|
1.Stack, T. D. P., Complexity with simplicity: a steric continuum of chelating diamines with copper(i) and dioxygen. Dalton Trans. 2003, (10), 1881-1889. 2.Doyle, R. P.; Kruger, P. E.; Moubaraki, B.; Murray, K. S.; Nieuwenhuyzen, M., Synthesis and structural and magnetic characterisation of tetranuclear Cu(ii) complexes possessing novel [Cu4(μ4-PO4)2(μ2-CO3)] butterfly cores that exhibit supramolecular isomerism. Dalton Trans. 2003, (22), 4230-4237. 3.Spodine, E.; Manzur, J., Oxygen insertion in organic substrates catalyzed by copper compounds. Coord. Chem. Rev. 1992, 119, 171-198. 4.Karlin Kenneth, D., Metalloenzymes, Structural Motifs, and Inorganic Models. Science 1993, 261 (5122), 701-708. 5.Liang, H.-C.; Dahan, M.; Karlin, K. D., Dioxygen-activating bio-inorganic model complexes. Curr. Opin. Chem. Biol. 1999, 3 (2), 168-175. 6.Que, J. L.; Tolman, W. B., Bis(μ-oxo)dimetal “Diamond” Cores in Copper and Iron Complexes Relevant to Biocatalysis. Angew. Chem. Int. Ed. Engl. 2002, 41 (7), 1114-1137. 7.Schindler, S., Reactivity of Copper(I) Complexes Towards Dioxygen. Eur. J. Inorg. Chem. 2000, 2000 (11), 2311-2326. 8.Kim, E.; Chufán, E. E.; Kamaraj, K.; Karlin, K. D., Synthetic Models for Heme−Copper Oxidases. Chem. Rev. 2004, 104 (2), 1077-1134. 9.Christianson, D. W., Structural Biology of Zinc. In Adv. Prot. Chem., Anfinsen, C. B.; Edsall, J. T.; Richards, F. M.; Eisenberg, D. S., Eds. Academic Press: 1991; Vol. 42, pp 281-355. 10.Jernigan, R.; Raghunathan, G.; Bahar, I., Characterization of interactions and metal ion binding sites in proteins. Curr. Opin. Struct. Biol. 1994, 4 (2), 256-263. 11.Vallee, B. L.; Auld, D. S., Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 1990, 29 (24), 5647-5659. 12.Wilson, D. K.; Quiocho, F. A., A pre-transition-state mimic of an enzyme: x-ray structure of adenosine deaminase with bound 1-deazaadenosine and zinc-activated water. Biochemistry 1993, 32 (7), 1689-1694. 13.Wilson David, K.; Rudolph Frederick, B.; Quiocho Florante, A., Atomic Structure of Adenosine Deaminase Complexed with a Transition-State Analog: Understanding Catalysis and Immunodeficiency Mutations. Science 1991, 252 (5010), 1278-1284. 14.Gomis-Rüth, F. X.; Stöcker, W.; Huber, R.; Zwilling, R.; Bode, W., Refined 1·8 Å X-ray Crystal Structure of Astacin, a Zinc-endopeptidase from the Crayfish Astacus astacus L.: Structure Determination, Refinement, Molecular Structure and Comparison with Thermolysin. J. Mol. Biol. 1993, 229 (4), 945-968. 15.Vallee, B. L.; Auld, D. S., Functional zinc-binding motifs in enzymes and DNA-binding proteins. Faraday Discuss. 1992, 93 (0), 47-65. 16.Vallee, B. L.; Auld, D. S., Active-site zinc ligands and activated H2O of zinc enzymes. Proc. Natl. Acad. Sci. 1990, 87 (1), 220-224. 17.Christianson, D. W.; Cox, J. D., Catalysis By Metal-Activated Hydroxide in Zinc and Manganese Metalloenzymes. Annu. Rev. Biochem. 1999, 68 (1), 33-57. 18.Lovejoy, B.; Cleasby, A.; Hassell, A. M.; Longley, K.; Luthe, M. A.; Weigl, D.; McGeehan, G.; McElroy, A. B.; Drewry, D.; Lambert, M. H.; Jordan, S. R., Structure of the Catalytic Domain of Fibroblast Collagenase Complexed with an Inhibitor. Science 1994, 263 (5145), 375-377. 19.Silverman, D. N.; Lindskog, S., The catalytic mechanism of carbonic anhydrase: implications of a rate-limiting protolysis of water. Acc. Chem. Res. 1988, 21 (1), 30-36. 20.Vallee, B. L.; Galdes, A., The Metallobiochemistry of Zinc Enzymes. Adv. Enzymol. Relat. Areas Mol. Biol. 1984, 283-430. 21.Silverman, D. N.; Lindskog, S., The catalytic mechanism of carbonic anhydrase: implications of a rate-limiting protolysis of water. Accounts of Chemical Research 1988, 21 (1), 30-36. 22.Toba, S.; Colombo, G.; Merz, K. M., Solvent Dynamics and Mechanism of Proton Transfer in Human Carbonic Anhydrase II. J. Am. Chem. Soc. 1999, 121 (10), 2290-2302. 23.Sly, W. S.; Hu, P. Y., HUMAN CARBONIC ANHYDRASES AND CARBONIC ANHYDRASE DEFICIENCIES. Annu. Rev. Biochem. 1995, 64 (1), 375-401. 24.Silverman, D. N.; Vincent, S. H., Proton Transfer in the Catalytic Mechanism of Carbonic Anhydrase. Crit. Rev. Biochem. 1983, 14 (3), 207-255. 25.McEvoy, J. P.; Brudvig, G. W., Water-Splitting Chemistry of Photosystem II. Chem. Rev. 2006, 106 (11), 4455-4483. 26.Holm, R. H.; Kennepohl, P.; Solomon, E. I., Structural and Functional Aspects of Metal Sites in Biology. Chem. Rev. 1996, 96 (7), 2239-2314. 27.Holm, R. H.; Solomon, E. I., Preface: Biomimetic Inorganic Chemistry. Chem. Rev. 2004, 104 (2), 347-348. 28.Beinert, H.; Holm Richard, H.; Münck, E., Iron-Sulfur Clusters: Nature's Modular, Multipurpose Structures. Science 1997, 277 (5326), 653-659. 29.Solomon, E. I.; Chen, P.; Metz, M.; Lee, S.-K.; Palmer, A. E., Oxygen Binding, Activation, and Reduction to Water by Copper Proteins. Angew. Chem. Int. Ed. Engl. 2001, 40 (24), 4570-4590. 30.Lee, S.-K.; George, S. D.; Antholine, W. E.; Hedman, B.; Hodgson, K. O.; Solomon, E. I., Nature of the Intermediate Formed in the Reduction of O2 to H2O at the Trinuclear Copper Cluster Active Site in Native Laccase. J. Am. Chem. Soc. 2002, 124 (21), 6180-6193. 31.Quintanar, L.; Yoon, J.; Aznar, C. P.; Palmer, A. E.; Andersson, K. K.; Britt, R. D.; Solomon, E. I., Spectroscopic and Electronic Structure Studies of the Trinuclear Cu Cluster Active Site of the Multicopper Oxidase Laccase: Nature of Its Coordination Unsaturation. J. Am. Chem. Soc. 2005, 127 (40), 13832-13845. 32.Ferrer, S.; Haasnoot, J. G.; Reedijk, J.; Müller, E.; Biagini Cingi, M.; Lanfranchi, M.; Manotti Lanfredi, A. M.; Ribas, J., Trinuclear N,N-Bridged Copper(II) Complexes Involving a Cu3OH Core: [Cu3(μ3-OH)L3A(H2O)2]A·(H2O)x {L = 3-Acetylamino-1,2,4-triazolate; A = CF3SO3, NO3, ClO4; x = 0, 2} Synthesis, X-ray Structures, Spectroscopy, and Magnetic Properties. Inorg. Chem. 2000, 39 (9), 1859-1867. 33.Angaridis, P. A.; Baran, P.; Boča, R.; Cervantes-Lee, F.; Haase, W.; Mezei, G.; Raptis, R. G.; Werner, R., Synthesis and Structural Characterization of Trinuclear CuII−Pyrazolato Complexes Containing μ3-OH, μ3-O, and μ3-Cl Ligands. Magnetic Susceptibility Study of [PPN]2[(μ3-O)Cu3(μ-pz)3Cl3]. Inorg. Chem. 2002, 41 (8), 2219-2228. 34.Boča, R.; Dlháň, L. u.; Mezei, G.; Ortiz-Pérez, T.; Raptis, R. G.; Telser, J., Triangular, Ferromagnetically-Coupled CuII3−Pyrazolato Complexes as Possible Models of Particulate Methane Monooxygenase (pMMO). Inorg. Chem. 2003, 42 (19), 5801-5803. 35.Mezei, G.; Raptis, R. G.; Telser, J., Trinuclear, Antiferromagnetically Coupled CuII Complex with an EPR Spectrum of Mononuclear CuII: Effect of Alcoholic Solvents. Inorg. Chem. 2006, 45 (22), 8841-8843. 36.Afrati, T.; Dendrinou-Samara, C.; Raptopoulou, C.; Terzis, A.; Tangoulis, V.; Tsipis, A.; Kessissoglou, D. P., Experimental and Theoretical Study of the Antisymmetric Magnetic Behavior of Copper inverse-9-Metallacrown-3 Compounds. Inorg. Chem. 2008, 47 (17), 7545-7555. 37.Chaudhuri, P., Homo- and hetero-polymetallic exchange coupled metal-oximates. Coord. Chem. Rev. 2003, 243 (1), 143-190. 38.Butcher, R. J.; O'Connor, C. J.; Sinn, E., Synthesis and relation between magnetism and structure of a trinuclear copper(II) hydroxo complex [Cu3OHL3(ClO4)]ClO4 and a hexanuclear copper(II) oxo complex [Cu3OL'3(ClO4)]2(LH=3-(phenylimino)butanone 2-oxime, L'H=1,2-diphenyl-2-(methylimino)ethanone 1-oxime). Inorg. Chem. 1981, 20 (2), 537-545. 39.Agnus, Y.; Louis, R.; Metz, B.; Boudon, C.; Gisselbrecht, J. P.; Gross, M., Trinuclear copper(II) hydroxo and hexanuclear copper(II) oxo complexes with the ligand 3-(benzylimino)butanone 2-oxime. Syntheses and spectral, structural and redox characteristics. Inorg. Chem. 1991, 30 (16), 3155-3161. 40.Jiang, Y.-B.; Kou, H.-Z.; Wang, R.-J.; Cui, A.-L.; Ribas, J., Synthesis, Crystal Structure, and Magnetic Properties of Oxime-Bridged Polynuclear Ni(II) and Cu(II) Complexes. Inorg. Chem. 2005, 44 (3), 709-715. 41.Costes, J. P.; Dahan, F.; Laurent, J. P., Synthesis, characterization, structure, and magnetic properties of the novel trinuclear copper(II) hydroxo complex [(AE)3Cu3OH](ClO4)2 (AEH = 7-amino-4-methyl-5-aza-3-hepten-2-one). Inorg. Chem. 1986, 25 (4), 413-416. 42.Casarin, M.; Corvaja, C.; di Nicola, C.; Falcomer, D.; Franco, L.; Monari, M.; Pandolfo, L.; Pettinari, C.; Piccinelli, F.; Tagliatesta, P., Spontaneous Self-Assembly of an Unsymmetric Trinuclear Triangular Copper(II) Pyrazolate Complex, [Cu3(μ3-OH)(μ-pz)3(MeCOO)2(Hpz)] (Hpz = Pyrazole). Synthesis, Experimental and Theoretical Characterization, Reactivity, and Catalytic Activity. Inorg. Chem. 2004, 43 (19), 5865-5876. 43.Ferrer, S.; Lloret, F.; Bertomeu, I.; Alzuet, G.; Borrás, J.; García-Granda, S.; Liu-González, M.; Haasnoot, J. G., Cyclic Trinuclear and Chain of Cyclic Trinuclear Copper(II) Complexes Containing a Pyramidal Cu3O(H) Core. Crystal Structures and Magnetic Properties of [Cu3(μ3-OH)(aaat)3(H2O)3](NO3)2·H2O [aaat = 3-Acetylamino-5-amino-1,2,4-triazolate] and {[Cu3(μ3-OH)(aat)3(μ3-SO4)]·6H2O}n [aat = 3-Acetylamino-1,2,4-triazolate]: New Cases of Spin-Frustrated Systems. Inorg. Chem. 2002, 41 (22), 5821-5830. 44.Toulouse, C., Commun. Phys. 1977, 2, 115. 45.Ferrer, S.; Lloret, F.; Pardo, E.; Clemente-Juan, J. M.; Liu-González, M.; García-Granda, S., Antisymmetric Exchange in Triangular Tricopper(II) Complexes: Correlation among Structural, Magnetic, and Electron Paramagnetic Resonance Parameters. Inorg. Chem. 2012, 51 (2), 985-1001. 46.Lewis, J. C., Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis. Acc. Chem. Res. 2019, 52 (3), 576-584. 47.Mann, S. I.; Heinisch, T.; Ward, T. R.; Borovik, A. S., Coordination chemistry within a protein host: regulation of the secondary coordination sphere. Chem. Commun. 2018, 54 (35), 4413-4416. 48.Yu, F.; Cangelosi, V. M.; Zastrow, M. L.; Tegoni, M.; Plegaria, J. S.; Tebo, A. G.; Mocny, C. S.; Ruckthong, L.; Qayyum, H.; Pecoraro, V. L., Protein design: toward functional metalloenzymes. chem. Rev. 2014, 114 (7), 3495-3578. 49.Creutz, S. E.; Peters, J. C., Exploring secondary-sphere interactions in Fe–NxHy complexes relevant to N2 fixation. Chem. Sci. 2017, 8 (3), 2321-2328. 50.Shook, R. L.; Gunderson, W. A.; Greaves, J.; Ziller, J. W.; Hendrich, M. P.; Borovik, A. S., A Monomeric MnIII−Peroxo Complex Derived Directly from Dioxygen. J. Am. Chem. Soc. 2008, 130 (28), 8888-8889. 51.Hammes, B. S.; Young, J. V. G.; Borovik, A. S., Hydrogen-Bonding Cavities about Metal Ions: A Redox Pair of Coordinatively Unsaturated Paramagnetic Co–OH Complexes. Angew. Chem. Int. Ed. Engl. 1999, 38 (5), 666-669. 52.MacBeth Cora, E.; Golombek Adina, P.; Young Victor, G.; Yang, C.; Kuczera, K.; Hendrich Michael, P.; Borovik, A. S., O2 Activation by Nonheme Iron Complexes: A Monomeric Fe(III)-Oxo Complex Derived From O2. Science 2000, 289 (5481), 938-941. 53.Cook, S. A.; Borovik, A. S., Molecular Designs for Controlling the Local Environments around Metal Ions. Acc. Chem. Res. 2015, 48 (8), 2407-2414. 54.Shook, R. L.; Borovik, A. S., Role of the Secondary Coordination Sphere in Metal-Mediated Dioxygen Activation. Inorg. Chem. 2010, 49 (8), 3646-3660. 55.Jones, J. R.; Ziller, J. W.; Borovik, A. S., Modulating the Primary and Secondary Coordination Spheres within a Series of CoII—OH Complexes. Inorg. Chem. 2017, 56 (3), 1112-1120. 56.Oswald, V. F.; Weitz, A. C.; Biswas, S.; Ziller, J. W.; Hendrich, M. P.; Borovik, A. S., Manganese–Hydroxido Complexes Supported by a Urea/Phosphinic Amide Tripodal Ligand. Inorg. Chem. 2018, 57 (21), 13341-13350. 57.Moore, C. M.; Szymczak, N. K., Redox-induced fluoride ligand dissociation stabilized by intramolecular hydrogen bonding. Chem. Commun. 2015, 51 (25), 5490-5492. 58.Moore, C. M.; Szymczak, N. K., Nitrite reduction by copper through ligand-mediated proton and electron transfer. Chem. Sci. 2015, 6 (6), 3373-3377. 59.Wilson, J. R.; Zeller, M.; Szymczak, N. K., Hydrogen-bonded nickel(i) complexes. Chem. Commun. 2021, 57 (6), 753-756. 60.Dahl, E. W.; Kiernicki, J. J.; Zeller, M.; Szymczak, N. K., Hydrogen Bonds Dictate O2 Capture and Release within a Zinc Tripod. J. Am. Chem. Soc. 2018, 140 (32), 10075-10079. 61.Dahl, E. W.; Dong, H. T.; Szymczak, N. K., Phenylamino derivatives of tris(2-pyridylmethyl)amine: hydrogen-bonded peroxodicopper complexes. Chem. Commun. 2018, 54 (8), 892-895. 62.Matson, E. M.; Bertke, J. A.; Fout, A. R., Isolation of Iron(II) Aqua and Hydroxyl Complexes Featuring a Tripodal H-bond Donor and Acceptor Ligand. Inorg. Chem. 2014, 53 (9), 4450-4458. 63.Park, Y. J.; Matson, E. M.; Nilges, M. J.; Fout, A. R., Exploring Mn–O bonding in the context of an electronically flexible secondary coordination sphere: synthesis of a Mn(iii)–oxo. Chem. Commun. 2015, 51 (25), 5310-5313. 64.Ford Courtney, L.; Park Yun, J.; Matson Ellen, M.; Gordon, Z.; Fout Alison, R., A bioinspired iron catalyst for nitrate and perchlorate reduction. Science 2016, 354 (6313), 741-743. 65.Ford, C. L.; Miller, T. J.; Park, Y. J.; Iranmanesh, N.; Gray, D. L.; Fout, A. R., Varying the secondary coordination sphere: synthesis of cobalt and iron complexes of a tripodal ligand featuring two hydrogen-bond donors or acceptors. J. Coord. Chem. 2020, 73 (15), 2195-2208. 66.Drummond, M. J.; Ford, C. L.; Gray, D. L.; Popescu, C. V.; Fout, A. R., Radical Rebound Hydroxylation Versus H-Atom Transfer in Non-Heme Iron(III)-Hydroxo Complexes: Reactivity and Structural Differentiation. J. Am. Chem. Soc. 2019, 141 (16), 6639-6650. 67.王佑瑄, 帶有第二配位圈概念的C3v對稱配位基之銅配位化學及其仿生研究. 碩士論文 2019.
|