|
1.Zahia, S., Zapirain, M. B. G., Sevillano, X., González, A., Kim, P. J., & Elmaghraby, A. (2020). Pressure injury image analysis with machine learning techniques: A systematic review on previous and possible future methods. Artificial intelligence in medicine, 102, 101742. 2.Carracher, A. M., Marathe, P. H., & Close, K. L. (2018). International diabetes federation 2017. 3.Armstrong, D. G., Boulton, A. J., & Bus, S. A. (2017). Diabetic foot ulcers and their recurrence. New England Journal of Medicine, 376(24), 2367-2375. 4.Boulton, A. J., & Whitehouse, R. W. (2017). The diabetic foot. 5.Armstrong, D. G., Swerdlow, M. A., Armstrong, A. A., Conte, M. S., Padula, W. V., & Bus, S. A. (2020). Five year mortality and direct costs of care for people with diabetic foot complications are comparable to cancer. Journal of foot and ankle research, 13(1), 1-4. 6.Amin, N., & Doupis, J. (2016). Diabetic foot disease: from the evaluation of the “foot at risk” to the novel diabetic ulcer treatment modalities. World journal of diabetes, 7(7), 153. 7.Lemaster, J. W., Reiber, G. E., Smith, D. G., Heagerty, P. J., & Wallace, C. A. R. O. L. Y. N. (2003). Daily weight-bearing activity does not increase the risk of diabetic foot ulcers. Medicine and Science in Sports and Exercise, 35(7), 1093-1099. 8.Kirsner, R. S., & Vivas, A. C. (2015). Lower‐extremity ulcers: diagnosis and management. British Journal of Dermatology, 173(2), 379-390. 9.Schofield, J., Leelarathna, L., & Thabit, H. (2020). COVID-19: Impact of and on Diabetes. Diabetes Therapy, 11(7), 1429-1435. 10.Rogers, L. C., Lavery, L. A., Joseph, W. S., & Armstrong, D. G. (2020). All feet on deck—the role of podiatry during the COVID-19 pandemic: preventing hospitalizations in an overburdened healthcare system, reducing amputation and death in people with diabetes. Journal of the American Podiatric Medical Association, 0000-0000. 11.Zhao, W., Chellappa, R., Phillips, P. J., & Rosenfeld, A. (2003). Face recognition: A literature survey. ACM computing surveys (CSUR), 35(4), 399-458. 12.Ahonen, T., Hadid, A., & Pietikäinen, M. (2004, May). Face recognition with local binary patterns. In European conference on computer vision (pp. 469-481). Springer, Berlin, Heidelberg. 13.Li, S., Gong, D., & Yuan, Y. (2013). Face recognition using Weber local descriptors. Neurocomputing, 122, 272-283. 14.Kim, K. I., Jung, K., & Kim, H. J. (2002). Face recognition using kernel principal component analysis. IEEE signal processing letters, 9(2), 40-42. 15.Déniz, O., Bueno, G., Salido, J., & De la Torre, F. (2011). Face recognition using histograms of oriented gradients. Pattern recognition letters, 32(12), 1598-1603. 16.Guo, G., Li, S. Z., & Chan, K. (2000, March). Face recognition by support vector machines. In Proceedings fourth IEEE international conference on automatic face and gesture recognition (cat. no. PR00580) (pp. 196-201). IEEE. 17.Bhattacharyya, S. K., & Rahul, K. (2013). Face recognition by linear discriminant analysis. International Journal of Communication Network Security, 2(2), 31-35. 18.Masud, M., Muhammad, G., Alhumyani, H., Alshamrani, S. S., Cheikhrouhou, O., Ibrahim, S., & Hossain, M. S. (2020). Deep learning-based intelligent face recognition in IoT-cloud environment. Computer Communications, 152, 215-222. 19.Hu, G., Yang, Y., Yi, D., Kittler, J., Christmas, W., Li, S. Z., & Hospedales, T. (2015). When face recognition meets with deep learning: an evaluation of convolutional neural networks for face recognition. In Proceedings of the IEEE international conference on computer vision workshops (pp. 142-150). 20.Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260. 21.Jiang, M., Ma, Y., Guo, S., Jin, L., Lv, L., Han, L., & An, N. (2021). Using machine learning technologies in pressure injury management: systematic review. JMIR medical informatics, 9(3), e25704. 22.Chanussot-Deprez, C., & Contreras-Ruiz, J. (2013). Telemedicine in wound care: a review. Advances in skin & wound care, 26(2), 78-82. 23.Gardiner, S., & Hartzell, T. L. (2012). Telemedicine and plastic surgery: a review of its applications, limitations and legal pitfalls. Journal of Plastic, Reconstructive & Aesthetic Surgery, 65(3), e47-e53. 24.Le, T. N., Giap, D. B., Wang, J. W., & Wang, C. C. (2021). Tensor-Compensated Color Face Recognition. IEEE Transactions on Information Forensics and Security, 16, 3339-3354. 25.Lorente, L. S., Vega, J. M., & Velazquez, A. (2008). Generation of aerodynamics databases using high-order singular value decomposition. Journal of Aircraft, 45(5), 1779-1788. 26.Portnoy, J., Waller, M., & Elliott, T. (2020). Telemedicine in the era of COVID-19. The Journal of Allergy and Clinical Immunology: In Practice, 8(5), 1489-1491. 27.Boulton, A. J. (2021). Diabetic foot disease during the COVID-19 pandemic. Medicina, 57(2), 97. 28.DeBoard, R. H., Rondeau, D. F., Kang, C. S., Sabbaj, A., & McManus, J. G. (2007). Principles of basic wound evaluation and management in the emergency department. Emergency Medicine Clinics of North America, 25(1), 23-39. 29.Rahimi, R., Ochoa, M., Parupudi, T., Zhao, X., Yazdi, I. K., Dokmeci, M. R., ... & Ziaie, B. (2016). A low-cost flexible pH sensor array for wound assessment. Sensors and Actuators B: Chemical, 229, 609-617. 30.Grey, J. E., Enoch, S., & Harding, K. G. (2006). Wound assessment. Bmj, 332(7536), 285-288. 31.Yeong, E. K., Mann, R., Goldberg, M., Engrav, L., & Heimbach, D. (1996). Improved accuracy of burn wound assessment using laser Doppler. Journal of Trauma and Acute Care Surgery, 40(6), 956-962. 32.Romanelli, M., Dini, V., Bianchi, T., & Romanelli, P. (2007). Wound assessment by 3-dimensional laser scanning. Archives of dermatology, 143(10), 1331-1344. 33.Seo, H., Badiei Khuzani, M., Vasudevan, V., Huang, C., Ren, H., Xiao, R., ... & Xing, L. (2020). Machine learning techniques for biomedical image segmentation: an overview of technical aspects and introduction to state‐of‐art applications. Medical physics, 47(5), e148-e167. 34.Qassim, H., Verma, A., & Feinzimer, D. (2018, January). Compressed residual-VGG16 CNN model for big data places image recognition. In 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC) (pp. 169-175). IEEE. 35.Xia, X., Xu, C., & Nan, B. (2017, June). Inception-v3 for flower classification. In 2017 2nd International Conference on Image, Vision and Computing (ICIVC) (pp. 783-787). IEEE. 36.Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4510-4520). 37.Akiba, T., Suzuki, S., & Fukuda, K. (2017). Extremely large minibatch sgd: Training resnet-50 on imagenet in 15 minutes. arXiv preprint arXiv:1711.04325. 38.Baltruschat, I. M., Nickisch, H., Grass, M., Knopp, T., & Saalbach, A. (2019). Comparison of deep learning approaches for multi-label chest X-ray classification. Scientific reports, 9(1), 1-10. 39.Reddy, A. S. B., & Juliet, D. S. (2019, April). Transfer learning with ResNet-50 for malaria cell-image classification. In 2019 International Conference on Communication and Signal Processing (ICCSP) (pp. 0945-0949). IEEE.
|