跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/03/16 11:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:孫坤生
研究生(外文):SUN, KUN-SHENG
論文名稱:應用於馬賽克圖像與壓縮圖像之數據隱藏方案
論文名稱(外文):Data Hiding Schemes for Mosaic and Compressed Images
指導教授:洪集輝
指導教授(外文):HORNG, JI-HWEI
口試委員:張真誠郭文中洪集輝
口試委員(外文):CHANG, CHIN-CHENKUO, WEN-CHUNGHORNG, JI-HWEI
口試日期:2022-06-28
學位類別:碩士
校院名稱:國立金門大學
系所名稱:電子工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:75
中文關鍵詞:數據隱藏龜殼矩陣馬賽克向量量化側邊匹配向量量化主成分分析反聚類
外文關鍵詞:Data HidingTurtle Shell MatrixMosaicVector QuantizationSide Match Vector QuantizationPrincipal Component AnalysisDe-Cluster
ORCID或ResearchGate:orcid.org/ 0000-0001-9561-1688
相關次數:
  • 被引用被引用:1
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
數據隱藏技術(Data Hiding)屬於資訊安全的研究領域,是一種將秘密訊息嵌入至文字、音訊、圖像與影片等掩護媒體中的偽裝技術,藉由偽裝媒體的掩護以實現安全通訊之目的。本文以圖像方面之數據隱藏為研究主題,並根據圖像載體種類,分別於圖像的“像素域”與“壓縮域”提出數據隱藏技術。
本文於“像素域”方面提出了一種基於龜殼參考矩陣的馬賽克圖像雙層數據隱藏技術。過程中,我們首先使用三張不同亮度的咖啡豆圖像生成馬賽克瓷磚庫,藉由咖啡豆瓷磚的拼貼以模擬給定的主圖像,製作出主要輪廓為主圖像,但細節紋路為咖啡豆的馬賽克圖像。其次,以馬賽克圖像作為數據隱藏的掩護載體,根據龜殼參考矩陣在馬賽克圖像的咖啡豆層級,藉由替換相近的咖啡豆瓷磚以嵌入第一層秘密訊息。最終,於馬賽克圖像的像素層級嵌入第二層秘密訊息。由於馬賽克圖像的低視覺質量,利用新提出的偏移遮罩以及強嵌入和弱嵌入的概念,在馬賽克圖像的像素層級嵌入3 bpp的秘密訊息後其PSNR值可提高約1.5 dB,將數據隱藏應用於馬賽克掩護圖像是一個全新的想法,而且很有前途。
在“壓縮域”中,向量量化(Vector Quantization,VQ)是一種流行的數位圖像壓縮技術,其壓縮結果(索引表)還可以使用側邊匹配向量量化(Side Match Vector Quantization,SMVQ)進一步壓縮。本文提出了兩種應用於VQ索引表的可逆數據隱藏(Reversible Data Hiding,RDH)方案。第一種是基於主成分分析(Principal Component Analysis,PCA)的VQ索引表可逆數據隱藏方案。該方案首先基於PCA算法對VQ的編碼本進行的排序,增加編碼本相鄰索引的相關性,以形成排序編碼本。其次,使用PCA編碼本對圖像進行VQ壓縮,生成VQ索引表。此時,VQ索引表成為RDH的掩護載體。最後,通過利用自然圖像的連續性特徵,可以進一步壓縮 VQ 索引碼,以騰出空間來嵌入秘密訊息。壓縮方法使用差異預測壓縮,其參考聯合相鄰編碼(Joint Neighboring Coding,JNC)數據隱藏方案,利用兩個相鄰索引對之間的差異進行壓縮編碼,不同之處在於我們的編碼方向統一使用橫向或直向的光柵掃描處理,並且只在可壓縮索引中嵌入秘密訊息。實驗結果表明,所提方法可以有效改善JNC根據秘密訊息選擇相鄰壓縮編碼索引所導致的壓縮率差的問題。壓縮結果與其他使用狀態編碼本的壓縮方案有異曲同工之妙,但在算法上更加精簡。
第二種方案是基於反聚類(De-Cluster)規則的SMVQ可逆數據隱藏。在該方案中,反聚類則應用於SMVQ的可壓縮索引的主編碼本與不可壓縮索引的狀態編碼本。在編碼本中,根據反聚類規則將索引進行一對一映射分組,從而在SMVQ壓縮過程中,通過替換映射索引來達到嵌入秘密訊息的目的。所提出的方案可以生成具有高載荷的偽裝VQ索引表。此外,我們的方案減少了傳統SMVQ欲恢復VQ索引表所需的許多指示位元,提高了壓縮質量,結果表明,在圖像壓縮率和嵌入率方面與先進的RDH方法相比有很好的結果。

Data hiding is a hot research topic in information security. It is a camouflage technology that embeds secret messages in cover media such as text, audio, images and videos, the purpose of secure communication is achieved by camouflaging the cover media. This research focuses on data hiding for images. According to the type of image carrier, data hiding techniques in the "plain image domain" and "compressed image domain" are proposed.
In the "plain image domain", we propose a two-layer data hiding scheme for mosaic images based on the turtle shell reference matrix. In this scheme, we first use three coffee bean images of different brightness to generate a coffee bean image-tile library. Using the library of coffee bean tiles, we produce mosaic image that looks similar to a given original image but the detail texture is coffee beans. Secondly, the mosaic image is used as a cover carrier for the data hiding. Replacing similar coffee bean tiles based on the turtle shell reference matrix to embed secret messages at the tile level in the first layer of data hiding. Finally, we embed secret message into the pixel level in the second layer of data hiding. To improve the visual quality of the mosaic image, we embed secret data using the newly proposed polarized search mask and the concepts of strong and weak embedding. PSNR value of the mosaic image can be improved by about 1.5 dB after embedding 3 bpp at the pixel level. Data hiding for the mosaic cover images is a new idea and it is promising.
In the "compressed image domain", Vector Quantization (VQ) is a popular digital image compression technology. Its compression result (index table) can be further compressed using Side Match Vector Quantization (SMVQ). We propose two Reversible Data Hiding (RDH) schemes for VQ index table. The first is a reversible data hiding scheme based on Principal Component Analysis (PCA). In the proposed scheme, the codebook of VQ is firstly sorted based on PCA to increase the correlation of adjacent indices in the codebook to form a state codebook. Secondly, the PCA state codebook is used to VQ compress the image into a VQ index table. The VQ index table is treated as the cover carrier of the RDH. Finally, by leveraging the continuity feature of natural images, a VQ index code can be further compressed to spare room for embedding secret data. The difference prediction compression is applied. The prediction method refers to the Joint Neighboring Coding (JNC) data hiding scheme, and uses the difference between two adjacent index pairs for compression encoding. The difference is that our encoding direction uniformly uses horizontal or straight raster scan processing, and only embeds secret messages in compressible indices. Experimental results show that the proposed method can effectively improve the poor compression ratio caused by JNC selecting adjacent compression coding indices according to the secret message. The compression results are similar to other compression schemes using the state codebook, but the algorithm is more streamlined.
The second scheme is a reversible data hiding for SMVQ based on de-cluster rules. In this scheme, the de-cluster rules are applied to the main codebooks of compressible indices and state codebooks of incompressible indices for SMVQ. In the codebook, based on de-cluster rules, one-to-one group mapping is performed for the codewords, so that during SMVQ compression, the purpose of embedding the secret message is achieved by replacing the mapping indices. The proposed scheme can generate a camouflaged VQ index table with high payload. In addition, our scheme reduces many indication bits required by traditional SMVQ to restore the VQ index table and improve the compression quality. In terms of image compression rate and embedding rate, our scheme has good results compared with advanced RDH methods.

目錄
致 謝 I
摘 要 II
ABSTRACT IV
目錄 VII
表目錄 VIII
圖目錄 X
第壹章、緒論 1
第一節 研究動機與背景 1
第二節 研究方法 4
第三節 論文架構 5
第貳章、圖像與數據隱藏基本介紹 6
第一節 數位圖像 6
第二節 圖像數據隱藏概述 9
第參章、基於龜殼參考矩陣之馬賽克圖像雙層數據隱藏 10
第一節 相關研究 10
第二節 應用於馬賽克圖像之龜殼矩陣數據隱藏方案 12
第三節 結果與討論 22
第肆章、基於PCA之VQ索引圖像可逆數據隱藏方案 34
第一節 相關研究 34
第二節 基於主成分分析的VQ索引表之相鄰差值壓縮可逆數據隱藏方案 39
第三節 結果與討論 42
第伍章、基於反聚類規則的 SMVQ 壓縮索引圖像可逆數據隱藏 53
第一節 相關研究 53
第二節 基於反聚類規則的 SMVQ 壓縮索引圖像可逆數據隱藏 57
第三節 結果與討論 62
第陸章、結論 71
參考資料 72

[1]X. Zhang, S. Wang, “Efficient steganographic embedding by exploiting modification direction.” IEEE Communications Letters, vol. 10, no. 11, pp. 781-783, Nov. 2006.
[2]H. J. Kim, C. Kim, Y. Choi, S. Wang, X. Zhang, “Improved modification direction methods,” Computers & Mathematics with Applications, vol. 60, no. 2, pp. 319–325, 2010.
[3]T. D. Kieu, C. C. Chang, “A steganographic scheme by fully exploiting modification directions.” Expert system with applications, vol. 38, no. 8, pp. 10648-10657, 2011.
[4]C. C. Chang, Y. Liu and T. S. Nguyen, “A Novel Turtle Shell Based Scheme for Data Hiding,” 2014 Tenth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 89-93, 2014.
[5]Y. Liu, C. C. Chang, T. S. Nguyen, “High capacity turtle shell-based data hiding,” IET Image Process, vol. 10, no. 2, pp. 130–137, 2016.
[6]Qiang Jin, Zhihong Li, Chin Chen Chang, Anhong Wang, Li Liu, “Minimizing turtle-shell matrix based stego image distortion using particle swarm optimization,” International Journal of Network Security, vol. 19, no. 1, pp. 154–162, 2017.
[7]L. Liu, C. C. Chang, A. Wang, “Data hiding based on extended turtle shell matrix construction method,” Multimedia Tools Appl, vol. 76, pp. 12233–12250, 2017.
[8]X. Z. Xie, C. C. Lin, C. C. Chang, “Data hiding based on a two-layer turtle shell matrix,” Symmetry, vol. 10, no. 2, pp. 47, 2018.
[9]J. H. Horng, J. Lin, Y. J. Liu, C. C. Chang, “3D Multilayered Turtle Shell Models for Image Steganography,” Computer Modeling in Engineering & Sciences, vol. 125, no. 2, pp. 879-906, 2020.
[10]S. Kurup, A. Rodrigues and A. Bhise, “Data hiding scheme based on octagon shaped shell,” 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1982-1986, 2015.
[11]H. S. Leng, “Generalized scheme based on octagon-shaped shell for data hiding in steganographic applications,” Symmetry, vol. 11, no. 6, pp. 1-10, 2019.
[12]C. C. Chang, Y. C. Chou and T. D. Kieu, “An Information Hiding Scheme Using Sudoku,” 2008 3rd International Conference on Innovative Computing Information and Control, pp. 17-17, 2008.
[13]M. He, Y. Liu, C. C. Chang and M. He, "A Mini-Sudoku Matrix-Based Data Embedding Scheme with High Payload," in IEEE Access, vol. 7, pp. 141414-141425, 2019.
[14]W. Hong, “Adaptive image data hiding in edges using patched reference table and pair-wise embedding technique,” Information Sciences, vol. 221, pp. 473–489, 2013.
[15]X. Liao, S. Guo, J. Yin, H. Wang, X. Li, A. K. Sangaiah, “New cubic reference table based image steganography,” Multimedia Tools Appl, vol. 77, pp. 10033–10050, 2018.
[16]J. Lin, J. H. Horng, Y. Liu and C. C. Chang, “An Anisotropic Reference Matrix for Image Steganography,” Journal of Visual Communication and Image Representation, vol. 74, 102969, January 2021.
[17]T. S. Nguyen, C. C. Chang, “A reversible data hiding scheme based on the Sudoku technique,” Displays, vol. 39, pp. 109-116, 2015.
[18]C. C. Chang, C. T. Li, and K. Chen, “Privacy-preserving reversible information hiding based on arithmetic of quadratic residues,” IEEE Access, vol. 7, no. 1, pp. 54117-54132, 2019.
[19]C. C. Chang, C. T. Li, Y. Q. Shi, “Privacy-aware reversible watermarking in cloud computing environments,” IEEE Access, vol. 6, no. 1, pp. 70720-70733, 2018.
[20]Y. Shi, X. Li, X. Zhang, H. Wu and B. Ma, “Reversible data hiding: Advances in the past two decades,” IEEE Access, vol. 4, pp. 3210-3237, 2016.
[21]J. H. Horng, C. C. Chang, G. L. Li, “Steganography using Quotient Value Differencing and LSB Substitution for AMBTC Compressed Images,” IEEE Access, vol. 8, pp. 129347-129358, 2020.
[22]F. Huang, X. Qu, H. J. Kim and J. Huang, “Reversible data hiding in JPEG images,” IEEE Transactions on Circuits Systems for Video Technology, vol. 26, no. 9, pp.1610–1621, 2016.
[23]Y. Li, S. Yao, K. Yang, Y. Tan and Q. Zhang, “A High-Imperceptibility and Histogram-Shifting Data Hiding Scheme for JPEG Images,” in IEEE Access, vol. 7, pp. 73573-73582, 2019.
[24]Y. Linde, A. Buzo, R. Gray, An Algorithm for Vector Quantizer Design, in IEEE Transactions on Communications, vol. 28, no. 1, pp.84-95, January 1980.
[25]T. Kim, “Side match and overlap match vector quantizers for images,” in IEEE Transactions on Image Processing, vol. 1, no. 2, pp. 170-185, April 1992.
[26]C. C. Chang, T. D. Kieu, W. C. Wu, A lossless data embedding technique by joint neighboring coding, Pattern Recognition, vol. 42, pp.1597-1603, 2009.
[27]J. X. Wang, Z. M. Lu, “A path optional lossless data hiding scheme based on VQ joint neighboring coding,” Information Sciences, vol. 179, no.19, pp.3332-3348, 2009.
[28]Z. H. Wang, C. C. Chang, K. N. Chen, M. C. Li, “An encoding method for both image compression and data lossless information hiding,” Journal of Systems and Software, vol. 83, pp.2073-2082, 2010.
[29]C. C. Chang, G. M. Chen, M. H. Lin, “Information hiding based on search-order coding for VQ indices,” Pattern Recognition Letters, vol. 25, no. 11, pp.1253-1261, 2004
[30]C. H. Hsieh, J. C. Tsai, “Lossless compression of VQ index with search-order coding, in IEE Transactions on Image Processing,” vol. 5, no. 11, pp.1579-1582, 1996.
[31]W. J. Wang, C. T. Huang, C. M. Liu, P. C. Su, S. J. Wang, “Data embedding for vector quantization image processing on the basis of adjoining state-codebook mapping,” Information Sciences, vol. 246, pp. 69-82, 2013.
[32]C. Qin, C. C. Chang, Y. C. Chen, “Efficient reversible data hiding for VQ-compressed images based on index mapping mechanism,” Signal Processing, vol. 93, pp.2687-2695, 2013.
[33]Chih Yang Lin, Chin Chen Chang, “Hiding data in VQ-compressed images using dissimilar pairs.” Journal of Computers, vol. 17, no. 2, pp. 3-10, July 2006.
[34]Chin Chen Chang, Chih Yang Lin, Yi Pei Hsieh, “Data hiding for vector quantization images using mixed-base notation and dissimilar patterns without loss of fidelity,” Information Sciences, vol. 201, pp. 70-79, 2012.
[35]Chin Chen Chang, Wen Chuan Wu, “A Steganographic Method for Hiding Secret Data Using Side Match Vector Quantization,” IEICE Trans. Inform. Syst., vol. E88-D, pp. 2159–2167, 2005.
[36]Lingfei Wang, Zhibin Pan, Xiaoxiao Ma, Sen Hu, “A novel high-performance reversible data hiding scheme using SMVQ and improved locally adaptive coding method,” Journal of Visual Communication and Image Representation, vol. 25, no. 2, pp. 454-465, 2014.
[37]Chin Chen Chang, Thai Son Nguyen, Chia-Chen Lin, “A reversible compression code hiding using SOC and SMVQ indices,” Information Sciences, vol. 300, pp. 85-99, 2015.
[38]Lingfei Wang, Zhibin Pan, Ruoxin Zhu, “A novel reversible data hiding scheme by introducing current state codebook and prediction strategy for joint neighboring coding,” Multimedia Tools Appl, vol. 76, pp. 26153–26176, 2017.
[39]Peyman Rahmani, Gholamhossein Dastghaibyfard, “An efficient histogram-based index mapping mechanism for reversible data hiding in VQ-compressed images,” Information Sciences, vol. 435, pp. 224-239, 2018.
[40]https://www.pexels.com/zh-tw/.
[41]https://unsplash.com/.
[42]https://www.kdccoffee.com/.
[43]J. Fridrich and J. Kodovsky, “Rich Models for Steganalysis of Digital Images,” IEEE Transactions on Information Forensics and Security, vol. 7, no. 3, pp. 868-882, June 2012.
[44]Ye Dengpan, Jiang Shunzhi, Li Shiyu & Liu ChangRui, “Faster and transferable deep learning steganalysis on GPU,” J Real-Time Image Proc, vol. 16, pp. 623–633, 2019.
[45]Zhang, X., Wang, S., “Vulnerability of pixel-value differencing steganography to histogram analysis and modification for enhanced security,” Pattern Recognition Letters, vol. 25, no. 3,331-339, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊