|
[1] C.S. Melincovici, A.B. Boşca, S. Şuşman, M. Mărginean, C. Mihu, M. Istrate, I.M. Moldovan, A.L. Roman, C.M. Mihu, Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis, Romanian journal of morphology and embryology = Revue roumaine de morphologie et embryologie 59(2) (2018) 455-467. [2] J. Street, M. Bao, L. deGuzman, S. Bunting, F.V. Peale, N. Ferrara, H. Steinmetz, J. Hoeffel, J.L. Cleland, A. Daugherty, N. van Bruggen, H.P. Redmond, R.A.D. Carano, E.H. Filvaroff, Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover, Proceedings of the National Academy of Sciences 99(15) (2002) 9656. [3] Y. Sakurai, K. Ohgimoto, Y. Kataoka, N. Yoshida, M. Shibuya, Essential role of Flk-1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice, Proceedings of the National Academy of Sciences of the United States of America 102(4) (2005) 1076. [4] P. Carmeliet, VEGF as a Key Mediator of Angiogenesis in Cancer, Oncology 69(suppl 3)(Suppl. 3) (2005) 4-10. [5] K. Tawada, T. Ishihara, A. Kobayashi, T. Yamaguchi, T. Tsuyuguchi, M. Matsuyama, O. Yokosuka, Quantitative Analysis of Vascular Endothelial Growth Factor in Liver Metastases from Pancreatic Carcinoma as a Predictor of Chemotherapeutic Effect and Prognosis, 14(22) (2008) 7438-7443. [6] N. Ferrara, Binding to the Extracellular Matrix and Proteolytic Processing: Two Key Mechanisms Regulating Vascular Endothelial Growth Factor Action, Molecular Biology of the Cell 21(5) (2010) 687-690. [7] M. Simons, E. Gordon, L. Claesson-Welsh, Mechanisms and regulation of endothelial VEGF receptor signalling, Nature reviews. Molecular cell biology 17(10) (2016) 611-25. [8] H.F. Dvorak, Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy, Journal of clinical oncology : official journal of the American Society of Clinical Oncology 20(21) (2002) 4368-80. [9] N. Ferrara, T. Davis-Smyth, The biology of vascular endothelial growth factor, Endocrine reviews 18(1) (1997) 4-25. [10] T. Ostendorf, U. Kunter, F. Eitner, A. Loos, H. Regele, D. Kerjaschki, D.D. Henninger, N. Janjic, J. Floege, VEGF165 mediates glomerular endothelial repair, The Journal of Clinical Investigation 104(7) (1999) 913-923. [11] H. Kaur, L.Y. Yung, Probing high affinity sequences of DNA aptamer against VEGF165, PloS one 7(2) (2012) e31196. [12] F.A. Eskens, J.J.E.j.o.c. Verweij, The clinical toxicity profile of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors; a review, 42(18) (2006) 3127-3139. [13] Y. Lai, X. Wang, T. Zeng, S. Xing, S. Dai, J. Wang, S. Chen, X. Li, Y. Xie, Y. Zhu, W. Liu, Serum VEGF levels in the early diagnosis and severity assessment of non-small cell lung cancer, Journal of Cancer 9(9) (2018) 1538-1547. [14] Y. Nonaka, W. Yoshida, K. Abe, S. Ferri, H. Schulze, T.T. Bachmann, K. Ikebukuro, Affinity improvement of a VEGF aptamer by in silico maturation for a sensitive VEGF-detection system, Analytical chemistry 85(2) (2013) 1132-7. [15] K.A. Houck, D.W. Leung, A.M. Rowland, J. Winer, N. Ferrara, Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms, Journal of Biological Chemistry 267(36) (1992) 26031-26037. [16] V.P. Chekhonin, S.A. Shein, A.A. Korchagina, O.I. Gurina, VEGF in tumor progression and targeted therapy, Current cancer drug targets 13(4) (2013) 423-43. [17] A. Vasala, H. Nair, T.S. Rao, S.S. Murthy, R. Tagore, F. Ahmed, Role of angiogenesis in colorectal carcinomas using VEGF and BCl2: An IHC study, Annals of Diagnostic Pathology 31 (2017) 41-44. [18] F.W. Anthony, P.W. Evans, T. Wheeler, P.J. Wood, Variation in Detection of VEGF in Maternal Serum by Immunoassay and the Possible Influence of Binding Proteins, Annals of Clinical Biochemistry 34(3) (1997) 276-280. [19] H. Mineta, K. Miura, T. Ogino, S. Takebayashi, K. Misawa, Y. Ueda, I. Suzuki, M. Dictor, Å. Borg, J. Wennerberg, Prognostic value of vascular endothelial growth factor (VEGF) in head and neck squamous cell carcinomas, British Journal of Cancer 83(6) (2000) 775-781. [20] G. Sumner, C. Georgaros, A. Rafique, T. DiCioccio, J. Martin, N. Papadopoulos, T. Daly, A. Torri, Anti-VEGF drug interference with VEGF quantitation in the R&D systems human quantikine VEGF ELISA kit, Bioanalysis 11(5) (2019) 381-392. [21] X. Lin, K.-H. Leung, L. Lin, L. Lin, S. Lin, C.-H. Leung, D.-L. Ma, J.-M. Lin, Determination of cell metabolite VEGF165 and dynamic analysis of protein–DNA interactions by combination of microfluidic technique and luminescent switch-on probe, Biosensors and Bioelectronics 79 (2016) 41-47. [22] L. Pasquardini, L. Pancheri, C. Potrich, A. Ferri, C. Piemonte, L. Lunelli, L. Napione, V. Comunanza, M. Alvaro, L. Vanzetti, F. Bussolino, C. Pederzolli, SPAD aptasensor for the detection of circulating protein biomarkers, Biosensors and Bioelectronics 68 (2015) 500-507. [23] J. Li, K. Sun, Z. Chen, J. Shi, D. Zhou, G. Xie, A fluorescence biosensor for VEGF detection based on DNA assembly structure switching and isothermal amplification, Biosensors and Bioelectronics 89 (2017) 964-969. [24] R. Chattaraj, P. Mohan, C.M. Livingston, J.D. Besmer, K. Kumar, A.P. Goodwin, Mutually-Reactive, Fluorogenic Hydrocyanine/Quinone Reporter Pairs for In-Solution Biosensing via Nanodroplet Association, ACS Applied Materials & Interfaces 8(1) (2016) 802-808. [25] H. Zhang, L. Peng, M. Li, J. Ma, S. Qi, H. Chen, L. Zhou, X. Chen, A label-free colorimetric biosensor for sensitive detection of vascular endothelial growth factor-165, Analyst 142(13) (2017) 2419-2425. [26] Y. Li, H.J. Lee, R.M. Corn, Detection of Protein Biomarkers Using RNA Aptamer Microarrays and Enzymatically Amplified Surface Plasmon Resonance Imaging, Analytical chemistry 79(3) (2007) 1082-1088. [27] N. Cennamo, M. Pesavento, L. Lunelli, L. Vanzetti, C. Pederzolli, L. Zeni, L. Pasquardini, An easy way to realize SPR aptasensor: A multimode plastic optical fiber platform for cancer biomarkers detection, Talanta 140 (2015) 88-95. [28] H. Chen, Y. Hou, F. Qi, J. Zhang, K. Koh, Z. Shen, G. Li, Detection of vascular endothelial growth factor based on rolling circle amplification as a means of signal enhancement in surface plasmon resonance, Biosensors and Bioelectronics 61 (2014) 83-87. [29] S. Prabhulkar, S. Alwarappan, G. Liu, C.-Z. Li, Amperometric micro-immunosensor for the detection of tumor biomarker, Biosensors and Bioelectronics 24(12) (2009) 3524-3530. [30] X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments, Journal of the American Chemical Society 126(40) (2004) 12736-12737. [31] S.N. Baker, G.A. Baker, Luminescent Carbon Nanodots: Emergent Nanolights, Angewandte Chemie International Edition 49(38) (2010) 6726-6744. [32] S. Empedocles, M. Bawendi, Spectroscopy of Single CdSe Nanocrystallites, Accounts of Chemical Research 32(5) (1999) 389-396. [33] T. Trindade, P. O'Brien, N.L. Pickett, Nanocrystalline Semiconductors: Synthesis, Properties, and Perspectives, Chemistry of Materials 13(11) (2001) 3843-3858. [34] J. Shen, Y. Zhu, X. Yang, C. Li, Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices, Chemical Communications 48(31) (2012) 3686-3699. [35] S.-T. Yang, L. Cao, P.G. Luo, F. Lu, X. Wang, H. Wang, M.J. Meziani, Y. Liu, G. Qi, Y.-P. Sun, Carbon Dots for Optical Imaging in Vivo, Journal of the American Chemical Society 131(32) (2009) 11308-11309. [36] Q. Li, T.Y. Ohulchanskyy, R. Liu, K. Koynov, D. Wu, A. Best, R. Kumar, A. Bonoiu, P.N. Prasad, Photoluminescent Carbon Dots as Biocompatible Nanoprobes for Targeting Cancer Cells in Vitro, The Journal of Physical Chemistry C 114(28) (2010) 12062-12068. [37] M. Zheng, S. Liu, J. Li, D. Qu, H. Zhao, X. Guan, X. Hu, Z. Xie, X. Jing, Z. Sun, Integrating Oxaliplatin with Highly Luminescent Carbon Dots: An Unprecedented Theranostic Agent for Personalized Medicine, Advanced Materials 26(21) (2014) 3554-3560. [38] S.-T. Yang, X. Wang, H. Wang, F. Lu, P.G. Luo, L. Cao, M.J. Meziani, J.-H. Liu, Y. Liu, M. Chen, Y. Huang, Y.-P. Sun, Carbon Dots as Nontoxic and High-Performance Fluorescence Imaging Agents, The Journal of Physical Chemistry C 113(42) (2009) 18110-18114. [39] L. Cao, X. Wang, M.J. Meziani, F. Lu, H. Wang, P.G. Luo, Y. Lin, B.A. Harruff, L.M. Veca, D. Murray, S.-Y. Xie, Y.-P. Sun, Carbon Dots for Multiphoton Bioimaging, Journal of the American Chemical Society 129(37) (2007) 11318-11319. [40] D.B. Shinde, V.K. Pillai, Electrochemical Preparation of Luminescent Graphene Quantum Dots from Multiwalled Carbon Nanotubes, Chemistry – A European Journal 18(39) (2012) 12522-12528. [41] H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang, X. Yang, Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties, Chemical Communications (34) (2009) 5118-5120. [42] H. Liu, T. Ye, C. Mao, Fluorescent Carbon Nanoparticles Derived from Candle Soot, Angewandte Chemie International Edition 46(34) (2007) 6473-6475. [43] D. Uriarte, C. Domini, M. Garrido, New carbon dots based on glycerol and urea and its application in the determination of tetracycline in urine samples, Talanta 201 (2019) 143-148. [44] Q. Chen, P. Zhu, J. Xiong, L. Gao, K. Tan, A sensitive and selective triple-channel optical assay based on red-emissive carbon dots for the determination of PFOS, Microchemical Journal 145 (2019) 388-396. [45] H. Li, J. Zhai, X. Sun, Sensitive and Selective Detection of Silver(I) Ion in Aqueous Solution Using Carbon Nanoparticles as a Cheap, Effective Fluorescent Sensing Platform, Langmuir 27(8) (2011) 4305-4308. [46] M.J. Krysmann, A. Kelarakis, P. Dallas, E.P. Giannelis, Formation Mechanism of Carbogenic Nanoparticles with Dual Photoluminescence Emission, Journal of the American Chemical Society 134(2) (2012) 747-750. [47] C. Ding, A. Zhu, Y. Tian, Functional Surface Engineering of C-Dots for Fluorescent Biosensing and in Vivo Bioimaging, Accounts of Chemical Research 47(1) (2014) 20-30. [48] M. Hamada, In silico approaches to RNA aptamer design, Biochimie 145 (2018) 8-14. [49] Y. Li, X. Zhang, D. Cao, The Role of Shape Complementarity in the Protein-Protein Interactions, Scientific Reports 3(1) (2013) 3271. [50] C. Tuerk, L. Gold, Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase, Science (New York, N.Y.) 249(4968) (1990) 505-510. [51] A.D. Ellington, J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands, Nature 346(6287) (1990) 818-822. [52] S. Dehghani, R. Nosrati, M. Yousefi, A. Nezami, F. Soltani, S.M. Taghdisi, K. Abnous, M. Alibolandi, M. Ramezani, Aptamer-based biosensors and nanosensors for the detection of vascular endothelial growth factor (VEGF): A review, Biosensors and Bioelectronics 110 (2018) 23-37. [53] T. Kong, R. Zhou, Y. Zhang, L. Hao, X. Cai, B. Zhu, AS1411 aptamer modified carbon dots via polyethylenimine-assisted strategy for efficient targeted cancer cell imaging, Cell Proliferation 53(1) (2020) e12713. [54] A. Mars, S. Ben jaafar, A.B.A.-E. Gaied, N. Raouafi, Electrochemical immunoassay for lactalbumin based on the use of ferrocene-modified gold nanoparticles and lysozyme-modified magnetic beads, Microchimica Acta 185(10) (2018) 449. [55] B.P. Crulhas, A.E. Karpik, F.K. Delella, G.R. Castro, V.A. Pedrosa, Electrochemical aptamer-based biosensor developed to monitor PSA and VEGF released by prostate cancer cells, Analytical and Bioanalytical Chemistry 409(29) (2017) 6771-6780. [56] D. Zhu, W. Li, H.-M. Wen, S. Yu, Z.-Y. Miao, A. Kang, A. Zhang, Silver nanoparticles-enhanced time-resolved fluorescence sensor for VEGF165 based on Mn-doped ZnS quantum dots, Biosensors and Bioelectronics 74 (2015) 1053-1060. [57] Y. Fan, M. Cui, Y. Liu, M. Jin, H. Zhao, Selection and characterization of DNA aptamers for constructing colorimetric biosensor for detection of PBP2a, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 228 (2020) 117735. [58] Y. Nonaka, K. Sode, K. Ikebukuro, Screening and Improvement of an Anti-VEGF DNA Aptamer, Molecules 15(1) (2010). [59] W. Chuanxi, Z. Xu, C. Zhang, Polyethyleneimine-Functionalized Fluorescent Carbon Dots: Water Stability, pH Sensing, and Cellular Imaging, ChemNanoMat 1 (2015). [60] P. Agrawal, E. Hatzakis, K. Guo, M. Carver, D. Yang, Solution structure of the major G-quadruplex formed in the human VEGF promoter in K+: insights into loop interactions of the parallel G-quadruplexes, Nucleic Acids Research 41(22) (2013) 10584-10592. [61] P. Carmeliet, VEGF as a key mediator of angiogenesis in cancer, Oncology 69 Suppl 3 (2005) 4-10. [62] M.J. Molaei, A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence, Talanta 196 (2019) 456-478. [63] K. Ghosal, A. Ghosh, Carbon dots: The next generation platform for biomedical applications, Materials Science and Engineering: C 96 (2019) 887-903. [64] H. Liu, Z. He, L.P. Jiang, J.J. Zhu, Microwave-assisted synthesis of wavelength-tunable photoluminescent carbon nanodots and their potential applications, ACS Appl Mater Interfaces 7(8) (2015) 4913-20.
|