跳到主要內容

臺灣博碩士論文加值系統

(44.200.145.223) 您好!臺灣時間:2023/05/29 00:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡惠如
研究生(外文):TSAI,HUI-JU
論文名稱:塑化劑與三聚氰胺共暴露對於易感性族群的早期腎臟損傷及氧化傷害之影響研究
論文名稱(外文):Study of co-exposure of phthalates and melamine and markers of early renal damage and oxidative stress in the susceptible populations
指導教授:吳明蒼吳明蒼引用關係謝慧敏謝慧敏引用關係
指導教授(外文):WU, MING-TSANGHSIEH, HUI-MIN
口試委員:陳保中陳主智謝建台李建宏
口試委員(外文):CHEN, PAU-CHUNGCHEN, CHU-CHIHSHIEA JENTAIELEE, CHIENG-HUNG
口試日期:2022-06-24
學位類別:博士
校院名稱:高雄醫學大學
系所名稱:臨床醫學研究所博士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:114
中文關鍵詞:鄰苯二甲酸酯塑化劑三聚氰胺尿液微白蛋白尿腎臟傷害氧化傷害
外文關鍵詞:DEHPphthalatemelaminemicroalbuminuriakidney injuryoxidative stress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:121
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
背景:
腎臟疾病為國內十大死亡原因之一,罹患腎臟疾病的民眾容易罹患心血管疾病與中風等併發症,容易進入末期腎臟病進而需要透析治療。造成腎臟疾病的原因相當複雜,除了已知因素如老化、糖尿病、高血壓的影響外,其他環境因子特別是日常生活中接觸到的塑化劑及三聚氰胺等物質逐漸受到重視,台灣於2011年5月爆發塑化劑事件,許多孩童因而長期誤食含有高劑量塑化劑,最主要包括鄰苯二甲酸二(2-乙基己基)酯(di-(2-ethylhexyl) phthalate;簡稱DEHP)等的食品及保健食品等。三聚氰胺(melamine),如同塑化劑普遍存在於日常生活環境,我們研究團隊與國家衛生研究院共同合作,針對全台184位當時可能暴露於DEHP汙染食品的孩童(≤ 10歲)並有尿液檢體做初步分析發現,DEHP增加了兒童微量白蛋白尿的風險,同時接觸三聚氰胺可能會影響此風險。孕婦與孩童皆為易感性族群,接觸三聚氰胺或DEHP這兩種常見的有毒物質可能會對孕婦健康造成不利影響,包括腎臟損害。
先前的動物研究文獻曾提出DEHP會造成腎絲球與腎小管發炎等變化,亦提出塑化劑影響腎臟功能可能是經由氧化傷害造成的,三聚氰胺會在遠端腎小管中產生結晶而造成腎結石和急性腎損傷, DEHP 和三聚氰胺可能透過相似的途徑增加腎臟的氧化傷害,進而損傷腎小球或腎小管細胞。過去的流行病學研究觀察到共同暴露DEHP和三聚氰胺可能會存在交互的不利影響,進而增加腎臟傷害的風險。
我們利用兩個資料庫,一個資料庫對象為塑化劑汙染食品申訴者群體中的兒童與青少年(「塑化劑事件申訴者之環境毒物及健康風險評估研究」,前瞻性研究),另一個資料庫對象為第三孕期孕婦(「台灣婦幼出生世代研究」,橫斷式研究),塑化劑事件申訴者之環境毒物及健康風險評估研究持續追蹤這些暴露DEHP汙染食品的孩童與青少年,觀察其早期腎臟損傷指標的變化,是否會隨著時間的推移而逆轉,並且追蹤其尿液塑化劑代謝物濃度、尿液三聚氰胺濃度、尿液氧化傷害指標的變化及其交互相關性。台灣婦幼出生世代研究則是探討第三孕期孕婦的DEHP和三聚氰胺暴露與早期腎臟傷害指標的相關性。
方法:
200 名曾有攝取DEHP汙染食品的兒童及青少年(年齡< 18 歲)參加了第一輪調查(2012年8月至 2013年1月),170 名兒童與青少年參與第二輪追蹤(2014年7月至 2015年 2月),159 名兒童與青少年參與第三輪追蹤(2016年5月至 2016年10月)。在第一輪調查會使用問卷收集有關過去每日可能食用DEHP污染食品的資料來計算事件當時每日DEHP攝取量。以單次早晨第一次尿液樣本來測量塑化劑代謝物、三聚氰胺、及氧化傷害指標(malondialdehyde (MDA) and 8-oxo-2'-deoxyguanosine (8-OHdG))和早期腎臟傷害指標(微白蛋白尿, 微白蛋白與肌酸酐比值Albumin to Creatinine Ratio;簡稱ACR) and N-乙酰-b-氨基葡萄糖苷酶, N-acetyl-beta-D-glucosaminidase (NAG))。
在2012年10月至 2015年5月期間召募受試孕婦於第三孕期接受問卷調查、身體檢查以及血液和尿液檢查。以單次早晨第一次尿液樣本測量三聚氰胺、11 種塑化劑代謝物和和早期腎臟傷害指標(ACR和NAG)。根據三種尿液 DEHP 代謝物來計算每日 DEHP 攝入量。異常微白蛋白尿被定義為尿液ACR 高於 3.5 mg/mmol。
結果:
使用廣義估計方程式 (Generalized estimating equation, GEE)分析結果發現,過去塑化劑汙染食品與尿液微蛋白尿濃度有正相關,時間與尿液微蛋白尿濃度也有正相關,因此分析塑化劑汙染食品與時間的交互作用與微蛋白尿濃度的相關性發現,大多數交互作用為負相關,在過去每日DEHP 攝取量最高的組(>50 μg/kg/天)中,其在第二波追蹤調查觀察顯著負相關性(交互作用P值 = 0.014)。研究結果發現汙染食品中含DEHP愈高會增加兒童微量白蛋白尿的數值,雖此影響在第二次追蹤調查中短暫減弱,但在第三次追蹤調查中仍發現汙染食品DEHP對兒童微量白蛋白尿的影響持續存在,此外亦發現尿液三聚氰胺濃度與尿液微白蛋白尿及尿液氧化傷害指標有顯著相關。
共分析了 1433 名第三孕期的孕婦,其尿液三聚氰胺的中位數值為0.63 mg/mmol Cr 和估計的每日DEHP 攝取量為 1.84 mg/kg/day。與DEHP 攝取量第1四分位數組(1st quartile)相比,估計的 DEHP 攝取量的第4 四分位數組(4th quartile)個案的異常微白蛋白尿比例顯著增加。尿液三聚氰胺和DEHP 攝取量對於尿 ACR 和 NAG存在顯著的交互作用。
結論:
塑化劑與三聚氰胺為生活上常見的環境汙染物,可能影響易感性族群(包括:懷孕婦女或幼童)的腎臟功能,攝取塑化劑汙染食品的孩童與青少年應持續持續監測其腎臟功能和其他長期健康後果,孕婦也應盡量避免塑化劑及三聚氰胺等化學物質以減少腎臟傷害的風險,我們的研究成果不僅可了解對塑化劑及三聚氰胺與腎臟影響的相關機制以增加學術新知,更可對社會人群暴露於新興環境化學物質提出風險評估之指引。

Background:
Chronic Kidney disease (CKD) has been one of tenth death causes in Taiwan, and these patients have higher risk of progression to dialysis and cardiovascular mortality. The pathophysiology of renal function downhill is complex and multifactorial, and some environmental chemicals have been considered as additional crucial hazards of renal injury. A major health threat of phthalate-tainted foodstuffs occurred in Taiwan during April-July, 2011. Melamine has been considered an environmental nephrotoxin since the Chinese toxic milk scandal in 2008. Although the 2008 toxic milk scandal and the 2011 Taiwan food scandal have subsided, both phthalate and melamine are still widely present in the environment in Taiwan and are probably ubiquitous worldwide. Few animal studies have suggested that phthalates, such as di-(2-ethylhexyl) phthalate (DEHP) and di-iso-nonyl phthalate (DINP), can induce glomerulonephritis and damage tubulointerstitial tissues. Besides, exposure to either melamine or phthalate, two common toxicants, during pregnancy may cause adverse health effects, including kidney damage.
How the exact mechanism of kidney damage by phthalates occurs is still unclear. In collaboration with the researchers from National Health Research Institutes, we found that a significant and positive association between the levels of DEHP-tainted foods and microalbuminuria in affected children. Exposure to melamine perhaps modifies that risk. Previous studies suggested that oxidative stress may play a pathologic role of renal injury after phthalate exposure. However, phthalates via what molecular mechanisms to induce oxidative stress remains unknown.
Therefore, we hypothesize that children exposed to DEHP may be susceptible to glomerular injury leading to dysfunction of kidney, and the mechanism may include oxidative stress. This proposal includes two studies. One prospective cohort study (The Risk Assessment of the Phthalate Incident, RAPIT) investigates whether renal injury resulting from exposure to DEHP-tainted foods from the 2011 Taiwan Food Scandal is reversed over time. The temporal and interactive effects of past daily DEHP intake, current daily DEHP intake, and urinary melamine levels on oxidative stress and renal injury were also examined. In addition, we investigated the independent and interactive effect of exposure to melamine and phthalates, particularly DEHP, on markers of early renal injury in women their third trimester of pregnancy in another nationwide birth cohort, the Taiwan Maternal and Infant Cohort Study (TMICS).
Methods:
In RAPIT cohort, two hundred possibly DEHP-affected children (aged < 18 years) were enrolled in the first survey wave (August 2012–January 2013), with 170 and 159 children in the second (July 2014–February 2015) and third waves (May 2016–October 2016), respectively. The first wave comprised questionnaires that were used to collect information about possible past daily DEHP intake from DEHP-tainted foods. One-spot first morning urine samples were collected to measure melamine levels, phthalate metabolites, and markers indicating oxidative stress (malondialdehyde and 8-oxo-2'-deoxyguanosine), and renal injury (albumin/creatinine ratio (ACR) and N-acetyl-beta-D-glucosaminidase) in all three waves.
In TMICS cohort, participants were administered questionnaires, physical examinations, and blood and urine tests during their third trimester between October, 2012 and May, 2015. One-spot overnight urine specimens were used to simultaneously measure melamine, 11 phthalate metabolites, and two markers of renal injury, microalbumin and NAG. Estimated daily DEHP intake was calculated based on measurement of three urinary DEHP metabolites. Microalbuminuria was defined as having a urinary ACR higher than 3.5 mg/mmol.
Results:
In RAPIT cohort, we found that the highest impact associated with exposure to DEHP-tainted foods in increasing urinary ACR of children (aged < 18 years) was observed during the first wave, and the effect may partially diminish over time. Urinary melamine levels were significantly correlated to both urinary ACR and oxidative stress markers. In TMICS cohort, pregnant women in the highest quartile of estimated DEHP intake to have significantly higher urinary ACR and the prevalence of microalbuminuria, compared to those in the lowest quartile. In addition, there was a significant interactive effect between urinary melamine and estimated DEHP intake on urinary ACR and NAG.
Conclusion:
These results suggest that continuous monitoring of renal health and other long-term health consequences is required in individuals who were affected by the scandal in 2011. In addition, these two ubiquitous chemicals together may be associated with markers of early kidney injury in pregnant women. These findings are highly significant not only in public health but also in clinical medicine, since nowadays people are commonly exposed to phthalates or melamine due to they are ubiquitously present in the environment in our daily life.

1. 中文摘要 ------------------------------------------------ 4
2. 英文摘要 ------------------------------------------------ 8
3. 研究前言與目的 --------------------------------------- 13
4. 材料與方法---------------------------------------------- 22
5. 研究結果 ----------------------------------------------- 34
6. 討論 ------------------------------------------------------ 42
7. 結論、進行中的計畫與未來展望-------------------- 52
8. 圖表 ----------------------------------------------------- 56
9. 參考文獻 ------------------------------------------------ 84
10. 已接受刊登的研究 -------------------------------------- 92

1.Nugent RA, Fathima SF, Feigl AB, Chyung D. The burden of chronic kidney disease on developing nations: a 21st century challenge in global health. Nephron Clinical practice 2011; 118(3): c269-77.
2.Wen CP, Cheng TY, Tsai MK, et al. All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462 293 adults in Taiwan. Lancet 2008; 371(9631): 2173-82.
3.Wu CF, Peng CY, Liu CC, et al. Ambient Melamine Exposure and Urinary Biomarkers of Early Renal Injury. Journal of the American Society of Nephrology : JASN 2015.
4.Price RG. The role of NAG (N-acetyl-beta-D-glucosaminidase) in the diagnosis of kidney disease including the monitoring of nephrotoxicity. Clinical nephrology 1992; 38 Suppl 1: S14-9.
5.Dieterle F, Perentes E, Cordier A, et al. Urinary clusterin, cystatin C, beta2-microglobulin and total protein as markers to detect drug-induced kidney injury. Nature biotechnology 2010; 28(5): 463-9.
6.Karalliedde J, Viberti G. Microalbuminuria and cardiovascular risk. American journal of hypertension 2004; 17(10): 986-93.
7.Sarafidis PA, Bakris GL. Microalbuminuria and chronic kidney disease as risk factors for cardiovascular disease. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 2006; 21(9): 2366-74.
8.Toyama T, Furuichi K, Ninomiya T, et al. The impacts of albuminuria and low eGFR on the risk of cardiovascular death, all-cause mortality, and renal events in diabetic patients: meta-analysis. PloS one 2013; 8(8): e71810.
9.Weir MR. Microalbuminuria and cardiovascular disease. Clinical journal of the American Society of Nephrology : CJASN 2007; 2(3): 581-90.
10.Wang Y, Yuan A, Yu C. Correlation between microalbuminuria and cardiovascular events. International journal of clinical and experimental medicine 2013; 6(10): 973-8.
11.Ding W, Mak RH. Early markers of obesity-related renal injury in childhood. Pediatric nephrology 2015; 30(1): 1-4.
12.Zeng X, Hossain D, Bostwick DG, Herrera GA, Zhang PL. Urinary beta2-Microglobulin Is a Good Indicator of Proximal Tubule Injury: A Correlative Study with Renal Biopsies. Journal of biomarkers 2014; 2014: 492838.
13.Wu MT, Wu CF, Wu JR, et al. The public health threat of phthalate-tainted foodstuffs in Taiwan: the policies the government implemented and the lessons we learned. Environment international 2012; 44: 75-9.
14.Wu CF, Chen BH, Shiea J, et al. Temporal changes of urinary oxidative metabolites of di(2-ethylhexyl)phthalate after the 2011 phthalate incident in Taiwanese children: findings of a six month follow-up. Environmental science & technology 2013; 47(23): 13754-62.
15.Wu MT, Wu CF, Chen BH, et al. Intake of phthalate-tainted foods alters thyroid functions in Taiwanese children. PloS one 2013; 8(1): e55005.
16.Tsai HJ, Chen BH, Wu CF, et al. Intake of phthalate-tainted foods and microalbuminuria in children: The 2011 Taiwan food scandal. Environment international 2016; 89-90: 129-37.
17.Tsai HJ, Wu CF, Tsai YC, et al. Intake of Phthalate-tainted Foods and Serum Thyroid Hormones in Taiwanese Children and Adolescents. Scientific reports 2016; 6: 30589.
18.Colacino JA, Harris TR, Schecter A. Dietary intake is associated with phthalate body burden in a nationally representative sample. Environmental health perspectives 2010; 118(7): 998-1003.
19.Rudel RA, Gray JM, Engel CL, et al. Food packaging and bisphenol A and bis(2-ethyhexyl) phthalate exposure: findings from a dietary intervention. Environmental health perspectives 2011; 119(7): 914-20.
20.Halden RU. Plastics and health risks. Annual review of public health 2010; 31: 179-94.
21.Jurewicz J, Hanke W. Exposure to phthalates: reproductive outcome and children health. A review of epidemiological studies. International journal of occupational medicine and environmental health 2011; 24(2): 115-41.
22.Pak VM, McCauley LA, Pinto-Martin J. Phthalate exposures and human health concerns: A review and implications for practice. AAOHN journal : official journal of the American Association of Occupational Health Nurses 2011; 59(5): 228-33; quiz 34-5.
23.Ito Y, Yamanoshita O, Asaeda N, et al. Di(2-ethylhexyl)phthalate induces hepatic tumorigenesis through a peroxisome proliferator-activated receptor alpha-independent pathway. Journal of occupational health 2007; 49(3): 172-82.
24.Crocker JF, Safe SH, Acott P. Effects of chronic phthalate exposure on the kidney. Journal of toxicology and environmental health 1988; 23(4): 433-44.
25.Ganning AE, Brunk U, Dallner G. Phthalate esters and their effect on the liver. Hepatology 1984; 4(3): 541-7.
26.David RM, Moore MR, Finney DC, Guest D. Chronic toxicity of di(2-ethylhexyl)phthalate in rats. Toxicological sciences : an official journal of the Society of Toxicology 2000; 55(2): 433-43.
27.Trasande L, Sathyanarayana S, Trachtman H. Dietary phthalates and low-grade albuminuria in US children and adolescents. Clinical journal of the American Society of Nephrology : CJASN 2014; 9(1): 100-9.
28.Ingelfinger JR. Melamine and the global implications of food contamination. The New England journal of medicine 2008; 359(26): 2745-8.
29.Kang H, Lee JP, Choi K. Exposure to phthalates and environmental phenols in association with chronic kidney disease (CKD) among the general US population participating in multi-cycle NHANES (2005-2016). The Science of the total environment 2021; 791: 148343.
30.Tsai HJ, Wu PY, Huang JC, Chen SC. Environmental Pollution and Chronic Kidney Disease. International journal of medical sciences 2021; 18(5): 1121-9.
31.Chien CY, Wu CF, Liu CC, et al. High melamine migration in daily-use melamine-made tableware. J Hazard Mater 2011; 188(1-3): 350-6.
32.Hau AK, Kwan TH, Li PK. Melamine toxicity and the kidney. Journal of the American Society of Nephrology : JASN 2009; 20(2): 245-50.
33.Panuwet P, Nguyen JV, Wade EL, D'Souza PE, Ryan PB, Barr DB. Quantification of melamine in human urine using cation-exchange based high performance liquid chromatography tandem mass spectrometry. Journal of chromatography B, Analytical technologies in the biomedical and life sciences 2012; 887-888: 48-54.
34.Lin YT, Tsai MT, Chen YL, et al. Can melamine levels in 1-spot overnight urine specimens predict the total previous 24-hour melamine excretion level in school children? Clinica chimica acta; international journal of clinical chemistry 2013; 420: 128-33.
35.Sathyanarayana S, Flynn JT, Messito MJ, et al. Melamine and cyanuric acid exposure and kidney injury in US children. Environmental research 2019; 171: 18-23.
36.Zhu H, Kannan K. Inter-day and inter-individual variability in urinary concentrations of melamine and cyanuric acid. Environment international 2019; 123: 375-81.
37.Liu CC, Wu CF, Chen BH, et al. Low exposure to melamine increases the risk of urolithiasis in adults. Kidney international 2011; 80(7): 746-52.
38.Liu CC, Hsieh TJ, Wu CF, et al. Urinary melamine excretion and increased markers of renal tubular injury in patients with calcium urolithiasis: A cross-sectional study. Environmental pollution 2017; 231(Pt 2): 1284-90.
39.Tsai YC, Wu CF, Liu CC, et al. Urinary Melamine Levels and Progression of CKD. Clin J Am Soc Nephrol 2019; 14(8): 1133-41.
40.Kamijo Y, Hora K, Nakajima T, et al. Peroxisome proliferator-activated receptor alpha protects against glomerulonephritis induced by long-term exposure to the plasticizer di-(2-ethylhexyl)phthalate. Journal of the American Society of Nephrology : JASN 2007; 18(1): 176-88.
41.Hsieh TJ, Hsieh PC, Tsai YH, et al. Melamine induces human renal proximal tubular cell injury via transforming growth factor-beta and oxidative stress. Toxicological sciences : an official journal of the Society of Toxicology 2012; 130(1): 17-32.
42.Kuo FC, Tseng YT, Wu SR, Wu MT, Lo YC. Melamine activates NFkappaB/COX-2/PGE2 pathway and increases NADPH oxidase-dependent ROS production in macrophages and human embryonic kidney cells. Toxicology in vitro : an international journal published in association with BIBRA 2013; 27(6): 1603-11.
43.Lv Y, Liu P, Xiang C, Yang H. Oxidative stress and hypoxia observed in the kidneys of mice after a 13-week oral administration of melamine and cyanuric acid combination. Research in veterinary science 2013; 95(3): 1100-6.
44.Wang H, Gao N, Li W, Yang Z, Zhang T. Melamine induces autophagy in mesangial cells via enhancing ROS level. Toxicology mechanisms and methods 2015; 25(7): 581-7.
45.Amara I, Timoumi R, Graiet I, Ben Salem I, Adelou K, Abid-Essefi S. Di (2-ethylhexyl) phthalate induces cytotoxicity in HEK-293 cell line, implication of the Nrf-2/HO-1 antioxidant pathway. Environmental toxicology 2019; 34(9): 1034-42.
46.Wu CF, Hsiung CA, Tsai HJ, et al. Interaction of melamine and di-(2-ethylhexyl) phthalate exposure on markers of early renal damage in children: The 2011 Taiwan food scandal. Environmental pollution 2018; 235: 453-61.
47.Chen J, Shi X, Zhou X, et al. Renal function and the exposure to melamine and phthalates in Shanghai adults. Chemosphere 2020; 246: 125820.
48.Lee I, Park JY, Kim S, et al. Association of exposure to phthalates and environmental phenolics with markers of kidney function: Korean National Environmental Health Survey (KoNEHS) 2015-2017. Environment international 2020; 143: 105877.
49.Erkekoglu P, Giray BK, Kizilgun M, et al. Di(2-ethylhexyl)phthalate-induced renal oxidative stress in rats and protective effect of selenium. Toxicology mechanisms and methods 2012; 22(6): 415-23.
50.Ma P, Yan B, Zeng Q, et al. Oral exposure of Kunming mice to diisononyl phthalate induces hepatic and renal tissue injury through the accumulation of ROS. Protective effect of melatonin. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 2014; 68: 247-56.
51.Dobashi K, Asayama K, Nakane T, et al. Effect of peroxisome proliferator on extracellular glutathione peroxidase in rat. Free radical research 1999; 31(3): 181-90.
52.Mohammedi K, Patente TA, Bellili-Munoz N, et al. Glutathione peroxidase-1 gene (GPX1) variants, oxidative stress and risk of kidney complications in people with type 1 diabetes. Metabolism: clinical and experimental 2016; 65(2): 12-9.
53.Makuc J, Petrovic D. A review of oxidative stress related genes and new antioxidant therapy in diabetic nephropathy. Cardiovascular & hematological agents in medicinal chemistry 2011; 9(4): 253-61.
54.Scholze A, Krueger K, Diedrich M, et al. Superoxide dismutase type 1 in monocytes of chronic kidney disease patients. Amino acids 2011; 41(2): 427-38.
55.Togel F, Westenfelder C. Recent advances in the understanding of acute kidney injury. F1000prime reports 2014; 6: 83.
56.Wang X, Jiang L, Ge L, et al. Oxidative DNA damage induced by di-(2-ethylhexyl) phthalate in HEK-293 cell line. Environmental toxicology and pharmacology 2015; 39(3): 1099-106.
57.Liu CC, Hsieh TJ, Wu CF, et al. Interrelationship of environmental melamine exposure, biomarkers of oxidative stress and early kidney injury. J Hazard Mater 2020; 396: 122726.
58.Zhang Y, Lin L, Cao Y, Chen B, Zheng L, Ge RS. Phthalate levels and low birth weight: a nested case-control study of Chinese newborns. The Journal of pediatrics 2009; 155(4): 500-4.
59.Toft G, Jonsson BA, Lindh CH, et al. Association between pregnancy loss and urinary phthalate levels around the time of conception. Environ Health Perspect 2012; 120(3): 458-63.
60.Ferguson KK, McElrath TF, Meeker JD. Environmental phthalate exposure and preterm birth. JAMA pediatrics 2014; 168(1): 61-7.
61.Wu CF, Chen HM, Sun CW, et al. Cohort Profile: The Taiwan Maternal and Infant Cohort Study (TMICS) of phthalate exposure and health risk assessment. International journal of epidemiology 2018; 47(4): 1047-j.
62.Wu CF, Liu CC, Chen BH, et al. Urinary melamine and adult urolithiasis in Taiwan. Clinica chimica acta; international journal of clinical chemistry 2010; 411(3-4): 184-9.
63.Schwartz GJ, Munoz A, Schneider MF, et al. New equations to estimate GFR in children with CKD. Journal of the American Society of Nephrology : JASN 2009; 20(3): 629-37.
64.Remer T, Neubert A, Maser-Gluth C. Anthropometry-based reference values for 24-h urinary creatinine excretion during growth and their use in endocrine and nutritional research. The American journal of clinical nutrition 2002; 75(3): 561-9.
65.Koch HM, Bolt HM, Preuss R, Angerer J. New metabolites of di(2-ethylhexyl)phthalate (DEHP) in human urine and serum after single oral doses of deuterium-labelled DEHP. Archives of toxicology 2005; 79(7): 367-76.
66.Chen ML, Chen JS, Tang CL, Mao IF. The internal exposure of Taiwanese to phthalate--an evidence of intensive use of plastic materials. Environment international 2008; 34(1): 79-85.
67.Koch HM, Preuss R, Angerer J. Di(2-ethylhexyl)phthalate (DEHP): human metabolism and internal exposure-- an update and latest results. International journal of andrology 2006; 29(1): 155-65; discussion 81-5.
68.Anderson WA, Castle L, Scotter MJ, Massey RC, Springall C. A biomarker approach to measuring human dietary exposure to certain phthalate diesters. Food additives and contaminants 2001; 18(12): 1068-74.
69.Dewalque L, Charlier C, Pirard C. Estimated daily intake and cumulative risk assessment of phthalate diesters in a Belgian general population. Toxicology letters 2014; 231(2): 161-8.
70.Koch HM, Christensen KL, Harth V, Lorber M, Bruning T. Di-n-butyl phthalate (DnBP) and diisobutyl phthalate (DiBP) metabolism in a human volunteer after single oral doses. Archives of toxicology 2012; 86(12): 1829-39.
71.Hu CW, Chao MR, Sie CH. Urinary analysis of 8-oxo-7,8-dihydroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine by isotope-dilution LC-MS/MS with automated solid-phase extraction: Study of 8-oxo-7,8-dihydroguanine stability. Free radical biology & medicine 2010; 48(1): 89-97.
72.Hsu KC, Hsu PF, Chen YC, et al. Oxidative stress during bacterial growth characterized through microdialysis sampling coupled with HPLC/fluorescence detection of malondialdehyde. Journal of chromatography B, Analytical technologies in the biomedical and life sciences 2016; 1019: 112-6.
73.Graille M, Wild P, Sauvain JJ, Hemmendinger M, Guseva Canu I, Hopf NB. Urinary 8-isoprostane as a biomarker for oxidative stress. A systematic review and meta-analysis. Toxicology letters 2020; 328: 19-27.
74.Comper WD, Osicka TM. Detection of urinary albumin. Adv Chronic Kidney Dis 2005; 12(2): 170-6.
75.Johnson DW, Jones GR, Mathew TH, et al. Chronic kidney disease and measurement of albuminuria or proteinuria: a position statement. The Medical journal of Australia 2012; 197(4): 224-5.
76.Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL. Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environmental health perspectives 2005; 113(2): 192-200.
77.Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behavioural brain research 2001; 125(1-2): 279-84.
78.Kwak BO, Lee ST, Chung S, Kim KS. Microalbuminuria in normal Korean children. Yonsei medical journal 2011; 52(3): 476-81.
79.Cizmecioglu FM, Noyes K, Bath L, Kelnar C. Audit of microalbumin excretion in children with type I diabetes. Journal of clinical research in pediatric endocrinology 2009; 1(3): 136-43.
80.Wu D, Yang H, Luo J, et al. Age- and gender-specific reference values for urine albumin/creatinine ratio in children of southwest China. Clinica chimica acta; international journal of clinical chemistry 2014; 431: 239-43.
81.Chang JW, Liao KW, Huang CY, et al. Phthalate exposure increased the risk of early renal impairment in Taiwanese without type 2 diabetes mellitus. International journal of hygiene and environmental health 2020; 224: 113414.
82.Amara I, Salah A, Timoumi R, et al. Effect of di(2-ethylhexyl) phthalate on Nrf2-regulated glutathione homeostasis in mouse kidney. Cell stress & chaperones 2020; 25(6): 919-28.
83.Ashari S, Karami M, Shokrzadeh M, et al. The implication of mitochondrial dysfunction and mitochondrial oxidative damage in di (2-ethylhexyl) phthalate induced nephrotoxicity in both in vivo and in vitro models. Toxicology mechanisms and methods 2020; 30(6): 427-37.
84.Ward JM, Diwan BA, Ohshima M, Hu H, Schuller HM, Rice JM. Tumor-initiating and promoting activities of di(2-ethylhexyl) phthalate in vivo and in vitro. Environmental health perspectives 1986; 65: 279-91.
85.Wu CT, Wang CC, Huang LC, Liu SH, Chiang CK. Plasticizer di-(2-ethylhexyl)phthalate induces epithelial-to-mesenchymal transition and renal fibrosis in vitro and in vivo. Toxicological sciences : an official journal of the Society of Toxicology 2018.
86.Melough MM, Foster D, Sathyanarayana S. Dietary Sources of Melamine Exposure among US Children and Adults in the National Health and Nutrition Examination Survey 2003-2004. Nutrients 2020; 12(12).
87.Guo C, Yuan H, He Z. Melamine causes apoptosis of rat kidney epithelial cell line (NRK-52e cells) via excessive intracellular ROS (reactive oxygen species) and the activation of p38 MAPK pathway. Cell biology international 2012; 36(4): 383-9.
88.Li X, Lu J, Shang P, Bao J, Yue Z. The selective NADPH oxidase inhibitor apocynin has potential prophylactic effects on melamine-related nephrolithiasis in vitro and in vivo. Molecular and cellular biochemistry 2015; 399(1-2): 167-78.
89.Li X, Wu G, Shang P, Bao J, Lu J, Yue Z. Anti-nephrolithic potential of catechin in melamine-related urolithiasis via the inhibition of ROS, apoptosis, phospho-p38, and osteopontin in male Sprague-Dawley rats. Free radical research 2015; 49(10): 1249-58.
90.Hauser R, Meeker JD, Park S, Silva MJ, Calafat AM. Temporal variability of urinary phthalate metabolite levels in men of reproductive age. Environmental health perspectives 2004; 112(17): 1734-40.
91.Peck JD, Sweeney AM, Symanski E, et al. Intra- and inter-individual variability of urinary phthalate metabolite concentrations in Hmong women of reproductive age. Journal of exposure science & environmental epidemiology 2010; 20(1): 90-100.
92.Preau JL, Jr., Wong LY, Silva MJ, Needham LL, Calafat AM. Variability over 1 week in the urinary concentrations of metabolites of diethyl phthalate and di(2-ethylhexyl) phthalate among eight adults: an observational study. Environmental health perspectives 2010; 118(12): 1748-54.
93.Johns LE, Cooper GS, Galizia A, Meeker JD. Exposure assessment issues in epidemiology studies of phthalates. Environment international 2015; 85: 27-39.
94.Aylward LL, Hays SM, Zidek A. Variation in urinary spot sample, 24 h samples, and longer-term average urinary concentrations of short-lived environmental chemicals: implications for exposure assessment and reverse dosimetry. Journal of exposure science & environmental epidemiology 2017; 27(6): 582-90.
95.Bastiaensen M, Malarvannan G, Gys C, Ait Bamai Y, Araki A, Covaci A. Between- and within-individual variability of urinary phthalate and alternative plasticizer metabolites in spot, morning void and 24-h pooled urine samples. Environmental research 2020; 191: 110248.
96.Cowell CT, Rogers S, Silink M. First morning urinary albumin concentration is a good predictor of 24-hour urinary albumin excretion in children with type 1 (insulin-dependent) diabetes. Diabetologia 1986; 29(2): 97-9.
97.Cornelis T, Odutayo A, Keunen J, Hladunewich M. The kidney in normal pregnancy and preeclampsia. Seminars in nephrology 2011; 31(1): 4-14.
98.Acharya A, Santos J, Linde B, Anis K. Acute kidney injury in pregnancy-current status. Adv Chronic Kidney Dis 2013; 20(3): 215-22.
99.Brown MA, Lindheimer MD, de Swiet M, Van Assche A, Moutquin JM. The classification and diagnosis of the hypertensive disorders of pregnancy: statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertens Pregnancy 2001; 20(1): IX-XIV.
100.Cote AM, Brown MA, Lam E, et al. Diagnostic accuracy of urinary spot protein:creatinine ratio for proteinuria in hypertensive pregnant women: systematic review. Bmj 2008; 336(7651): 1003-6.
101.Bar J, Hod M, Erman A, et al. Microalbuminuria as an early predictor of hypertensive complications in pregnant women at high risk. Am J Kidney Dis 1996; 28(2): 220-5.
102.Salako BL, Olayemi O, Odukogbe AT, et al. Microalbuminuria in pregnancy as a predictor of preeclampsia and eclampsia. West Afr J Med 2003; 22(4): 295-300.
103.Gangaram R, Naicker M, Moodley J. Accuracy of the spot urinary microalbumin:creatinine ratio and visual dipsticks in hypertensive pregnant women. European journal of obstetrics, gynecology, and reproductive biology 2009; 144(2): 146-8.
104.De Silva DA, Halstead AC, Cote AM, Sabr Y, von Dadelszen P, Magee LA. Random urine albumin:creatinine ratio in high-risk pregnancy - Is it clinically useful? Pregnancy hypertension 2013; 3(2): 112-4.
105.Babu RP, Christy A, Hegde A, Manjrekar P, Joseph M. Microalbuminuria - A better marker in hypertensive disorders of pregnancy. Saudi journal of kidney diseases and transplantation : an official publication of the Saudi Center for Organ Transplantation, Saudi Arabia 2015; 26(5): 941-6.
106.Cade TJ, de Crespigny PC, Nguyen T, Cade JR, Umstad MP. Should the spot albumin-to-creatinine ratio replace the spot protein-to-creatinine ratio as the primary screening tool for proteinuria in pregnancy? Pregnancy hypertension 2015; 5(4): 298-302.
107.Jayaballa M, Sood S, Alahakoon I, Padmanabhan S, Cheung NW, Lee V. Microalbuminuria is a predictor of adverse pregnancy outcomes including preeclampsia. Pregnancy hypertension 2015; 5(4): 303-7.
108.Wilkinson C, Lappin D, Vellinga A, Heneghan HM, O'Hara R, Monaghan J. Spot urinary protein analysis for excluding significant proteinuria in pregnancy. Journal of obstetrics and gynaecology : the journal of the Institute of Obstetrics and Gynaecology 2013; 33(1): 24-7.
109.Chen J, Zhou X, Zhang H, et al. Association between urinary concentration of phthalate metabolites and impaired renal function in Shanghai adults. Environmental pollution 2019; 245: 149-62.
110.Kang H, Kim S, Lee G, et al. Urinary metabolites of dibutyl phthalate and benzophenone-3 are potential chemical risk factors of chronic kidney function markers among healthy women. Environment international 2019; 124: 354-60.
111.Ardron M, Macfarlane IA, Martin P, et al. Urinary excretion of albumin, alpha-1-microglobulin, and N-acetyl-B-D-glucosaminidase in relation to smoking habits in diabetic and nondiabetic subjects. The Journal of diabetic complications 1989; 3(3): 154-7.
112.Cheung CK, Lao T, Swaminathan R. Urinary excretion of some proteins and enzymes during normal pregnancy. Clinical chemistry 1989; 35(9): 1978-80.
113.Skrha J, Perusicova J, Sperl M, Bendl J, Stolba P. N-acetyl-beta-glucosaminidase and albuminuria in normal and diabetic pregnancies. Clinica chimica acta; international journal of clinical chemistry 1989; 182(3): 281-7.
114.Yoshida M, Furiya K, Takakuwa Y. Urinary excretion of N-acetyl-beta-D-glucosaminidase during normal pregnancy. Clinica chimica acta; international journal of clinical chemistry 1995; 235(1): 113-5.
115.Hayashi M, Tomobe K, Hirabayashi H, Hoshimoto K, Ohkura T, Inaba N. Increased excretion of N-acetyl-beta-D-glucosaminidase and beta2-microglobulin in gestational week 30. The American journal of the medical sciences 2001; 321(3): 168-72.
116.Hayashi M, Ueda Y, Hoshimoto K, et al. Changes in urinary excretion of six biochemical parameters in normotensive pregnancy and preeclampsia. Am J Kidney Dis 2002; 39(2): 392-400.
117.Goren MP, Sibai BM, el-Nazar A. Increased tubular enzyme excretion in preeclampsia. Am J Obstet Gynecol 1987; 157(4 Pt 1): 906-8.
118.Jacob M, Wilfred G, Kanagasabapathy AS, Balasubramaniam N. Urinary N-acetyl-beta-D-glucosaminidase in the prediction of preeclampsia and pregnancy-induced hypertension. The Australian & New Zealand journal of obstetrics & gynaecology 1993; 33(4): 395-7.
119.Perez-Blanco FJ, Sanabria MC, Huertas JM, Cantero J, Rodriguez-Cuartero A. Urinary N-acetyl-beta-glucosaminidase in the prediction of preeclampsia. Clinical nephrology 1998; 50(3): 169-71.
120.Paternoster DM, Stella A, Babbo GL, Pignataro R, Mussap M, Plebani M. Markers of tubular damage in pre-eclampsia. Minerva ginecologica 1999; 51(10): 373-7.
121.Wu CF, Peng CY, Liu CC, et al. Ambient Melamine Exposure and Urinary Biomarkers of Early Renal Injury. Journal of the American Society of Nephrology : JASN 2015; 26(11): 2821-9.
122.Fenton A, Montgomery E, Nightingale P, et al. Glomerular filtration rate: new age- and gender- specific reference ranges and thresholds for living kidney donation. BMC nephrology 2018; 19(1): 336.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊