跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/23 05:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李佳昇
研究生(外文):LI,JIA-SHENG
論文名稱:雙基地雷達系統於過載目標下到達方向 與離開方向之聯合估測
論文名稱(外文):Joint Estimation of Arrival Direction and Departure Direction for Overloaded Target in Bi-static Radar System
指導教授:張安成張安成引用關係
指導教授(外文):CHANG,ANN-CHEN
口試委員:張翠蘋沈志昌
口試委員(外文):CHANG,TSUI-PINGSHEN.CHIH-CHANG
口試日期:2022-07-09
學位類別:碩士
校院名稱:嶺東科技大學
系所名稱:資訊科技系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:47
中文關鍵詞:雙基地雷達過載到達方向離開方向雜訊子空間奇異值分解特徵值分解
外文關鍵詞:bistatic radaroverloaddirection of arrivaldirection of departurenoise subspacesingular value decompositioneigenvalue decomposition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:61
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:1
本論文係於雙基地雷達系統中處理過載目標時之聯合到達方向(direction of arrival, DOA)和離開方向(direction of departure, DOD)估測問題,過載目標係指雙基地雷達系統所欲偵測目標的數目大於發射機元件和接收機元件的乘積的數目。考慮某一雙基地雷達系統,其發射與接收陣列分別由具備M個與N個元件之均勻線性天線陣列所組成,而發展被偵測目標的數目大於 的估測演算法,在期望於低計算複雜度與高目標物容量的情況下,於接收端以提升角度估測之解析度,並且針對要提升處理目標數目必須增加系統有效自由度伴隨而來的計算負荷,發展低計算複雜度的技術進行探討,為了達成有效估測的目的,本論文包含二個主要課題,第一個課題為雙基地雷達系統於過載目標下到達方向與離開方向之聯合估測,基於自相關矩陣重新表示法的處理方式係利用目標反射波訊號的子空間特徵和基於陣列響應的Khatri-Rao (KR)乘積之相關性,所提出的聯合DOA和DOD估測器具有處理目標數目遠大於發射機元件和接收機元件數目乘積的能力和導致解析極限的顯著改善。第二個課題則於傳送端加入一個編碼雷達訊號之基於空間時間雙基地雷達架構,於接收端發展一種角度估測方法以提升角度估測之解析度,並增加目標物估測數目之容量。同時為了降低計算複雜度,故本論文亦將於第一和二個課題中分別發展相對之具有計算效率的雜訊子空間投影矩陣估測技術,來降低高維度奇異值分解(singular value decomposition, SVD)和特徵值分解(eigen value decomposition, EVD)的計算負荷。最後經由電腦模擬驗證所提出方法的有效性。
This thesis deals with the joint estimation of arrival direction and departure direction for overloaded target in bi-static radar system. The number of targets is greater than the number of products of transmitter elements and receiver elements. Consider a bistatic radar system whose transmit and receive arrays are composed of uniform linear antenna arrays with M and N elements, respectively, and the development of an estimation algorithm in which the number of detected targets is greater than MN is expected to be lower than in the case of computational complexity and high target capacity, the resolution of angle estimation is improved at the receiving end, and to increase the number of processing targets, the computational load associated with the effective degree of freedom of the system must be increased, and low computational complexity is developed. In order to achieve the purpose of effective estimation, this thesis contains two main topics. The first topic is the joint estimation of arrival direction and departure direction for overloaded target in bi-static radar system, based on the autocorrelation matrix representation method. The processing method uses the correlation between the subspace characteristics of the target reflected wave signal and the Khatri-Rao (KR) product based on the array response. The ability to multiply the number of machine elements and lead to a significant improvement in the analytical limit. The second issue is to add a space-time bistatic radar structure based on a coded radar signal at the transmitting end, and develop an angle estimation method at the receiving end to improve the resolution of angle estimation and increase the capacity of the number of target objects to be estimated. At the same time, in order to reduce the computational complexity, this thesis will also develop a relatively computationally efficient noise subspace projection matrix estimation technique in the first and second topics respectively, to reduce the high-dimensional singular value decomposition (SVD) and eigen value decomposition (EVD) computational load. Finally, the effectiveness of the proposed method is verified by computer simulation.
目 錄
摘 要 i
Abstract ii
誌 謝 iii
目 錄 iv
圖 目 錄 v
英文符號說明 vi
希臘符號說明 viii
第一章 緒論 1
1.1 文獻探討 1
1.2 研究動機與目的 3
1.3 論文架構 4
第二章 問題形成 6
2.1 雙基地雷達系統架構與訊號模型 6
2.2 最小變異數無失真響應(MVDR)估測器 9
2.3 多重訊號分類(MUSIC)演算法之估測器 10
2.4 降低維度的MVDR和MUSIC演算法 10
2.5 子空間旋轉不變與多項式求根演算法之聯合DOD和DOA估測 12
第三章 雙基地雷達系統於過載目標下到達方向與離開方向之聯合估測 15
3.1 基於Khatri-Rao子空間方法的估測器 15
3.2 基於Nystro ̈m方法的過載目標估測演算法 19
3.3 加入時空間處理技術的過載目標估測演算法 20
3.3.1 空間時間過載雙基地雷達之系統架構 20
3.3.2 基於空間時間處理技術之DOA和DOD估測 23
3.3.3 外部碼偵測 26
3.4 具有計算效率的雜訊子空間投影矩陣估測技術 28
第四章 模擬結果分析 30
4.1 非過載目標情況下之DOD和DOA估測 30
4.2 過載目標情況下之DOD和DOA估測 36
第五章 結論 43
參考文獻 44

圖 目 錄
圖 2.1 雙基地MIMO雷達系統架構 7
圖 2.2 充分統計量之提取、識別和定位演算法 7
圖 3.1 提出之空間時間雙基地雷達系統之方塊圖 21
圖 3.2 有效碼偵測器的架構圖 27
圖 4.1 變化SNR相對於DOA和DOD估測之TRMSE 32
圖 4.2 變化取樣數目相對於DOA和DOD估測之TRMSE 33
圖 4.3 變化SNR相對於DOA和DOD估測之TRMSE 34
圖 4.4 變化取樣數目相對於DOA和DOD估測之TRMSE 35
圖 4.5 變化陣列輸出維度數目相對於DOA和DOD估測之TRMSE 35
圖 4.6 變化SNR相對於DOA和DOD估測之TRMSE 38
圖 4.7 變化取樣數目相對於DOA和DOD估測之TRMSE 39
圖 4.8 變化SNR相對於DOA和DOD估測之TRMSE 40
圖 4.9 變化取樣數目相對於DOA和DOD估測之TRMSE 41
圖 4.10 變化陣列輸出維度數目相對於DOA和DOD估測之TRMSE 42



[1]M. I. Skolnik, Introduction to Radar Systems, 3rd edition, New York: McGraw-Hill, Dec. 2001.
[2]S. Haykin, J. Litva, and T. J. Shepherd, Radar Array Processing, New York: Springer-Verlag, Nov. 1993.
[3]R. Buderi, The Invention That Changed the World: The Story of Radar From War to Peace, London, U.K.: Abacus, Nov. 1999.
[4]A. L. Swindlehurst, and P. Stoica, “Maximum likelihood methods in radar array signal processing,” Proceedings of the IEEE, vol. 86, no. 2, pp. 421–441, Feb. 1998.
[5]A. Farina, Antenna Based Signal Processing Techniques for Radar Systems, Norwood, MA: Artech House,Nov. 1992.
[6]V. S. Chernyak, Fundamentals of Multisite Radar Systems, New York: Gordon and Breach, 1998.
[7]J. Ward, “Space-time adaptive processing for airborne radar,” International Conference on Acoustics, Speech, and Signal Processing, vol. 5, pp. 2809–2812, May 1995-
[8]W. L. Melvin, “A STAP overview,” IEEE Aerospace and Electronic Systems Magazine, vol. 19, no. 1, pp. 19–35, Jan. 2004.
[9]R. Klemm, Principles of space-time adaptive processing, second ed., IEE Radar, Sonar, Navigation and Avionics 12, IEE Press, UK, 2002.
[10]J. R. Guerci, Space-Time Adaptive Processing for Radar, Norwood, MA: Artech House, 2003.
[11]C. H. Hsu, H. C. Liu, and M. C. Hua, “Joint angles of departure and angles of arrival estimation via a spatial-temporal scheme in overloaded bistatic multiple-input multiple-output radars,” IET Radar Sonar and Navigation, vol. 8, no. 7, pp. 837–844, July 2014.
[12]B. Tang, J. Tang, Y. Zhang, and Z. Zheng, “Maximum likelihood estimation of DOD and DOA for bistatic MIMO radar,” Signal Processing, vol. 93, no. 5, pp. 1349–1357, May 2013.
[13]H. Jiang, J. K. Zhang, and K.M. Wong, “Joint DOD and DOA estimation for bistatic MIMO radar in unknown correlated noise,” IEEE Transactions on Vehicular Technology, vol. 64, no. 11, pp. 5113–5125, Nov. 2015.
[14]L. Xu, J. Li, and P. Stoica, “Adaptive techniques for MIMO radar,” Proceedings of the 4th Workshop on Sensor Array and Multichannel Signal Processing (SAM 06), pp. 258–262, July 2006.
[15]I. Bekkerman and J. Tabrikian, “Target detection and localization using MIMO radars and sonars,” IEEE Transactions on Signal Processing, vol. 54, no. 10, pp. 3837–3833, Oct. 2006.
[16]D. W. Bliss and K. W. Forsythe, “Multiple-input multiple-output (MIMO) radar and imaging: degrees of freedom and resolution,” The 37th Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 54–59, Nov. 2003.
[17]H. Yan, J. Li, and G. Liao, “Multi-target identification and localization using bi-static MIMO radar systems,” EURASIP Journal of Advances in Signal Processing, vol. 2008, pp. 1–8, Dec. 2007.
[18]L. Xu, J. Li, and P. Stoica, “Radar imaging via adaptive MIMO techniques,” Proceedings of the 14th European Signal Processing Conference, pp. 1–5, Sept. 2006.
[19]L. Xu and J. Li, “Iterative generalized-likelihood ratio test for MIMO radar,” IEEE Transactions on Signal Processing, vol. 55, no. 6, pp. 2375–2385, June 2007.
[20]C. Duofang, C. Baixiao, and Q. Guodong, “Angle estimation using ESPRIT in MIMO radar,” Electronics Letters, vol. 44, no. 12, pp. 770–771, June 2008.
[21]J. Chen, H. Gu, and W. Su, “Angle estimation using ESPRIT without pairing in MIMO radar,” Electronics Letters, vol. 44, no. 24, pp. 1422–1423, Nov. 2008.
[22]Y. Cao, “Joint estimation of angle and Doppler frequency for bistatic MIMO radar,” Electronics Letters, vol. 45, no. 2, pp. 170–172, Jan. 2010.
[23]M. Jin, G. Liao, and J. Li, “Joint DOD and DOA estimation for bistatic MIMO radar,” Signal Processing, vol. 89, no. 2, pp. 244–251, Feb. 2009.
[24]Q. Y. Yin, R. W. Newcomb, and L. H. Zou, “Estimating 2-D angle of arrival via two parallel linear array,” International Conference on Acoustics, Speech, and Signal Processing, College Park, MD, vol. 4, pp. 2803–2806, May 1989.
[25]J. Chen, H. Gu, and W. Su, “A new method for joint DOD and DOA estimation in bistatic MIMO radar,” Signal Processing, vol. 90, no. 2, pp. 714–718, Feb. 2010.
[26]K. T. Wong and M. D. Zoltowski, “Self-initiating MUSIC-based direction finding and polarization estimation in spatio-polarizational beamspace,” IEEE Transactions on Antennas and Propagation, vol. 48, no. 8, pp. 1235–1245, August 2000.
[27]M. L. Bencheikh, Y. Wang, and H. He, “Polynomial root finding technique for joint DOA DOD estimation in bistatic MIMO radar,” Signal Processing, vol. 90, no. 9, pp. 2723–2730, Sept. 2010.
[28]C. L. Meng, S. W. Chen, and A. C. Chang, “DOA and DOD estimation based on double 1-D root-MVDR estimators for bistatic MIMO radars,” Wireless Personal Communications, vol. 86, no. 3, pp. 1321–1332, Feb. 2016.
[29]X. Zhang, L. Xu, L. Xu, and D. Xu, “Direction of departure (DOD) and direction of arrival (DOA) estimation in MIMO radar with reduced-dimension MUSIC,” IEEE Communications Letters, vol. 14, no. 12, pp. 1161–1163, Dec. 2010.
[30]M. L. Bencheikh, and Y. Wang, “Joint DOD-DOA estimation using combined ESPRIT-MUSIC approach in MIMO radar,” Electronics Letters, vol. 46, no. 15, pp. 1081–1083, July 2010.
[31]M. L. Yang, B. X. Chen, and X. Y. Yang “Conjugate ESPRIT algorithm for bistatic MIMO radar,” Electronic Letters, vol. 44, no. 12, pp. 1692–1694, Dec. 2010.
[32]Y. D. Guo, Y. S. Zhang, and N. N. Tong, “ESPRIT-like angle estimation for bistatic MIMO radar with gain and phase uncertainties,” Electronics Letters, vol. 47, no. 17, pp. 996–997, August 2011.
[33]X. Zhang and D. Xu, “Angle estimation in bistatic MIMO radar using improved reduced dimension Capon algorithm,” Journal of Systems Engineering and Electronics, vol. 24, no. 1, pp.84–89, Feb. 2013.
[34]A. C. Chang, C. C. Shen, and K. S. Chang, “DOA and DOD estimation using orthogonal projection approach for bistatic MIMO radars,” IEICE Transactions on Fundamentals, vol. E97-A, no. 5, pp. 1121–1124, May 2014.
[35]A. C. Chang, “Reduced-dimension DOA and DOD estimation with real-valued implementation for bistatic MIMO radars,” Wireless Personal Communications, vol. 85, no. 3, pp. 1061–1070, Dec. 2015.
[36]C. Y. Chen and P. P. Vaidyanathan, “MIMO radar space-time adaptive processing using prolate spheroidal wave functions,” IEEE Transactions on Signal Processing, vol. 56, no. 2, pp. 623–635, Feb. 2008.
[37]S. Yang, Y. Li, K. Zhang, and W. Tang, “Multiple-parameter estimation method based on spatio-temporal 2-D processing for bistatic MIMO radar,” Sensors, vol. 15, no. 12, pp. 31442–31452, Dec. 2015.
[38]C. Ma, T.S. Yeo, G. Xu, and H. S. Tan, “Range and cross range joint processing of MIMO radar using DS-CDMA signal,” International Conference on Signal Processing, pp. 2356–2359, Oct. 2008.
[39]W. K. Ma, T. H. Hsieh, and C. Y. Chi, “DOA estimation of quasi-stationary signals with less sensors than sources and unknown spatial noise covariance: a Khatri–Rao subspace approach,” IEEE Transactions on Signal Processing, vol. 58, no. 4, pp. 2168–2180, April 2010.
[40]A. L. Swindlehurst and T. Kailath, “A performance analysis of subspace-based methods in the presence of model errors, I: The MUSIC algorithm,” IEEE Transactions on Signal Processing, vol. 40, no. 7, pp. 1758–1774, July 1992.
[41]X. L. Liu and G. S. Liao, “Multitarget localization amd estimation of gain-phase error for bistatic MIMO radar,” Acta Electronica Sinica, vol. 39, no. 3, pp. 596–601, March 2011.
[42]P. Swerling, “Probability of detection for fluctuating targets,” IRE Transactions on Information Theory, vol. 6, no. 2, pp. 269–308, April 1960.
[43]J. Li, X. Zhang, R. Cao, and M. Zhou, “Rdeuced-dimension MUSIC for angle and array gain-phase error estimation in bistatic MIMO radar,” IEEE Communications Letters, vol. 17, no. 3, pp. 443–446, March 2013.
[44]G. H. Golub and C. F. Van Loan, Matrix Computations, Baltimore. MD: Johns Hopkins University Press, 1983.
[42]N. D. Sidiropoulos, R. Bro, and G. B. Giannakis, “Parallel factor analysis in sensor array processing,” IEEE Transactions on Signal Processing, vol. 48, no. 8, pp. 2377–2388, August 2000.
[46]D. Nion and N. D. Sidiropoulos, “A PARAFAC-based technique for detection and localization of multiple targets in a MIMO radar system,” 2009 IEEE Confonference Acoustics, Speech and Signal Processing, pp. 2077–2080, April 2009.
[47]M. Lin, F. Wang and C. Zhang, “Large-scale eigenvector approximation via Hilbert space embedding Nyström,” Pattern Recognition, vol. 48, no. 5, pp. 1904–1912, May 2014.
[48]X. Wang and H. V. Poor, “Blind multiuser detection: A subspace approach” IEEE Transactions on Information Theory, vol. 44, no. 2, pp. 677–690, March 1998.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊