|
文獻 1.Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2019. CA Cancer J Clin, 2019. 69(1): p. 7-34. 2.Hill, D.P., et al., Cisplatin-resistant triple-negative breast cancer subtypes: multiple mechanisms of resistance. BMC Cancer, 2019. 19(1): p. 1039. 3.Zhou, J., et al., The Drug-Resistance Mechanisms of Five Platinum-Based Antitumor Agents. 2020. 11. 4.Shen, D.W., et al., Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol Rev, 2012. 64(3): p. 706-21. 5.Costello, L.C. and R.B. Franklin, Zinc: The Wonder Drug for the Treatment of Carcinomas. Acta Sci Cancer Biol, 2020. 4(5): p. 33-39. 6.Wang, J., et al., Zinc dysregulation in cancers and its potential as a therapeutic target. Cancer Biol Med, 2020. 17(3): p. 612-625. 7.Costello, L.C. and R.B. Franklin, Decreased zinc in the development and progression of malignancy: an important common relationship and potential for prevention and treatment of carcinomas. Expert Opin Ther Targets, 2017. 21(1): p. 51-66. 8.Dasgupta, S., et al., Designing of novel zinc(ii) Schiff base complexes having acyl hydrazone linkage: study of phosphatase and anti-cancer activities. Dalton Trans, 2020. 49(4): p. 1232-1240. 9.Porchia, M., et al., Zinc Complexes with Nitrogen Donor Ligands as Anticancer Agents. Molecules, 2020. 25(24). 10.Boseggia, E., et al., Toward efficient Zn(II)-based artificial nucleases. J Am Chem Soc, 2004. 126(14): p. 4543-9. 11.Qian, J., et al., Efficient double-strand cleavage of DNA mediated by Zn(II)-based artificial nucleases. Dalton Trans, 2011. 40(20): p. 5617-24. 12.Gruber, B., et al., Vesicles and micelles from amphiphilic zinc(II)-cyclen complexes as highly potent promoters of hydrolytic DNA cleavage. J Am Chem Soc, 2011. 133(51): p. 20704-7. 13.Narwane, M., et al., Tris-(2-pyridyl)-pyrazolyl Borate Zinc(II) Complexes: Synthesis, DNA/Protein Binding and In Vitro Cytotoxicity Studies. Molecules, 2021. 26(23). 14.Sznarkowska, A., et al., Inhibition of cancer antioxidant defense by natural compounds. Oncotarget, 2017. 8(9): p. 15996-16016. 15.Li, H.Y., et al., Celastrol induces apoptosis and autophagy via the ROS/JNK signaling pathway in human osteosarcoma cells: an in vitro and in vivo study. Cell Death Dis, 2015. 6: p. e1604. 16.Schieber, M. and N.S. Chandel, ROS function in redox signaling and oxidative stress. Curr Biol, 2014. 24(10): p. R453-62. 17.Shields, H.J., A. Traa, and J.M. Van Raamsdonk, Beneficial and Detrimental Effects of Reactive Oxygen Species on Lifespan: A Comprehensive Review of Comparative and Experimental Studies. Front Cell Dev Biol, 2021. 9: p. 628157. 18.Yan, G., M. Elbadawi, and T. Efferth, Multiple cell death modalities and their key features (Review). World Academy of Sciences Journal, 2020. 19.Prasad, A.S., Zinc in human health: effect of zinc on immune cells. Mol Med, 2008. 14(5-6): p. 353-7. 20.Chen, F., et al., Serum copper and zinc levels and the risk of oral cancer: A new insight based on large-scale case-control study. Oral Dis, 2019. 25(1): p. 80-86. 21.Lubinski, J., et al., Survival of Laryngeal Cancer Patients Depending on Zinc Serum Level and Oxidative Stress Genotypes. Biomolecules, 2021. 11(6). 22.Gandin, V., et al., In vitro and in vivo anticancer activity of copper(I) complexes with homoscorpionate tridentate tris(pyrazolyl)borate and auxiliary monodentate phosphine ligands. J Med Chem, 2014. 57(11): p. 4745-60. 23.Garcia-Fernandez, A., et al., Antitumor activity of new hydridotris(pyrazolyl)borate ruthenium(II) complexes containing the phosphanes PTA and 1-CH3-PTA. Dalton Trans, 2010. 39(42): p. 10186-96. 24.Saswati, et al., Polynuclear zinc(II) complexes of thiosemicarbazone: Synthesis, X-ray structure and biological evaluation. J Inorg Biochem, 2020. 203: p. 110908. 25.Saswati, et al., Polynuclear zinc(II) complexes of thiosemicarbazone: Synthesis, X-ray structure and biological evaluation. Journal of inorganic biochemistry, 2020. 203: p. 110908. 26.Azam, M., et al., Synthesis, structural investigations and pharmacological properties of a new zinc complex with a N4-donor Schiff base incorporating 2-pyridyl ring. Inorganica Chimica Acta, 2019. 487: p. 97-106. 27.Li, D.-D., et al., Redox active and inactive binuclear cobalt(II) and zinc(II) complexes with N6O/N3O coordinating ligands: synthesis, biological activities and cytotoxicity. 2017. 31(1): p. e3548. 28.Gruber, B., et al., Vesicles and Micelles from Amphiphilic Zinc(II)–Cyclen Complexes as Highly Potent Promoters of Hydrolytic DNA Cleavage. Journal of the American Chemical Society, 2011. 133(51): p. 20704-20707. 29.Dwivedi, S., et al., Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS One, 2014. 9(11): p. e111289. 30.Zhou, Y.H., et al., Ester hydrolysis by a cyclodextrin dimer catalyst with a metallophenanthroline linking group. Chemistry, 2008. 14(24): p. 7193-201. 31.Gorrini, C., I.S. Harris, and T.W. Mak, Modulation of oxidative stress as an anticancer strategy. Nature Reviews Drug Discovery, 2013. 12(12): p. 931-947. 32.Kim, S.J., H.S. Kim, and Y.R. Seo, Understanding of ROS-Inducing Strategy in Anticancer Therapy. Oxid Med Cell Longev, 2019. 2019: p. 5381692. 33.Yang, J.C., et al., Selective targeting of breast cancer cells through ROS-mediated mechanisms potentiates the lethality of paclitaxel by a novel diterpene, gelomulide K. Free Radic Biol Med, 2011. 51(3): p. 641-57. 34.Trachootham, D., J. Alexandre, and P. Huang, Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov, 2009. 8(7): p. 579-91. 35.Tang, J.Y., et al., Oxidative stress-modulating drugs have preferential anticancer effects - involving the regulation of apoptosis, DNA damage, endoplasmic reticulum stress, autophagy, metabolism, and migration. Semin Cancer Biol, 2019. 58: p. 109-117. 36.Park, J., J. Lee, and C. Choi, Mitochondrial network determines intracellular ROS dynamics and sensitivity to oxidative stress through switching inter-mitochondrial messengers. PLoS One, 2011. 6(8): p. e23211. 37.Zou, Z., et al., Induction of reactive oxygen species: an emerging approach for cancer therapy. Apoptosis, 2017. 22(11): p. 1321-1335. 38.Shiau, J.P., et al., Brown Algae-Derived Fucoidan Exerts Oxidative Stress-Dependent Antiproliferation on Oral Cancer Cells. Antioxidants (Basel), 2022. 11(5). 39.Yu, T.J., et al., Physalis peruviana-Derived Physapruin A (PHA) Inhibits Breast Cancer Cell Proliferation and Induces Oxidative-Stress-Mediated Apoptosis and DNA Damage. Antioxidants (Basel), 2021. 10(3). 40.Halasi, M., et al., ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors. Biochem J, 2013. 454(2): p. 201-8.
|