110.
[24] K.E. Vircks, C.C. Mulligan, Rapid screening of synthetic cathinones as trace residues and in authentic seizures using a portable mass spectrometer equipped with desorption electrospray ionization, Rapid Communications in Mass Spectrometry 26(23) (2012) 2665-2672.
[25] N. Stojanovska, T. Kelly, M. Tahtouh, A. Beavis, S. Fu, Analysis of amphetamine‐type substances and piperazine analogues using desorption electrospray ionisation mass spectrometry, Rapid Communications in Mass Spectrometry 28(7) (2014) 731-740.
[26] N. Stojanovska, M. Tahtouh, T. Kelly, A. Beavis, S. Fu, Qualitative analysis of seized cocaine samples using desorption electrospray ionization‐mass spectrometry (DESI‐MS), Drug testing and analysis 7(5) (2015) 393-400.
[27] W. Romão, P.M. Lalli, M.F. Franco, G. Sanvido, N.V. Schwab, R. Lanaro, J.L. Costa, B.D. Sabino, M.I. Bueno, G.F. de Sa, Chemical profile of meta-chlorophenylpiperazine (m-CPP) in ecstasy tablets by easy ambient sonic-spray ionization, X-ray fluorescence, ion mobility mass spectrometry and NMR, Analytical and bioanalytical chemistry 400(9) (2011) 3053-3064.
[28] B.D. Sabino, W. Romão, M.L. Sodré, D.N. Correa, D.B.R. Pinto, F.O. Alonso, M.N. Eberlin, Analysis of Cocaine and Crack Cocaine via Thin Layer Chromatography Coupled to Easy Ambient Sonic Spray Ionization Mass Spectrometry, American Journal of Analytical Chemistry 2(6) (2011) 658.
[29] M.Z. Huang, C.C. Zhou, D.L. Liu, S.S. Jhang, S.C. Cheng, J. Shiea, Rapid characterization of chemical compounds in liquid and solid states using thermal desorption electrospray ionization mass spectrometry, Analytical chemistry 85(19) (2013) 8956-8963.
[30] J.B. Hu, T.R. Chen, C.H. Chang, J.Y. Cheng, Y.C. Chen, P.L. Urban, A compact 3D-printed interface for coupling open digital microchips with Venturi easy ambient sonic-spray ionization mass spectrometry, Analyst 140(5) (2015) 1495-1501.
[31] Y.Y. Chao, Y.L. Chen, W.C. Chen, B.H. Chen, Y.L. Huang, Rapid detection of illegal colorants on traditional Chinese pastries through mass spectrometry with an interchangeable thermal desorption electrospray ionization source, Food chemistry 252 (2018) 189-197.
[32] Y.Y. Chao, Y.L. Chen, H.Y. Lin, Y.L. Huang, Rapid screening of basic colorants in processed vegetables through mass spectrometry using an interchangeable thermal desorption electrospray ionization source, Analytica Chimica Acta 1010 (2018) 44-53.
[33] L. Mercolini, M. Protti, M.C. Catapano, J. Rudge, A.E. Sberna, LC–MS/MS and volumetric absorptive microsampling for quantitative bioanalysis of cathinone analogues in dried urine, plasma and oral fluid samples, Journal of pharmaceutical and biomedical analysis 123 (2016) 186-194.
[34] Y.T. Cho, H. Su, S.J. Lin, B.H. Wu, C.Y. Lai, I.C. Huang, Using thermal desorption electrospray ionization mass spectrometry to rapidly determine antimicrobial preservatives in cosmetics, Rapid Communications in Mass Spectrometry 30(21) (2016) 2315-2322.
[35] European Pharmacopoeia. European directorate for the quality of medicines. Strasbourg, France: Council of Europe; 2007.
[36] The Judicial Yuan of the Republic of China. Supreme court's criminal judgment No.617. Taipei City, Taiwan R.O.C.,(2013) Available at: http://jirs.judicial.gov.tw/FJUD/HISTORYSELF.aspx?SwitchFrom=1&selectedOwner=H&selectedCrmyy=102&selectedCrmid=%e5%8f%b0%e4%b8%8a&selectedCrmno=000617&selectedCrtid=TPS.
[37] M.Z. Huang, S.C. Cheng, Y.T. Cho, J. Shiea, Ambient ionization mass spectrometry: a tutorial, Analytica chimica acta 702(1) (2011) 1-15.
[38] M.C. Bernier, F. Li, B. Musselman, P.N. Newton, F.M. Fernández, Fingerprinting of falsified artemisinin combination therapies via direct analysis in real time coupled to a compact single quadrupole mass spectrometer, Analytical Methods 8(36) (2016) 6616-6624.
[39] The European Communities. Commission Decision(2002/657/EC) of 12 August 2002. Implementing Council Directive (96/23/EC) concerning the performance of analytical methods and the interpretation of results, Off J Eur Communities L221 (2002) 8-36.
[40] C. Coulter, M. Garnier, C. Moore, Analysis of tetrahydrocannabinol and its metabolite, 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid, in oral fluid using liquid chromatography with tandem mass spectrometry, Journal of analytical toxicology 36(6) (2012) 413-417.
[41] C. Yuan, D. Chen, S. Wang, Drug confirmation by mass spectrometry: Identification criteria and complicating factors, Clinica Chimica Acta 438 (2015) 119-125.
[42] J.V. Sancho, O.J. Pozo, F.J. López, F. Hernández, Different quantitation approaches for xenobiotics in human urine samples by liquid chromatography/electrospray tandem mass spectrometry, Rapid Communications in Mass Spectrometry 16(7) (2002) 639-645.
[43] M. Jemal, A. Schuster, D.B. Whigan, Liquid chromatography/tandem mass spectrometry methods for quantitation of mevalonic acid in human plasma and urine: method validation, demonstration of using a surrogate analyte, and demonstration of unacceptable matrix effect in spite of use of a stable isotope analog internal standard, Rapid Communications in Mass Spectrometry 17(15) (2003) 1723-1734.
[44] C.W. Lee, H. Su, Y.D. Cai, M.T. Wu, D.-C. Wu, J. Shiea, Rapid identification of psychoactive drugs in drained gastric lavage fluid and whole blood specimens of drug overdose patients using ambient mass spectrometry, Mass Spectrometry 6(2) (2017) S0056-S0056.
[45] “Erimin 5” tablets in Singapore, Drug Net Asia; 2006 (2006).Available at:http://www.asianforensic.net/documents/DrugNet%20Newsletter/DrugNet%20Asia%20Issue%205%202006.pdf. [Accessed 3 June 2018].
[46] Y.K. Chong, M.M. Kaprawi, K.B. Chan, The quantitation of nimetazepam in Erimin-5 tablets and powders by reverse-phase HPLC, Microgram 2(1-4) (2004) 27-33.
[47] Drugs that users smoke. Desert hope treatment center. Abailable at:http://deserthopetreatment.com/drug-abuse/administration-methods/smoke/. [Accessed 3 June 2018].
[48] Ministry of Education, Ministry of Justice, Ministry of Health and Welfare. Ministry of foreign affairs. Anti-drug report 2015. Taipei, Taiwan. Ministry of Education, Ministry of Justice, Ministry of Health and Welfare, Ministry of foreign affairs. (2015).
[49] M.R. Lee, J. Jeng, W.S. Hsiang, B.H. Hwang, Determination of pyrolysis products of smoked methamphetamine mixed with tobacco by tandem mass spectrometry, Journal of analytical toxicology 23(1) (1999) 41-45.
[50] L.P. Lue, J.A. Scimeca, B.F. Thomas, B.R. Martin, Identification and quantification of phencyclidine pyrolysis products formed during smoking, Journal of analytical toxicology 10(3) (1986) 81-86.
[51] H. Sekine, Y. Nakahara, Abuse of smoking methamphetamine mixed with tobacco: I. Inhalation efficiency and pyrolysis products of methamphetamine, Journal of Forensic Science 32(5) (1987) 1271-1280.
[52] H. Sekine, Y. Nakahara, Abuse of smoking methamphetamine mixed with tobacco: II. The formation mechanism of pyrolysis products, Journal of Forensic Science 35(3) (1990) 580-590.
[53] L. ZJ, Development of portable modulized micro gas chromatography for detection of ketamine gas marker. Taiwan, National Taiwan University; 2017. MSD Thesis (2017).
[54] Ministry of Education, Ministry of Justice, Ministry of Health and Welfare. Ministry of foreign affairs, Anti-drug report 2016. Taipei, Taiwan. Ministry of Education, Ministry of Justice, Ministry of Health and Welfare, Ministry of foreign affairs. (2016).
[55] Two cases of drug-laced instant coffee found in Taiwan, Taiwan news (2017). Available at: https://www.taiwannews.com.tw/en/news/3120923. [Accessed 3 June 2018].
第四章
[1] M.C. Al-Noaemi, M.H.F. Shalayel, Pathophysiology of gestational diabetes mellitus: The past, the present and the future, Gestational diabetes 6 (2011) 91-114.
[2] B.E. Metzger, D.R. Coustan, O. Committee, Summary and recommendations of the fourth international workshop-conference on gestational diabetes mellitus, Diabetes care 21 (1998) B161.
[3] D. Mitanchez, Foetal and neonatal complications in gestational diabetes: perinatal mortality, congenital malformations, macrosomia, shoulder dystocia, birth injuries, neonatal complications, Diabetes & metabolism 36(6 Pt 2) (2010) 617-627.
[4] B. Whitelaw, C. Gayle, Gestational diabetes, Obstetrics, Gynaecology & Reproductive Medicine 21(2) (2011) 41-46.
[5] S.A. Ahmed, M. Shalayel, Role of cortisol in the deterioration of glucose tolerance in Sudanese pregnant women, East African medical journal 76(8) (1999) 465-467.
[6] M. Li, Y. Song, S. Rawal, S.N. Hinkle, Y. Zhu, F. Tekola-Ayele, A. Ferrara, M.Y. Tsai, C. Zhang, Plasma prolactin and progesterone levels and the risk of gestational diabetes: a prospective and longitudinal study in a multiracial cohort, Frontiers in endocrinology 11 (2020) 83.
[7] L. Gambling, C. Kennedy, H.J. McArdle, Iron and copper in fetal development, Seminars in cell & developmental biology, Elsevier, 2011, pp. 637-644.
[8] S. Swaminathan, V.A. Fonseca, M.G. Alam, S.V. Shah, The role of iron in diabetes and its complications, Diabetes care 30(7) (2007) 1926-1933.
[9] R.A. DiSilvestro, Zinc in relation to diabetes and oxidative disease, The Journal of nutrition 130(5) (2000) 1509S-1511S.
[10] B.W. Chaffee, J.C. King, Effect of zinc supplementation on pregnancy and infant outcomes: a systematic review, Paediatric and perinatal epidemiology 26 (2012) 118-137.
[11] K. Kostov, Effects of magnesium deficiency on mechanisms of insulin resistance in type 2 diabetes: focusing on the processes of insulin secretion and signaling, International journal of molecular sciences 20(6) (2019) 1351.
[12] Y. Hua, S. Clark, J. Ren, N. Sreejayan, Molecular mechanisms of chromium in alleviating insulin resistance, The Journal of nutritional biochemistry 23(4) (2012) 313-319.
[13] D. Bikle, Nonclassic actions of vitamin D, The Journal of Clinical Endocrinology & Metabolism 94(1) (2009) 26-34.
[14] P. Li, J. Yin, Y. Zhu, S. Li, S. Chen, T. Sun, Z. Shan, J. Wang, Q. Shang, X. Li, Association between plasma concentration of copper and gestational diabetes mellitus, Clinical Nutrition 38(6) (2019) 2922-2927.
[15] S. Zein, S. Rachidi, S. Awada, M. Osman, A. Al-Hajje, N. Shami, I. Sharara, K. Cheikh-Ali, P. Salameh, I. Hininger-Favier, High iron level in early pregnancy increased glucose intolerance, Journal of Trace Elements in Medicine and Biology 30 (2015) 220-225.
[16] J. Wen, Q. Hong, L. Zhu, P. Xu, Z. Fu, X. Cui, L. You, X. Wang, T. Wu, H. Ding, Association of maternal serum 25-hydroxyvitamin D concentrations in second and third trimester with risk of gestational diabetes and other pregnancy outcomes, International journal of obesity 41(4) (2017) 489-496.
[17] I.A.o. Diabetes, P.S.G.C. Panel, International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy, Diabetes care 33(3) (2010) 676-682.
[18] G. López Stewart, Diagnostic criteria and classification of hyperglycaemia first detected in pregnancy: A World Health Organization Guideline, (2014).
[19] K. Benhalima, C. Mathieu, P. Damm, A. Van Assche, R. Devlieger, G. Desoye, R. Corcoy, T. Mahmood, J. Nizard, C. Savona-Ventura, A proposal for the use of uniform diagnostic criteria for gestational diabetes in Europe: an opinion paper by the European Board & College of Obstetrics and Gynaecology (EBCOG), Diabetologia 58(7) (2015) 1422-1429.
[20] A.D. Association, Standards of medical care in diabetes—2010, Diabetes care 33(Suppl 1) (2010) S11.
[21] L.E. Donovan, A. Savu, A.L. Edwards, J.A. Johnson, P. Kaul, Prevalence and timing of screening and diagnostic testing for gestational diabetes mellitus: a population-based study in Alberta, Canada, Diabetes Care 39(1) (2016) 55-60.
[22] K. Benhalima, P. Van Crombrugge, C. Moyson, J. Verhaeghe, S. Vandeginste, H. Verlaenen, C. Vercammen, T. Maes, E. Dufraimont, C. De Block, The sensitivity and specificity of the glucose challenge test in a universal two-step screening strategy for gestational diabetes mellitus using the 2013 World Health Organization criteria, Diabetes care 41(7) (2018) e111-e112.
[23] J.Y. Uriu-Adams, C.L. Keen, Copper, oxidative stress, and human health, Molecular aspects of medicine 26(4-5) (2005) 268-298.
[24] M. Kilinc, A. Coskun, F. Bilge, S.S. Imrek, Y. Atli, Serum reference levels of selenium, zinc and copper in healthy pregnant women at a prenatal screening program in southeastern Mediterranean region of Turkey, Journal of Trace Elements in Medicine and Biology 24(3) (2010) 152-156.
[25] T.K. Das, M.R. Wati, K. Fatima-Shad, Oxidative stress gated by Fenton and Haber Weiss reactions and its association with Alzheimer’s disease, Archives of Neuroscience 2(2) (2015).
[26] N. Houstis, E.D. Rosen, E.S. Lander, Reactive oxygen species have a causal role in multiple forms of insulin resistance, Nature 440(7086) (2006) 944-948.
[27] R.L. Wilson, T. Bianco-Miotto, S.Y. Leemaqz, L.E. Grzeskowiak, G.A. Dekker, C.T. Roberts, Early pregnancy maternal trace mineral status and the association with adverse pregnancy outcome in a cohort of Australian women, Journal of Trace Elements in Medicine and Biology 46 (2018) 103-109.
[28] C.-C. Lin, H.-H. Huang, C.-W. Hu, B.-H. Chen, I.-W. Chong, Y.-Y. Chao, Y.-L. Huang, Trace elements, oxidative stress and glycemic control in young people with type 1 diabetes mellitus, Journal of Trace Elements in Medicine and Biology 28(1) (2014) 18-22.
[29] T. Naka, H. Kaneto, N. Katakami, T.-a. Matsuoka, A. Harada, Y. Yamasaki, M. Matsuhisa, I. Shimomura, Association of serum copper levels and glycemic control in patients with type 2 diabetes, Endocrine journal 60(3) (2013) 393-396.
[30] G. Mor, I. Cardenas, The immune system in pregnancy: a unique complexity, American journal of reproductive immunology 63(6) (2010) 425-433.
[31] P. Pantham, I.L.H. Aye, T.L. Powell, Inflammation in maternal obesity and gestational diabetes mellitus, Placenta 36(7) (2015) 709-715.
[32] M.F. Holick, N.C. Binkley, H.A. Bischoff-Ferrari, C.M. Gordon, D.A. Hanley, R.P. Heaney, M.H. Murad, C.M. Weaver, Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline, The Journal of clinical endocrinology & metabolism 96(7) (2011) 1911-1930.
[33] C. Palacios, L. Gonzalez, Is vitamin D deficiency a major global public health problem?, The Journal of steroid biochemistry and molecular biology 144 (2014) 138-145.
[34] M. Jain, S. Kapry, S. Jain, S. Singh, T. Singh, Maternal vitamin D deficiency: a risk factor for gestational diabetes mellitus in North India, Gynecol Obstet 5(1) (2015) 264.
[35] M. Lacroix, M.C. Battista, M. Doyon, G. Houde, J. Ménard, J.L. Ardilouze, M.F. Hivert, P. Perron, Lower vitamin D levels at first trimester are associated with higher risk of developing gestational diabetes mellitus, Acta diabetologica 51(4) (2014) 609-616.
[36] M. Amraei, S. Mohamadpour, K. Sayehmiri, S.F. Mousavi, E. Shirzadpour, A. Moayeri, Effects of vitamin D deficiency on incidence risk of gestational diabetes mellitus: a systematic review and meta-analysis, Frontiers in endocrinology 9 (2018) 7.
[37] L. Hu, Y. Zhang, X. Wang, L. You, P. Xu, X. Cui, L. Zhu, C. Ji, X. Guo, J. Wen, Maternal vitamin D status and risk of gestational diabetes: a meta-analysis, Cellular Physiology and Biochemistry 45(1) (2018) 291-300.
[38] K. Griew, R. Nunn, G. Fairbrother, S. Tewari, Early pregnancy vitamin D deficiency and gestational diabetes:'Exploring the link', Australian Journal of General Practice 48(11) (2019) 797-802.
[39] F.R. Pérez-López, V. Pasupuleti, E. Mezones-Holguin, V.A. Benites-Zapata, P. Thota, A. Deshpande, A.V. Hernandez, Effect of vitamin D supplementation during pregnancy on maternal and neonatal outcomes: a systematic review and meta-analysis of randomized controlled trials, Fertility and sterility 103(5) (2015) 1278-1288. e4.
[40] C. Palacios, L.M. De-Regil, L.K. Lombardo, J.P. Peña-Rosas, Vitamin D supplementation during pregnancy: Updated meta-analysis on maternal outcomes, The Journal of steroid biochemistry and molecular biology 164 (2016) 148-155.
[41] K.C. Chiu, A. Chu, V.L.W. Go, M.F. Saad, Hypovitaminosis D is associated with insulin resistance and β cell dysfunction, The American journal of clinical nutrition 79(5) (2004) 820-825.
[42] C.Y. Yue, C.M. Ying, Sufficience serum vitamin D before 20 weeks of pregnancy reduces the risk of gestational diabetes mellitus, Nutrition & metabolism 17(1) (2020) 1-7.
[43] J. Lauenborg, T. Hansen, D.M. Jensen, H. Vestergaard, L. Mølsted-Pedersen, P. Hornnes, H. Locht, O. Pedersen, P. Damm, Increasing incidence of diabetes after gestational diabetes: a long-term follow-up in a Danish population, Diabetes care 27(5) (2004) 1194-1199.
[44] L. Bellamy, J.P. Casas, A.D. Hingorani, D. Williams, Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis, The Lancet 373(9677) (2009) 1773-1779.
電子全文 電子全文(網際網路公開日期:20270823)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊