跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/06 19:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:伍家萱
研究生(外文):WU, JIA-XUAN
論文名稱:利用螢光奈米碳點搭配適體偵測器檢測血漿中之血管內皮生長因子
論文名稱(外文):Carbon dots with aptasensor for fluorescence detection of vascular endothelial growth factor (VEGF) in plasma.
指導教授:柯黃盛柯黃盛引用關係
指導教授(外文):KOU, HWANG-SHANG
口試委員:王俊棋陳彥伶柯黃盛
口試委員(外文):WANG, CHUN-CHICHEN, YEN-LINGKOU, HWANG-SHANG
口試日期:2021-12-17
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:藥學系碩士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:68
中文關鍵詞:血管內皮生長因子適體螢光奈米碳點
外文關鍵詞:VEGFcarbon dotsaptamer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
血管內皮生長因子(Vascular endothelial growth factor, VEGF)是血管生成的關鍵影響因子,在癌症初期腫瘤生長時需要新生大量的血管用以輸送養分與氧氣,此時VEGF濃度就會異常增高,因此被視為癌症重要生物標的物 ( bio-marker ) 。目前檢測VEGF的技術開發也日漸成熟,並作為是否罹患癌症的重要輔助判斷,但檢測方法常需要昂貴儀器或耗材,因此本篇研究開發以螢光奈米碳點(carbon dots, CDs)搭配適體 ( aptamer, APT )組成之適體偵測器,用以針對血管內皮生長因子進行檢測。
本研究以螢光奈米碳點作為螢光探針並在aptamer上設計一個官能基--dabcyl做為螢光能量轉移淬滅物質。利用螢光共振能量轉移( Fluorescence resonance energy transfer, FRET)的方式在aptamer與CDs靜電相吸後造成螢光淬滅,而有偵測到VEGF樣品則會的透過aptamer與VEGF的特異性結合從而形成立體空間障礙使CDs無法與dabcyl結合使螢光不會下降,透過這樣的反應機制與螢光強度的高低來檢測VEGF與其對應的濃度。結果證實螢光訊號隨著VEGF的濃度的增加而上升。本研究方法的有良好的減量線線性(y = 2349.7x - 109.84,r = 0.9963) 和檢測極限低至0.08 ng/mL,且具有良好的精密度和選擇性。此外,所提出的方法已成功應用於檢測在人造血清中的樣品,人造血清樣本的檢測結果表明,回收率範圍為 85.7% 至 104.2%而相對標準偏差則落在0.9% 至2.6% 之間,具有在臨床研究和診斷中的應用潛力。

Vascular endothelial growth factor (VEGF) is a key influencing factor of angiogenesis. In the early stage of cancer, tumor growth requires a large number of new blood vessels to transport nutrients and oxygen. At this time, the concentration of VEGF will increase abnormally, so it is considered an important biomarker for cancer. At present, the development of technology for detecting VEGF is also becoming mature, and it is used as an important auxiliary judgment for cancer. However, the detection method often requires expensive equipment or consumables. Therefore, the research and development of this article use fluorescent carbon dots (CDs) with suitable the aptamer detector composed of aptamer (aptamer, APT) is used to detect VEGF.
In this study, fluorescent nanocarbon dots were used as fluorescent probes and a functional group-dabcyl was designed on aptamer as a quenching substance for fluorescent energy transfer. Fluorescence resonance energy transfer (FRET) is used to quench the fluorescence after the aptamer and CDs are electrostatically attracted, and the detected VEGF sample will be formed through the specific binding of aptamer and VEGF The three-dimensional space barrier prevents CDs from combining with dabcyl so that the fluorescence will not decrease, Through this reaction mechanism and the level of fluorescence intensity, VEGF and its corresponding concentration can be detected. The results confirmed that the fluorescence signal increased with the increase of the concentration of VEGF. The result of this study has good linearity (y = 2349.7x-109.84, r = 0.9963) and detection limit as low as 0.08 ng/mL, and has good precision and selectivity. In addition, the proposed method has been successfully applied to the detection of samples in artificial serum. The detection results of artificial serum samples show that the recovery rate ranges from 85.7% to 104.2% and the relative standard deviation fall between 0.9% and 2.6%. It has the potential for application in clinical research and diagnosis.

目錄 i
中文摘要 iv
ABSTRACT vi
圖目錄 viii
表目錄 ix
縮寫表 x
第一章、 緒論 1
第一節、 VEGF血管內皮生長因子介紹 1
第二節、 VEGF血管內皮生長因子之相關檢測方法 2
第三節、 Carbon dots螢光奈米碳點 4
第四節、 Aptamer適體 5
第五節、 實驗機轉 5
第六節、 實驗目的 8
第二章、 實驗材料及方法 9
第一節、 化學材料 9
第二節、 實驗儀器 10
第三節、 螢光奈米碳點合成方法與特徵鑑定 11
第四節、 溶液配製方式 12
第五節、 實驗方法 14
一、 螢光奈米碳點微波合成條件設定 14
二、 螢光分光光度計F-4500實驗參數設定 14
三、 螢光差距量的評估與定量 14
四、 最佳螢光奈米碳點合成比例探討 15
五、 Dabcyl修飾位置探討 16
六、 最佳適體濃度探討 17
七、 適體與VEGF-165反應時間之探討 18
八、 最佳反應酸鹼值探討 20
九、 最佳氯化鉀濃度探討 21
十、 專一性評估 23
十一、 VEGF-165減量線與檢測極限 24
十二、 實際檢體的應用 25
第三章、 結果與討論 27
第一節、 螢光奈米碳點特徵鑑定 27
第二節、 最佳螢光奈米碳點合成比例探討 31
第三節、 Dabcyl修飾位置探討 34
第四節、 最佳適體濃度探討 35
第五節、 適體與VEGF-165反應時間之探討 36
第六節、 最佳反應酸鹼值探討 38
第七節、 最佳氯化鉀濃度探討 39
第八節、 專一性評估 40
第九節、 VEGF-165減量線與檢測極限 41
第十節、 實際檢體的應用 43
第四章、 結論 44
第五章、 參考文獻 46

[1] C.S. Melincovici, A.B. Boşca, S. Şuşman, M. Mărginean, C. Mihu, M. Istrate, I.M. Moldovan, A.L. Roman, C.M. Mihu, Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis, Romanian journal of morphology and embryology = Revue roumaine de morphologie et embryologie 59(2) (2018) 455-467.
[2] J. Street, M. Bao, L. deGuzman, S. Bunting, F.V. Peale, N. Ferrara, H. Steinmetz, J. Hoeffel, J.L. Cleland, A. Daugherty, N. van Bruggen, H.P. Redmond, R.A.D. Carano, E.H. Filvaroff, Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover, Proceedings of the National Academy of Sciences 99(15) (2002) 9656.
[3] Y. Sakurai, K. Ohgimoto, Y. Kataoka, N. Yoshida, M. Shibuya, Essential role of Flk-1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice, Proceedings of the National Academy of Sciences of the United States of America 102(4) (2005) 1076.
[4] P. Carmeliet, VEGF as a Key Mediator of Angiogenesis in Cancer, Oncology 69(suppl 3)(Suppl. 3) (2005) 4-10.
[5] K. Tawada, T. Ishihara, A. Kobayashi, T. Yamaguchi, T. Tsuyuguchi, M. Matsuyama, O. Yokosuka, Quantitative Analysis of Vascular Endothelial Growth Factor in Liver Metastases from Pancreatic Carcinoma as a Predictor of Chemotherapeutic Effect and Prognosis, 14(22) (2008) 7438-7443.
[6] N. Ferrara, Binding to the Extracellular Matrix and Proteolytic Processing: Two Key Mechanisms Regulating Vascular Endothelial Growth Factor Action, Molecular Biology of the Cell 21(5) (2010) 687-690.
[7] M. Simons, E. Gordon, L. Claesson-Welsh, Mechanisms and regulation of endothelial VEGF receptor signalling, Nature reviews. Molecular cell biology 17(10) (2016) 611-25.
[8] H.F. Dvorak, Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy, Journal of clinical oncology : official journal of the American Society of Clinical Oncology 20(21) (2002) 4368-80.
[9] N. Ferrara, T. Davis-Smyth, The biology of vascular endothelial growth factor, Endocrine reviews 18(1) (1997) 4-25.
[10] T. Ostendorf, U. Kunter, F. Eitner, A. Loos, H. Regele, D. Kerjaschki, D.D. Henninger, N. Janjic, J. Floege, VEGF165 mediates glomerular endothelial repair, The Journal of Clinical Investigation 104(7) (1999) 913-923.
[11] H. Kaur, L.Y. Yung, Probing high affinity sequences of DNA aptamer against VEGF165, PloS one 7(2) (2012) e31196.
[12] F.A. Eskens, J.J.E.j.o.c. Verweij, The clinical toxicity profile of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors; a review, 42(18) (2006) 3127-3139.
[13] Y. Lai, X. Wang, T. Zeng, S. Xing, S. Dai, J. Wang, S. Chen, X. Li, Y. Xie, Y. Zhu, W. Liu, Serum VEGF levels in the early diagnosis and severity assessment of non-small cell lung cancer, Journal of Cancer 9(9) (2018) 1538-1547.
[14] Y. Nonaka, W. Yoshida, K. Abe, S. Ferri, H. Schulze, T.T. Bachmann, K. Ikebukuro, Affinity improvement of a VEGF aptamer by in silico maturation for a sensitive VEGF-detection system, Analytical chemistry 85(2) (2013) 1132-7.
[15] K.A. Houck, D.W. Leung, A.M. Rowland, J. Winer, N. Ferrara, Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms, Journal of Biological Chemistry 267(36) (1992) 26031-26037.
[16] V.P. Chekhonin, S.A. Shein, A.A. Korchagina, O.I. Gurina, VEGF in tumor progression and targeted therapy, Current cancer drug targets 13(4) (2013) 423-43.
[17] A. Vasala, H. Nair, T.S. Rao, S.S. Murthy, R. Tagore, F. Ahmed, Role of angiogenesis in colorectal carcinomas using VEGF and BCl2: An IHC study, Annals of Diagnostic Pathology 31 (2017) 41-44.
[18] F.W. Anthony, P.W. Evans, T. Wheeler, P.J. Wood, Variation in Detection of VEGF in Maternal Serum by Immunoassay and the Possible Influence of Binding Proteins, Annals of Clinical Biochemistry 34(3) (1997) 276-280.
[19] H. Mineta, K. Miura, T. Ogino, S. Takebayashi, K. Misawa, Y. Ueda, I. Suzuki, M. Dictor, Å. Borg, J. Wennerberg, Prognostic value of vascular endothelial growth factor (VEGF) in head and neck squamous cell carcinomas, British Journal of Cancer 83(6) (2000) 775-781.
[20] G. Sumner, C. Georgaros, A. Rafique, T. DiCioccio, J. Martin, N. Papadopoulos, T. Daly, A. Torri, Anti-VEGF drug interference with VEGF quantitation in the R&D systems human quantikine VEGF ELISA kit, Bioanalysis 11(5) (2019) 381-392.
[21] X. Lin, K.-H. Leung, L. Lin, L. Lin, S. Lin, C.-H. Leung, D.-L. Ma, J.-M. Lin, Determination of cell metabolite VEGF165 and dynamic analysis of protein–DNA interactions by combination of microfluidic technique and luminescent switch-on probe, Biosensors and Bioelectronics 79 (2016) 41-47.
[22] L. Pasquardini, L. Pancheri, C. Potrich, A. Ferri, C. Piemonte, L. Lunelli, L. Napione, V. Comunanza, M. Alvaro, L. Vanzetti, F. Bussolino, C. Pederzolli, SPAD aptasensor for the detection of circulating protein biomarkers, Biosensors and Bioelectronics 68 (2015) 500-507.
[23] J. Li, K. Sun, Z. Chen, J. Shi, D. Zhou, G. Xie, A fluorescence biosensor for VEGF detection based on DNA assembly structure switching and isothermal amplification, Biosensors and Bioelectronics 89 (2017) 964-969.
[24] R. Chattaraj, P. Mohan, C.M. Livingston, J.D. Besmer, K. Kumar, A.P. Goodwin, Mutually-Reactive, Fluorogenic Hydrocyanine/Quinone Reporter Pairs for In-Solution Biosensing via Nanodroplet Association, ACS Applied Materials & Interfaces 8(1) (2016) 802-808.
[25] H. Zhang, L. Peng, M. Li, J. Ma, S. Qi, H. Chen, L. Zhou, X. Chen, A label-free colorimetric biosensor for sensitive detection of vascular endothelial growth factor-165, Analyst 142(13) (2017) 2419-2425.
[26] Y. Li, H.J. Lee, R.M. Corn, Detection of Protein Biomarkers Using RNA Aptamer Microarrays and Enzymatically Amplified Surface Plasmon Resonance Imaging, Analytical chemistry 79(3) (2007) 1082-1088.
[27] N. Cennamo, M. Pesavento, L. Lunelli, L. Vanzetti, C. Pederzolli, L. Zeni, L. Pasquardini, An easy way to realize SPR aptasensor: A multimode plastic optical fiber platform for cancer biomarkers detection, Talanta 140 (2015) 88-95.
[28] H. Chen, Y. Hou, F. Qi, J. Zhang, K. Koh, Z. Shen, G. Li, Detection of vascular endothelial growth factor based on rolling circle amplification as a means of signal enhancement in surface plasmon resonance, Biosensors and Bioelectronics 61 (2014) 83-87.
[29] S. Prabhulkar, S. Alwarappan, G. Liu, C.-Z. Li, Amperometric micro-immunosensor for the detection of tumor biomarker, Biosensors and Bioelectronics 24(12) (2009) 3524-3530.
[30] X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments, Journal of the American Chemical Society 126(40) (2004) 12736-12737.
[31] S.N. Baker, G.A. Baker, Luminescent Carbon Nanodots: Emergent Nanolights, Angewandte Chemie International Edition 49(38) (2010) 6726-6744.
[32] S. Empedocles, M. Bawendi, Spectroscopy of Single CdSe Nanocrystallites, Accounts of Chemical Research 32(5) (1999) 389-396.
[33] T. Trindade, P. O'Brien, N.L. Pickett, Nanocrystalline Semiconductors:  Synthesis, Properties, and Perspectives, Chemistry of Materials 13(11) (2001) 3843-3858.
[34] J. Shen, Y. Zhu, X. Yang, C. Li, Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices, Chemical Communications 48(31) (2012) 3686-3699.
[35] S.-T. Yang, L. Cao, P.G. Luo, F. Lu, X. Wang, H. Wang, M.J. Meziani, Y. Liu, G. Qi, Y.-P. Sun, Carbon Dots for Optical Imaging in Vivo, Journal of the American Chemical Society 131(32) (2009) 11308-11309.
[36] Q. Li, T.Y. Ohulchanskyy, R. Liu, K. Koynov, D. Wu, A. Best, R. Kumar, A. Bonoiu, P.N. Prasad, Photoluminescent Carbon Dots as Biocompatible Nanoprobes for Targeting Cancer Cells in Vitro, The Journal of Physical Chemistry C 114(28) (2010) 12062-12068.
[37] M. Zheng, S. Liu, J. Li, D. Qu, H. Zhao, X. Guan, X. Hu, Z. Xie, X. Jing, Z. Sun, Integrating Oxaliplatin with Highly Luminescent Carbon Dots: An Unprecedented Theranostic Agent for Personalized Medicine, Advanced Materials 26(21) (2014) 3554-3560.
[38] S.-T. Yang, X. Wang, H. Wang, F. Lu, P.G. Luo, L. Cao, M.J. Meziani, J.-H. Liu, Y. Liu, M. Chen, Y. Huang, Y.-P. Sun, Carbon Dots as Nontoxic and High-Performance Fluorescence Imaging Agents, The Journal of Physical Chemistry C 113(42) (2009) 18110-18114.
[39] L. Cao, X. Wang, M.J. Meziani, F. Lu, H. Wang, P.G. Luo, Y. Lin, B.A. Harruff, L.M. Veca, D. Murray, S.-Y. Xie, Y.-P. Sun, Carbon Dots for Multiphoton Bioimaging, Journal of the American Chemical Society 129(37) (2007) 11318-11319.
[40] D.B. Shinde, V.K. Pillai, Electrochemical Preparation of Luminescent Graphene Quantum Dots from Multiwalled Carbon Nanotubes, Chemistry – A European Journal 18(39) (2012) 12522-12528.
[41] H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang, X. Yang, Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties, Chemical Communications (34) (2009) 5118-5120.
[42] H. Liu, T. Ye, C. Mao, Fluorescent Carbon Nanoparticles Derived from Candle Soot, Angewandte Chemie International Edition 46(34) (2007) 6473-6475.
[43] D. Uriarte, C. Domini, M. Garrido, New carbon dots based on glycerol and urea and its application in the determination of tetracycline in urine samples, Talanta 201 (2019) 143-148.
[44] Q. Chen, P. Zhu, J. Xiong, L. Gao, K. Tan, A sensitive and selective triple-channel optical assay based on red-emissive carbon dots for the determination of PFOS, Microchemical Journal 145 (2019) 388-396.
[45] H. Li, J. Zhai, X. Sun, Sensitive and Selective Detection of Silver(I) Ion in Aqueous Solution Using Carbon Nanoparticles as a Cheap, Effective Fluorescent Sensing Platform, Langmuir 27(8) (2011) 4305-4308.
[46] M.J. Krysmann, A. Kelarakis, P. Dallas, E.P. Giannelis, Formation Mechanism of Carbogenic Nanoparticles with Dual Photoluminescence Emission, Journal of the American Chemical Society 134(2) (2012) 747-750.
[47] C. Ding, A. Zhu, Y. Tian, Functional Surface Engineering of C-Dots for Fluorescent Biosensing and in Vivo Bioimaging, Accounts of Chemical Research 47(1) (2014) 20-30.
[48] M. Hamada, In silico approaches to RNA aptamer design, Biochimie 145 (2018) 8-14.
[49] Y. Li, X. Zhang, D. Cao, The Role of Shape Complementarity in the Protein-Protein Interactions, Scientific Reports 3(1) (2013) 3271.
[50] C. Tuerk, L. Gold, Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase, Science (New York, N.Y.) 249(4968) (1990) 505-510.
[51] A.D. Ellington, J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands, Nature 346(6287) (1990) 818-822.
[52] S. Dehghani, R. Nosrati, M. Yousefi, A. Nezami, F. Soltani, S.M. Taghdisi, K. Abnous, M. Alibolandi, M. Ramezani, Aptamer-based biosensors and nanosensors for the detection of vascular endothelial growth factor (VEGF): A review, Biosensors and Bioelectronics 110 (2018) 23-37.
[53] T. Kong, R. Zhou, Y. Zhang, L. Hao, X. Cai, B. Zhu, AS1411 aptamer modified carbon dots via polyethylenimine-assisted strategy for efficient targeted cancer cell imaging, Cell Proliferation 53(1) (2020) e12713.
[54] A. Mars, S. Ben jaafar, A.B.A.-E. Gaied, N. Raouafi, Electrochemical immunoassay for lactalbumin based on the use of ferrocene-modified gold nanoparticles and lysozyme-modified magnetic beads, Microchimica Acta 185(10) (2018) 449.
[55] B.P. Crulhas, A.E. Karpik, F.K. Delella, G.R. Castro, V.A. Pedrosa, Electrochemical aptamer-based biosensor developed to monitor PSA and VEGF released by prostate cancer cells, Analytical and Bioanalytical Chemistry 409(29) (2017) 6771-6780.
[56] D. Zhu, W. Li, H.-M. Wen, S. Yu, Z.-Y. Miao, A. Kang, A. Zhang, Silver nanoparticles-enhanced time-resolved fluorescence sensor for VEGF165 based on Mn-doped ZnS quantum dots, Biosensors and Bioelectronics 74 (2015) 1053-1060.
[57] Y. Fan, M. Cui, Y. Liu, M. Jin, H. Zhao, Selection and characterization of DNA aptamers for constructing colorimetric biosensor for detection of PBP2a, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 228 (2020) 117735.
[58] Y. Nonaka, K. Sode, K. Ikebukuro, Screening and Improvement of an Anti-VEGF DNA Aptamer, Molecules 15(1) (2010).
[59] W. Chuanxi, Z. Xu, C. Zhang, Polyethyleneimine-Functionalized Fluorescent Carbon Dots: Water Stability, pH Sensing, and Cellular Imaging, ChemNanoMat 1 (2015).
[60] P. Agrawal, E. Hatzakis, K. Guo, M. Carver, D. Yang, Solution structure of the major G-quadruplex formed in the human VEGF promoter in K+: insights into loop interactions of the parallel G-quadruplexes, Nucleic Acids Research 41(22) (2013) 10584-10592.
[61] P. Carmeliet, VEGF as a key mediator of angiogenesis in cancer, Oncology 69 Suppl 3 (2005) 4-10.
[62] M.J. Molaei, A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence, Talanta 196 (2019) 456-478.
[63] K. Ghosal, A. Ghosh, Carbon dots: The next generation platform for biomedical applications, Materials Science and Engineering: C 96 (2019) 887-903.
[64] H. Liu, Z. He, L.P. Jiang, J.J. Zhu, Microwave-assisted synthesis of wavelength-tunable photoluminescent carbon nanodots and their potential applications, ACS Appl Mater Interfaces 7(8) (2015) 4913-20.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top