跳到主要內容

臺灣博碩士論文加值系統

(44.211.84.185) 您好!臺灣時間:2023/05/30 06:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱育廷
研究生(外文):CHU, YU-TING
論文名稱:具有可調整的氫鍵受體或供體框架的含氮第二配位圈中銅和鋅錯合物的形成規則
論文名稱(外文):The Copper and Zinc Complexes Formation Rules in a Nitrogen-Based Second Coordination Sphere with Tunable Hydrogen Bond Acceptors or Donors Framework
指導教授:許智能
指導教授(外文):Sodio C. N. Hsu
口試委員:許智能陳喧應蔡明利
口試委員(外文):Sodio C. N. HsuCHEN, HSUAN-YINGTSAI, MING-LI
口試日期:2022-06-27
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:醫藥暨應用化學系碩士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:94
中文關鍵詞:三銅
外文關鍵詞:Tri-copper
相關次數:
  • 被引用被引用:0
  • 點閱點閱:31
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
三銅(II)化合物和單核鋅(II)化合物使用希夫鹼配位基tris(5-benzyl-amineazafulvene-2-methyl)amine (H3TPANBz; 1a) 與 tris(5-phenylethyl-amineazafulvene-2-methyl)amine (H3TPANPEA; 1b)合成和鑑定。H3TPANBz和H3TPANPEA在使用不同當量的鹼去質子化後並與五水硫酸銅或氯化銅反應得到兩種不同的三核銅(II)配合物。[TPANBzCu3(μ3-SO4)(μ3-OH)](3a)和[TPANPEACu3(μ3-SO4)(μ3-OH)](3b),它們具有三重橋接的氫氧根和硫酸根陰離子。另一方面,[TPANBz2Cu3] (2a) 和[TPANPEA2Cu3](2b)沒有氫氧根和硫酸根陰離子結合。晶體學研究表明三銅化合物2a有一個空腔,可以讓我們研究陰離子包覆。
為了模擬碳酸酐酶的催化中心,使用之前合成的配位基H3TPANBz,一個具有第二個配位圈的概念配配位基,富有氫鍵系統的配位基可以穩定小分子並提供質傳的功能。所以合成了一系列的鋅化合物。晶體學研究表明,配合物 [H3TPANBzZn(ClO4)](ClO4)(5a)具有鋅和陰離子最長的鍵長,未來將更容易做取代反應合成出帶有Zn-OH2核心的目標產物。

The trinuclear copper(II) complexes and the mononuclear zinc(II) complexes were synthesized from the Schiff-base ligands tris(5-benzyl-amineazafulvene-2-methyl)amine (H3TPANBz; 1a) and tris(5-phenylethyl-amineazafulvene-2-methyl)amine (H3TPANPEA; 1b) and structurally characterized. Deprotonation by different base the H3TPANBz and H3TPANPEA following treat CuSO4∙5H2O or CuCl2 will obtain two different kinds of trinuclear copper(II) complexes. Complexes [TPANBzCu3(μ3-SO4) (μ3-OH)] (3a) and [TPANPEACu3(μ3-SO4) (μ3-OH)] (3b), both have hydroxide and sulfate anions triply bridging to three copper(II) ions. On the other hand, complex [TPANBz2Cu3] (2a) and [TPANPEA2Cu3] (2b) without hydroxide and sulfate anions binding. Crystallographic study reveals the tri-copper complex 2a has an empty cavity which may allow us to study the anion encapsulation.
In order to mimic the carbonic anhydrase catalytic center of the enzyme, the ligand H3TPANBz with a second coordination sphere concept ligand could stabilize small molecules binding and provide diverse activations. Several zinc complexes were synthesized. Crystallographic study reveals that complex [H3TPANBzZn(ClO4)](ClO4) (5a) has the longest bond length between zinc and anion, and it will be easier to change other anions in the future.

目錄
第一章、緒論 1
1-1前言 1
1-2含有鋅的生物體酵素 1
1-3碳酸酐酶 2
1-4三銅錯合物 3
1-5第二層配位圈概念 4
1-6第二層配位圈扮演氫鍵接受者 5
1-7第二層配位圈扮演氫鍵接受者 5
1-8配位基的設計 9
第二章、結果與討論 11
2-1化合物H3TPANPEA (1b)的合成與鑑定 11
2-2化合物TPANBz2Cu3 (2a)的合成與鑑定 13
2-3化合物TPANPEA2Cu3 (2b)的合成與鑑定 17
2-4化合物TPANPEACu3(μ3-SO4)(μ3-OH) (3b)的合成與鑑定 23
2-5化合物2a、2b、3a、3b的Click reaction催化反應 30
2-6化合物PPN[TPANBz Cu3(μ3-SO4)(μ3-OH)(NO2)] (4a)的合成與鑑定 31
2-7化合物[H3TPANBzZnCl]Cl (5a)的合成與鑑定 33
2-8化合物[H3TPANBzZn(ClO4)](ClO4) (6a)的合成與鑑定 34
2-9化合物[H3TPANBzZnF](BF4) (7a)的合成與鑑定 37
2-10化合物[H3TPANBzZn(SCN)](ClO4) (8a)的合成與鑑定 40
2-11化合物[H3TPANBzZnOH]ClO4 (9a)的合成與鑑定 41
第三章、結論 44
第四章、實驗部分 45
4-1試藥及使用前處理 45
4-2儀器設備 47
4-3實驗步驟 48
4-3-1化合物H3TPANPEA (1b)的合成 48
4-3-2化合物TPANBz2Cu3 (2a)的合成 48
4-3-3化合物TPANPEA2Cu3 (2b)的合成 48
4-3-4化合物TPANPEA Cu3(μ3-SO4)(μ3-OH) (3b)的合成 48
4-3-5化合物PPN[TPANBzCu3(μ3-SO4)(μ3-OH)(NO2)] (4a)的合成 49
4-3-6化合物[H3TPANBzZnCl]Cl (5a)的合成 49
4-3-7化合物[H3TPANBzZn(ClO4)](ClO4) (6a)的合成 49
4-3-8化合物[H3TPANBzZnF](BF4) (7a)的合成 49
4-3-9化合物[H3TPANBzZn(SCN)](ClO4) (8a)的合成 50
4-3-10化合物[H3TPANBzZn(OH)](ClO4) (9a)的合成 50
Reference 51


1.Stack, T. D. P., Complexity with simplicity: a steric continuum of chelating diamines with copper(i) and dioxygen. Dalton Trans. 2003, (10), 1881-1889.
2.Doyle, R. P.; Kruger, P. E.; Moubaraki, B.; Murray, K. S.; Nieuwenhuyzen, M., Synthesis and structural and magnetic characterisation of tetranuclear Cu(ii) complexes possessing novel [Cu4(μ4-PO4)2(μ2-CO3)] butterfly cores that exhibit supramolecular isomerism. Dalton Trans. 2003, (22), 4230-4237.
3.Spodine, E.; Manzur, J., Oxygen insertion in organic substrates catalyzed by copper compounds. Coord. Chem. Rev. 1992, 119, 171-198.
4.Karlin Kenneth, D., Metalloenzymes, Structural Motifs, and Inorganic Models. Science 1993, 261 (5122), 701-708.
5.Liang, H.-C.; Dahan, M.; Karlin, K. D., Dioxygen-activating bio-inorganic model complexes. Curr. Opin. Chem. Biol. 1999, 3 (2), 168-175.
6.Que, J. L.; Tolman, W. B., Bis(μ-oxo)dimetal “Diamond” Cores in Copper and Iron Complexes Relevant to Biocatalysis. Angew. Chem. Int. Ed. Engl. 2002, 41 (7), 1114-1137.
7.Schindler, S., Reactivity of Copper(I) Complexes Towards Dioxygen. Eur. J. Inorg. Chem. 2000, 2000 (11), 2311-2326.
8.Kim, E.; Chufán, E. E.; Kamaraj, K.; Karlin, K. D., Synthetic Models for Heme−Copper Oxidases. Chem. Rev. 2004, 104 (2), 1077-1134.
9.Christianson, D. W., Structural Biology of Zinc. In Adv. Prot. Chem., Anfinsen, C. B.; Edsall, J. T.; Richards, F. M.; Eisenberg, D. S., Eds. Academic Press: 1991; Vol. 42, pp 281-355.
10.Jernigan, R.; Raghunathan, G.; Bahar, I., Characterization of interactions and metal ion binding sites in proteins. Curr. Opin. Struct. Biol. 1994, 4 (2), 256-263.
11.Vallee, B. L.; Auld, D. S., Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 1990, 29 (24), 5647-5659.
12.Wilson, D. K.; Quiocho, F. A., A pre-transition-state mimic of an enzyme: x-ray structure of adenosine deaminase with bound 1-deazaadenosine and zinc-activated water. Biochemistry 1993, 32 (7), 1689-1694.
13.Wilson David, K.; Rudolph Frederick, B.; Quiocho Florante, A., Atomic Structure of Adenosine Deaminase Complexed with a Transition-State Analog: Understanding Catalysis and Immunodeficiency Mutations. Science 1991, 252 (5010), 1278-1284.
14.Gomis-Rüth, F. X.; Stöcker, W.; Huber, R.; Zwilling, R.; Bode, W., Refined 1·8 Å X-ray Crystal Structure of Astacin, a Zinc-endopeptidase from the Crayfish Astacus astacus L.: Structure Determination, Refinement, Molecular Structure and Comparison with Thermolysin. J. Mol. Biol. 1993, 229 (4), 945-968.
15.Vallee, B. L.; Auld, D. S., Functional zinc-binding motifs in enzymes and DNA-binding proteins. Faraday Discuss. 1992, 93 (0), 47-65.
16.Vallee, B. L.; Auld, D. S., Active-site zinc ligands and activated H2O of zinc enzymes. Proc. Natl. Acad. Sci. 1990, 87 (1), 220-224.
17.Christianson, D. W.; Cox, J. D., Catalysis By Metal-Activated Hydroxide in Zinc and Manganese Metalloenzymes. Annu. Rev. Biochem. 1999, 68 (1), 33-57.
18.Lovejoy, B.; Cleasby, A.; Hassell, A. M.; Longley, K.; Luthe, M. A.; Weigl, D.; McGeehan, G.; McElroy, A. B.; Drewry, D.; Lambert, M. H.; Jordan, S. R., Structure of the Catalytic Domain of Fibroblast Collagenase Complexed with an Inhibitor. Science 1994, 263 (5145), 375-377.
19.Silverman, D. N.; Lindskog, S., The catalytic mechanism of carbonic anhydrase: implications of a rate-limiting protolysis of water. Acc. Chem. Res. 1988, 21 (1), 30-36.
20.Vallee, B. L.; Galdes, A., The Metallobiochemistry of Zinc Enzymes. Adv. Enzymol. Relat. Areas Mol. Biol. 1984, 283-430.
21.Silverman, D. N.; Lindskog, S., The catalytic mechanism of carbonic anhydrase: implications of a rate-limiting protolysis of water. Accounts of Chemical Research 1988, 21 (1), 30-36.
22.Toba, S.; Colombo, G.; Merz, K. M., Solvent Dynamics and Mechanism of Proton Transfer in Human Carbonic Anhydrase II. J. Am. Chem. Soc. 1999, 121 (10), 2290-2302.
23.Sly, W. S.; Hu, P. Y., HUMAN CARBONIC ANHYDRASES AND CARBONIC ANHYDRASE DEFICIENCIES. Annu. Rev. Biochem. 1995, 64 (1), 375-401.
24.Silverman, D. N.; Vincent, S. H., Proton Transfer in the Catalytic Mechanism of Carbonic Anhydrase. Crit. Rev. Biochem. 1983, 14 (3), 207-255.
25.McEvoy, J. P.; Brudvig, G. W., Water-Splitting Chemistry of Photosystem II. Chem. Rev. 2006, 106 (11), 4455-4483.
26.Holm, R. H.; Kennepohl, P.; Solomon, E. I., Structural and Functional Aspects of Metal Sites in Biology. Chem. Rev. 1996, 96 (7), 2239-2314.
27.Holm, R. H.; Solomon, E. I., Preface:  Biomimetic Inorganic Chemistry. Chem. Rev. 2004, 104 (2), 347-348.
28.Beinert, H.; Holm Richard, H.; Münck, E., Iron-Sulfur Clusters: Nature's Modular, Multipurpose Structures. Science 1997, 277 (5326), 653-659.
29.Solomon, E. I.; Chen, P.; Metz, M.; Lee, S.-K.; Palmer, A. E., Oxygen Binding, Activation, and Reduction to Water by Copper Proteins. Angew. Chem. Int. Ed. Engl. 2001, 40 (24), 4570-4590.
30.Lee, S.-K.; George, S. D.; Antholine, W. E.; Hedman, B.; Hodgson, K. O.; Solomon, E. I., Nature of the Intermediate Formed in the Reduction of O2 to H2O at the Trinuclear Copper Cluster Active Site in Native Laccase. J. Am. Chem. Soc. 2002, 124 (21), 6180-6193.
31.Quintanar, L.; Yoon, J.; Aznar, C. P.; Palmer, A. E.; Andersson, K. K.; Britt, R. D.; Solomon, E. I., Spectroscopic and Electronic Structure Studies of the Trinuclear Cu Cluster Active Site of the Multicopper Oxidase Laccase:  Nature of Its Coordination Unsaturation. J. Am. Chem. Soc. 2005, 127 (40), 13832-13845.
32.Ferrer, S.; Haasnoot, J. G.; Reedijk, J.; Müller, E.; Biagini Cingi, M.; Lanfranchi, M.; Manotti Lanfredi, A. M.; Ribas, J., Trinuclear N,N-Bridged Copper(II) Complexes Involving a Cu3OH Core:  [Cu3(μ3-OH)L3A(H2O)2]A·(H2O)x {L = 3-Acetylamino-1,2,4-triazolate; A = CF3SO3, NO3, ClO4; x = 0, 2} Synthesis, X-ray Structures, Spectroscopy, and Magnetic Properties. Inorg. Chem. 2000, 39 (9), 1859-1867.
33.Angaridis, P. A.; Baran, P.; Boča, R.; Cervantes-Lee, F.; Haase, W.; Mezei, G.; Raptis, R. G.; Werner, R., Synthesis and Structural Characterization of Trinuclear CuII−Pyrazolato Complexes Containing μ3-OH, μ3-O, and μ3-Cl Ligands. Magnetic Susceptibility Study of [PPN]2[(μ3-O)Cu3(μ-pz)3Cl3]. Inorg. Chem. 2002, 41 (8), 2219-2228.
34.Boča, R.; Dlháň, L. u.; Mezei, G.; Ortiz-Pérez, T.; Raptis, R. G.; Telser, J., Triangular, Ferromagnetically-Coupled CuII3−Pyrazolato Complexes as Possible Models of Particulate Methane Monooxygenase (pMMO). Inorg. Chem. 2003, 42 (19), 5801-5803.
35.Mezei, G.; Raptis, R. G.; Telser, J., Trinuclear, Antiferromagnetically Coupled CuII Complex with an EPR Spectrum of Mononuclear CuII:  Effect of Alcoholic Solvents. Inorg. Chem. 2006, 45 (22), 8841-8843.
36.Afrati, T.; Dendrinou-Samara, C.; Raptopoulou, C.; Terzis, A.; Tangoulis, V.; Tsipis, A.; Kessissoglou, D. P., Experimental and Theoretical Study of the Antisymmetric Magnetic Behavior of Copper inverse-9-Metallacrown-3 Compounds. Inorg. Chem. 2008, 47 (17), 7545-7555.
37.Chaudhuri, P., Homo- and hetero-polymetallic exchange coupled metal-oximates. Coord. Chem. Rev. 2003, 243 (1), 143-190.
38.Butcher, R. J.; O'Connor, C. J.; Sinn, E., Synthesis and relation between magnetism and structure of a trinuclear copper(II) hydroxo complex [Cu3OHL3(ClO4)]ClO4 and a hexanuclear copper(II) oxo complex [Cu3OL'3(ClO4)]2(LH=3-(phenylimino)butanone 2-oxime, L'H=1,2-diphenyl-2-(methylimino)ethanone 1-oxime). Inorg. Chem. 1981, 20 (2), 537-545.
39.Agnus, Y.; Louis, R.; Metz, B.; Boudon, C.; Gisselbrecht, J. P.; Gross, M., Trinuclear copper(II) hydroxo and hexanuclear copper(II) oxo complexes with the ligand 3-(benzylimino)butanone 2-oxime. Syntheses and spectral, structural and redox characteristics. Inorg. Chem. 1991, 30 (16), 3155-3161.
40.Jiang, Y.-B.; Kou, H.-Z.; Wang, R.-J.; Cui, A.-L.; Ribas, J., Synthesis, Crystal Structure, and Magnetic Properties of Oxime-Bridged Polynuclear Ni(II) and Cu(II) Complexes. Inorg. Chem. 2005, 44 (3), 709-715.
41.Costes, J. P.; Dahan, F.; Laurent, J. P., Synthesis, characterization, structure, and magnetic properties of the novel trinuclear copper(II) hydroxo complex [(AE)3Cu3OH](ClO4)2 (AEH = 7-amino-4-methyl-5-aza-3-hepten-2-one). Inorg. Chem. 1986, 25 (4), 413-416.
42.Casarin, M.; Corvaja, C.; di Nicola, C.; Falcomer, D.; Franco, L.; Monari, M.; Pandolfo, L.; Pettinari, C.; Piccinelli, F.; Tagliatesta, P., Spontaneous Self-Assembly of an Unsymmetric Trinuclear Triangular Copper(II) Pyrazolate Complex, [Cu3(μ3-OH)(μ-pz)3(MeCOO)2(Hpz)] (Hpz = Pyrazole). Synthesis, Experimental and Theoretical Characterization, Reactivity, and Catalytic Activity. Inorg. Chem. 2004, 43 (19), 5865-5876.
43.Ferrer, S.; Lloret, F.; Bertomeu, I.; Alzuet, G.; Borrás, J.; García-Granda, S.; Liu-González, M.; Haasnoot, J. G., Cyclic Trinuclear and Chain of Cyclic Trinuclear Copper(II) Complexes Containing a Pyramidal Cu3O(H) Core. Crystal Structures and Magnetic Properties of [Cu3(μ3-OH)(aaat)3(H2O)3](NO3)2·H2O [aaat = 3-Acetylamino-5-amino-1,2,4-triazolate] and {[Cu3(μ3-OH)(aat)3(μ3-SO4)]·6H2O}n [aat = 3-Acetylamino-1,2,4-triazolate]: New Cases of Spin-Frustrated Systems. Inorg. Chem. 2002, 41 (22), 5821-5830.
44.Toulouse, C., Commun. Phys. 1977, 2, 115.
45.Ferrer, S.; Lloret, F.; Pardo, E.; Clemente-Juan, J. M.; Liu-González, M.; García-Granda, S., Antisymmetric Exchange in Triangular Tricopper(II) Complexes: Correlation among Structural, Magnetic, and Electron Paramagnetic Resonance Parameters. Inorg. Chem. 2012, 51 (2), 985-1001.
46.Lewis, J. C., Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis. Acc. Chem. Res. 2019, 52 (3), 576-584.
47.Mann, S. I.; Heinisch, T.; Ward, T. R.; Borovik, A. S., Coordination chemistry within a protein host: regulation of the secondary coordination sphere. Chem. Commun. 2018, 54 (35), 4413-4416.
48.Yu, F.; Cangelosi, V. M.; Zastrow, M. L.; Tegoni, M.; Plegaria, J. S.; Tebo, A. G.; Mocny, C. S.; Ruckthong, L.; Qayyum, H.; Pecoraro, V. L., Protein design: toward functional metalloenzymes. chem. Rev. 2014, 114 (7), 3495-3578.
49.Creutz, S. E.; Peters, J. C., Exploring secondary-sphere interactions in Fe–NxHy complexes relevant to N2 fixation. Chem. Sci. 2017, 8 (3), 2321-2328.
50.Shook, R. L.; Gunderson, W. A.; Greaves, J.; Ziller, J. W.; Hendrich, M. P.; Borovik, A. S., A Monomeric MnIII−Peroxo Complex Derived Directly from Dioxygen. J. Am. Chem. Soc. 2008, 130 (28), 8888-8889.
51.Hammes, B. S.; Young, J. V. G.; Borovik, A. S., Hydrogen-Bonding Cavities about Metal Ions: A Redox Pair of Coordinatively Unsaturated Paramagnetic Co–OH Complexes. Angew. Chem. Int. Ed. Engl. 1999, 38 (5), 666-669.
52.MacBeth Cora, E.; Golombek Adina, P.; Young Victor, G.; Yang, C.; Kuczera, K.; Hendrich Michael, P.; Borovik, A. S., O2 Activation by Nonheme Iron Complexes: A Monomeric Fe(III)-Oxo Complex Derived From O2. Science 2000, 289 (5481), 938-941.
53.Cook, S. A.; Borovik, A. S., Molecular Designs for Controlling the Local Environments around Metal Ions. Acc. Chem. Res. 2015, 48 (8), 2407-2414.
54.Shook, R. L.; Borovik, A. S., Role of the Secondary Coordination Sphere in Metal-Mediated Dioxygen Activation. Inorg. Chem. 2010, 49 (8), 3646-3660.
55.Jones, J. R.; Ziller, J. W.; Borovik, A. S., Modulating the Primary and Secondary Coordination Spheres within a Series of CoII—OH Complexes. Inorg. Chem. 2017, 56 (3), 1112-1120.
56.Oswald, V. F.; Weitz, A. C.; Biswas, S.; Ziller, J. W.; Hendrich, M. P.; Borovik, A. S., Manganese–Hydroxido Complexes Supported by a Urea/Phosphinic Amide Tripodal Ligand. Inorg. Chem. 2018, 57 (21), 13341-13350.
57.Moore, C. M.; Szymczak, N. K., Redox-induced fluoride ligand dissociation stabilized by intramolecular hydrogen bonding. Chem. Commun. 2015, 51 (25), 5490-5492.
58.Moore, C. M.; Szymczak, N. K., Nitrite reduction by copper through ligand-mediated proton and electron transfer. Chem. Sci. 2015, 6 (6), 3373-3377.
59.Wilson, J. R.; Zeller, M.; Szymczak, N. K., Hydrogen-bonded nickel(i) complexes. Chem. Commun. 2021, 57 (6), 753-756.
60.Dahl, E. W.; Kiernicki, J. J.; Zeller, M.; Szymczak, N. K., Hydrogen Bonds Dictate O2 Capture and Release within a Zinc Tripod. J. Am. Chem. Soc. 2018, 140 (32), 10075-10079.
61.Dahl, E. W.; Dong, H. T.; Szymczak, N. K., Phenylamino derivatives of tris(2-pyridylmethyl)amine: hydrogen-bonded peroxodicopper complexes. Chem. Commun. 2018, 54 (8), 892-895.
62.Matson, E. M.; Bertke, J. A.; Fout, A. R., Isolation of Iron(II) Aqua and Hydroxyl Complexes Featuring a Tripodal H-bond Donor and Acceptor Ligand. Inorg. Chem. 2014, 53 (9), 4450-4458.
63.Park, Y. J.; Matson, E. M.; Nilges, M. J.; Fout, A. R., Exploring Mn–O bonding in the context of an electronically flexible secondary coordination sphere: synthesis of a Mn(iii)–oxo. Chem. Commun. 2015, 51 (25), 5310-5313.
64.Ford Courtney, L.; Park Yun, J.; Matson Ellen, M.; Gordon, Z.; Fout Alison, R., A bioinspired iron catalyst for nitrate and perchlorate reduction. Science 2016, 354 (6313), 741-743.
65.Ford, C. L.; Miller, T. J.; Park, Y. J.; Iranmanesh, N.; Gray, D. L.; Fout, A. R., Varying the secondary coordination sphere: synthesis of cobalt and iron complexes of a tripodal ligand featuring two hydrogen-bond donors or acceptors. J. Coord. Chem. 2020, 73 (15), 2195-2208.
66.Drummond, M. J.; Ford, C. L.; Gray, D. L.; Popescu, C. V.; Fout, A. R., Radical Rebound Hydroxylation Versus H-Atom Transfer in Non-Heme Iron(III)-Hydroxo Complexes: Reactivity and Structural Differentiation. J. Am. Chem. Soc. 2019, 141 (16), 6639-6650.
67.王佑瑄, 帶有第二配位圈概念的C3v對稱配位基之銅配位化學及其仿生研究. 碩士論文 2019.


電子全文 電子全文(網際網路公開日期:20270707)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top