|
1. Beevers, D.G., The atlas of heart disease and stroke. Journal of Human Hypertension, 2005. 19(6): p. 505-505. 2. Roth, G.A., et al., Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019. 2020. 76(25): p. 2982-3021. 3. Day, I.S.C.f.W.T., Thrombosis: a major contributor to the global disease burden. J Thromb Haemost, 2014. 12(10): p. 1580-1590. 4. Francula-Zaninovic, S. and I.A. Nola, Management of Measurable Variable Cardiovascular Disease' Risk Factors. Curr Cardiol Rev, 2018. 14(3): p. 153-163. 5. Masana, L., et al., Is there a role for lifestyle changes in cardiovascular prevention? What, when and how? Atheroscler Suppl, 2017. 26: p. 2-15. 6. Casas, R., et al., Nutrition and Cardiovascular Health. Int J Mol Sci, 2018. 19(12):3988. 7. Yusuf, S., et al., Global Burden of Cardiovascular Diseases. 2001. 104(22): p. 2746-2753. 8. Stamler, J., et al., Low risk-factor profile and long-term cardiovascular and noncardiovascular mortality and life expectancy: findings for 5 large cohorts of young adult and middle-aged men and women. Jama, 1999. 282(21): p. 2012-2018. 9. Sabatine, M.S., et al., Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N Engl J Med, 2017. 376(18): p. 1713-1722. 10. Baigent, C., et al., Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet, 2010. 376(9753): p. 1670-1681. 11. Arnett, D.K., et al., 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 2019. 140(11): p. e563-e595. 12. Abifadel, M., et al., Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet, 2003. 34(2): p. 154-156. 13. Rashid, S., et al., Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc Natl Acad Sci U S A, 2005. 102(15): p. 5374-5379. 14. Reiner, Z., Resistance and intolerance to statins. Nutr Metab Cardiovasc Dis, 2014. 24(10): p. 1057-1066. 15. Packard, C., et al., Intensive low-density lipoprotein cholesterol lowering in cardiovascular disease prevention: opportunities and challenges. Heart, 2021. 107(17): p. 1369-1375. 16. Yadav, K., M. Sharma, and K.C. Ferdinand, Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors: Present perspectives and future horizons. Nutr Metab Cardiovasc Dis, 2016. 26(10): p. 853-862. 17. Lambert, G., et al., The PCSK9 decade. J Lipid Res, 2012. 53(12): p. 2515-2524. 18. Page, M.M. and G.F. Watts, PCSK9 inhibitors - mechanisms of action. Aust Prescr, 2016. 39(5): p. 164-167. 19. Alexander, R.W., Hypertension and the Pathogenesis of Atherosclerosis. 1995. 25(2): p. 155-161. 20. Gidding, S.S. and N.B. Allen, Cholesterol and Atherosclerotic Cardiovascular Disease: A Lifelong Problem. 2019. 8(11): p. e012924. 21. Henning, R.J., Obesity and obesity-induced inflammatory disease contribute to atherosclerosis: a review of the pathophysiology and treatment of obesity. Am J Cardiovasc Dis, 2021. 11(4): p. 504-529. 22. Stary, H.C., et al., A Definition of Advanced Types of Atherosclerotic Lesions and a Histological Classification of Atherosclerosis. 1995. 92(5): p. 1355-1374. 23. Sanz, J. and Z.A. Fayad, Imaging of atherosclerotic cardiovascular disease. Nature, 2008. 451(7181): p. 953-957. 24. Moriya, J., Critical roles of inflammation in atherosclerosis. J Cardiol, 2019. 73(1): p. 22-27. 25. Libby, P., Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol, 2012. 32(9): p. 2045-2051. 26. Mayerl, C., et al., Atherosclerosis research from past to present--on the track of two pathologists with opposing views, Carl von Rokitansky and Rudolf Virchow. Virchows Arch, 2006. 449(1): p. 96-103. 27. Risk Factors in Coronary Heart Disease. 1964. 61(5_Part_1): p. 888-899. 28. Libby, P., et al., Atherosclerosis. Nat Rev Dis Primers, 2019. 5(1): p. 56. 29. Ravnskov, U., Is atherosclerosis caused by high cholesterol? QJM: An International Journal of Medicine, 2002. 95(6): p. 397-403. 30. Carmena, R., P. Duriez, and J.C. Fruchart, Atherogenic lipoprotein particles in atherosclerosis. Circulation, 2004. 109(23 Suppl 1): p. III2-7. 31. Boren, J., et al., Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J, 2020. 41(24): p. 2313-2330. 32. Havel, R.J., H.A. Eder, and J.H. Bragdon, The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest, 1955. 34(9): p. 1345-1353. 33. Gofman, J.W., F.T. Lindgren, and H. Elliott, Ultracentrifugal studies of lipoproteins of human serum. J Biol Chem, 1949. 179(2): p. 973-979. 34. Miller, Y.I., et al., Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ Res, 2011. 108(2): p. 235-248. 35. Navab, M., et al., The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J Lipid Res, 2004. 45(6): p. 993-1007. 36. Kuzuya, M., et al., Role of lipoprotein-copper complex in copper catalyzed-peroxidation of low-density lipoprotein. Biochim Biophys Acta, 1992. 1123(3): p. 334-341. 37. Itabe, H., T. Obama, and R. Kato, The Dynamics of Oxidized LDL during Atherogenesis. J Lipids, 2011. 2011: p. 418313. 38. Sawamura, T., et al., An endothelial receptor for oxidized low-density lipoprotein. Nature, 1997. 386(6620): p. 73-77. 39. Salvayre, R., et al., Oxidized low-density lipoprotein-induced apoptosis. Biochim Biophys Acta, 2002. 1585(2-3): p. 213-221. 40. Chen, C.H., et al., Low-density lipoprotein in hypercholesterolemic human plasma induces vascular endothelial cell apoptosis by inhibiting fibroblast growth factor 2 transcription. Circulation, 2003. 107(16): p. 2102-2108. 41. Yang, C.Y., et al., Isolation, characterization, and functional assessment of oxidatively modified subfractions of circulating low-density lipoproteins. Arterioscler Thromb Vasc Biol, 2003. 23(6): p. 1083-1090. 42. Avogaro, P., G.B. Bon, and G. Cazzolato, Presence of a modified low density lipoprotein in humans. 1988. 8(1): p. 79-87. 43. Demuth, K., et al., A Cytotoxic Electronegative LDL Subfraction Is Present in Human Plasma. 1996. 16(6): p. 773-783. 44. Estruch, M., et al., Electronegative LDL: a circulating modified LDL with a role in inflammation. Mediators Inflamm, 2013. 2013: p. 181324. 45. Tang, D., et al., Electronegative LDL circulating in smokers impairs endothelial progenitor cell differentiation by inhibiting Akt phosphorylation via LOX-1. J Lipid Res, 2008. 49(1): p. 33-47. 46. Chang, P.Y., et al., Aspirin protects human coronary artery endothelial cells against atherogenic electronegative LDL via an epigenetic mechanism: a novel cytoprotective role of aspirin in acute myocardial infarction. Cardiovasc Res, 2013. 99(1): p. 137-145. 47. Wang, G.-J., et al., Negatively charged L5 as a naturally occurring atherogenic low-density lipoprotein. BioMedicine, 2012. 2(4): p. 147-154. 48. Chan, H.C., et al., Highly electronegative LDL from patients with ST-elevation myocardial infarction triggers platelet activation and aggregation. Blood, 2013. 122(22): p. 3632-3641. 49. Chang, C.T., et al., Electronegative Low-density Lipoprotein Increases Coronary Artery Disease Risk in Uremia Patients on Maintenance Hemodialysis. Medicine (Baltimore), 2016. 95(2): p. e2265. 50. Hsu, J.F., et al., Low-density lipoprotein electronegativity is a novel cardiometabolic risk factor. PLoS One, 2014. 9(9): p. e107340. 51. Chu, C.S., et al., Range of L5 LDL levels in healthy adults and L5's predictive power in patients with hyperlipidemia or coronary artery disease. Sci Rep, 2018. 8(1): p. 11866. 52. Chu, C.S., et al., Clinical Significance of Electronegative Low-Density Lipoprotein Cholesterol in Atherothrombosis. Biomedicines, 2020. 8(8):254. 53. Lu, J., et al., Electronegative LDL impairs vascular endothelial cell integrity in diabetes by disrupting fibroblast growth factor 2 (FGF2) autoregulation. Diabetes, 2008. 57(1): p. 158-166. 54. Wang, Y.C., et al., Human electronegative LDL induces mitochondrial dysfunction and premature senescence of vascular cells in vivo. Aging Cell, 2018. 17(4): p. e12792. 55. Chen, W.Y., et al., Role of apolipoprotein E in electronegative low-density lipoprotein-induced mitochondrial dysfunction in cardiomyocytes. Metabolism, 2020. 107: p. 154227. 56. Antico Arciuch, V.G., et al., Mitochondrial regulation of cell cycle and proliferation. Antioxid Redox Signal, 2012. 16(10): p. 1150-1180. 57. Anderson, A.J., et al., Mitochondria—hubs for regulating cellular biochemistry: emerging concepts and networks. 2019. 9(8): p. 190126. 58. Osellame, L.D., T.S. Blacker, and M.R. Duchen, Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab, 2012. 26(6): p. 711-723. 59. Sagan, L., On the origin of mitosing cells. J Theor Biol, 1967. 14(3): p. 255-274. 60. Kuhlbrandt, W., Structure and function of mitochondrial membrane protein complexes. BMC Biol, 2015. 13: p. 89. 61. Cogliati, S., J.A. Enriquez, and L. Scorrano, Mitochondrial Cristae: Where Beauty Meets Functionality. Trends Biochem Sci, 2016. 41(3): p. 261-273. 62. Anderson, S., et al., Sequence and organization of the human mitochondrial genome. Nature, 1981. 290(5806): p. 457-465. 63. Needs, H.I., et al., Interplay between Mitochondrial Protein Import and Respiratory Complexes Assembly in Neuronal Health and Degeneration. Life (Basel), 2021. 11 ;11(5):432. 64. Bause, A.S. and M.C. Haigis, SIRT3 regulation of mitochondrial oxidative stress. Exp Gerontol, 2013. 48(7): p. 634-639. 65. He, J., et al., Inhibition of Mitochondrial Oxidative Damage Improves Reendothelialization Capacity of Endothelial Progenitor Cells via SIRT3 (Sirtuin 3)-Enhanced SOD2 (Superoxide Dismutase 2) Deacetylation in Hypertension. Arterioscler Thromb Vasc Biol, 2019. 39(8): p. 1682-1698. 66. Chen, M.L., et al., Trimethylamine-N-Oxide Induces Vascular Inflammation by Activating the NLRP3 Inflammasome Through the SIRT3-SOD2-mtROS Signaling Pathway. J Am Heart Assoc, 2017. 6(9) :e006347. 67. Dikalova, A.E., et al., Mitochondrial Deacetylase Sirt3 Reduces Vascular Dysfunction and Hypertension While Sirt3 Depletion in Essential Hypertension Is Linked to Vascular Inflammation and Oxidative Stress. Circ Res, 2020. 126(4): p. 439-452. 68. Dikalova, A.E., et al., Sirt3 Impairment and SOD2 Hyperacetylation in Vascular Oxidative Stress and Hypertension. Circ Res, 2017. 121(5): p. 564-574. 69. Mastrodonato, M., et al., Altered distribution of caveolin-1 in early liver steatosis. Eur J Clin Invest, 2011. 41(6): p. 642-651. 70. Fridolfsson, H.N., et al., Regulation of intracellular signaling and function by caveolin. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2014. 28(9): p. 3823-3831. 71. Fridolfsson, H.N., et al., Mitochondria-localized caveolin in adaptation to cellular stress and injury. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2012. 26(11): p. 4637-4649. 72. Schilling, J.M., B.P. Head, and H.H. Patel, Caveolins as Regulators of Stress Adaptation. Mol Pharmacol, 2018. 93(4): p. 277-285. 73. Sun, S.W., et al., Caveolae and caveolin-1 mediate endocytosis and transcytosis of oxidized low density lipoprotein in endothelial cells. Acta Pharmacol Sin, 2010. 31(10): p. 1336-1342. 74. Matarazzo, S., et al., Cholesterol-lowering drugs inhibit lectin-like oxidized low-density lipoprotein-1 receptor function by membrane raft disruption. Mol Pharmacol, 2012. 82(2): p. 246-254. 75. Ramirez, C.M., et al., Caveolin-1 Regulates Atherogenesis by Attenuating Low-Density Lipoprotein Transcytosis and Vascular Inflammation Independently of Endothelial Nitric Oxide Synthase Activation. Circulation, 2019. 140(3): p. 225-239. 76. Youle, R.J. and M. Karbowski, Mitochondrial fission in apoptosis. Nature Reviews Molecular Cell Biology, 2005. 6(8): p. 657-663. 77. Lu, J., et al., Mediation of Electronegative Low-Density Lipoprotein Signaling by LOX-1. 2009. 104(5): p. 619-627. 78. Bhatti, J.S., G.K. Bhatti, and P.H. Reddy, Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis, 2017. 1863(5): p. 1066-1077. 79. Scott, I. and R.J. Youle, Mitochondrial fission and fusion. Essays Biochem, 2010. 47: p. 85-98. 80. Raskob, G.E., et al., Thrombosis: a major contributor to global disease burden. Arterioscler Thromb Vasc Biol, 2014. 34(11): p. 2363-2371. 81. Shapiro, M.D., H. Tavori, and S. Fazio, PCSK9: From Basic Science Discoveries to Clinical Trials. Circ Res, 2018. 122(10): p. 1420-1438. 82. Ding, Z., et al., Cross-talk between LOX-1 and PCSK9 in vascular tissues. Cardiovasc Res, 2015. 107(4): p. 556-567. 83. Zhang, X., et al., Cav-1 (Caveolin-1) Deficiency Increases Autophagy in the Endothelium and Attenuates Vascular Inflammation and Atherosclerosis. Arterioscler Thromb Vasc Biol, 2020. 40(6): p. 1510-1522.
|