|
一、英文部分 1.A. Bhattacherjee (2001). Understanding information systems continuance: an expectation-confirmation model, MIS Quarterly. 25, 351–370. 2.Alba, J. W. & Hutchinson, J.-W. (1987). Dimensions of Consumer Expertise. Journal of Consumer Research, 13(4), 411-454. 3.Animesh, A., Pinsonneault, A., Yang, S. B. & Oh, W. (2011). An Odyssey into Virtual worlds: Exploring the Impacts of Technological and Spatial Environments. MIS Quarterly, 35(3), 789-810. 4.Bansal, H.S., Taylor, S.F.,& James, Y.S.(2005). “Migrating” to new service providers: Toward a unifying framework of consumers’ switching behaviors. Journal of the Academy of Marketing Science volume 33(1), 96–115. 5.Bettman, J. R & Park, W.C (1980). Effects of Prior Knowledge and Experience and Phase of the Choice Process on Consumer Decision Processes: A Protocol Analysis. Journal of Consumer Research.7(3),234-248. 6.Bhattacherjee, A. (2001). Understanding information systems continuance: an expectation-confirmation model, MIS Quarterly. 25, 351–370. 7.Black, N., A. Lockett, C. Ennew, H. Winklhofer, and S. McKechnie. (2002). Modelling Consumer Choice of Distribution Channels: An Illustration from Financial Services. The International Journal of Bank Marketing, 20 (4), 161–173. 8.Blut, M. & Beatty, S. E. & Evanschitzky, H. & Brock, C. (2014). The Impact of Service Characteristics on the Switching Costs–Customer Loyalty Link. Journal of Retailing, 90(2), 141-153. 9.Bowman, C.& Ambrosini, V. (2000). Value creation versus value capture: Towards a coherent definition of value in strategy. British Journal of Management, 11,1-15. 10.Broekhunizen, T. &Hoffmann, A (2012).Interactivity perceptions and online newspaper preference, J. Interact Advert. 12(2),29-43. 11.Chang, I.C., Liu, C.C. & Chen, K. (2014). The push, pull and mooring effects in virtual migration for social networking sites. Information Systems Journal, 24(4), 323-346. 12.Cheng, Z., Yang, Y., & Lim, J., (2009). Cyber Migration: An Empirical Investigation on Factors that Affect Users' Switch Intentions in Social Networking Sites. The 42nd Hawaii International Conference on System Sciences. 13.Chin, W. W., & Newsted, P. R. (1999). Structural equation modeling analysis with small samples using partial least squares. Statistical strategies for small sample research, 1(1), 307-341. 14.Chin, W.W. (1998). The Partial Least Squares Approach to Structural Equation Modeling. Modern Methods for Business Research, 15(2), 295-336. 15.Chou, S. Y., Shen G. C., Chiu, H. C. & Chou, Y. T. (2016). Multichannel Service Providers’ Strategy: Understanding Customers’ Switching and Free-Riding Behavior. Journal of Business Research, 69(6), 2226-2232. 16.Chuah, Malliga, Jay and Anil (2017). What drives Gen Y loyalty? Understanding the mediated moderating roles of switching costs and alternative attractiveness in the value-satisfaction-loyalty chain. Journal of Retailing and Consumer Services, 36(C), 124-136. 17.Coats, D. W., Swierenga, L. & Wickert, J. (1972). Student Perceptions of Teachers: A Factor Analytic Study. The Journal of Educational Research, 65(8), 357-360. 18.Coskun, Gupta and Burnaz, (2018). Human crowding and store messiness: Drivers of retail shopper confusion and behavioral intentions. Journal of Consumer Behaviour,18(4),313-331. 19.Csikszentmihalyi, M. (1975). Beyond Boredom and Anxiety. San Francisco: Jossey-Bass. 20.Csikszentmihalyi, M. (1990). Flow: The Psychology of Optimal Experience, New York: Harper & Row. 21.Devellis, R. F. (1991). Scale development: Theory and applications. Newbury Park, CA: Sage. 22.Dogu, U., & Erkip, F. (2000). Spatial factors affecting wayfinding and orientation: A case study in a shopping mall. Environment and Behavior,32(6),731–755. 23.Eleanor, A. D. (2007). Conclusion : tailor-made Islam. Teaching Islam: Textbooks and Religion in the Middle East. 24.Fornell, C. & Larcker, D. F. (1981). Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. Journal of Marketing Research, 18(3),382-388. 25.Garaus, M. & Wagner, U. & Kummer, C. (2015). Cognitive fit, retail shopper confusion, and shopping value: Empirical investigation. Journal of Business Research, 68(5), 1003-1011. 26.Garaus, M. & Wagner, U. (2016). Retail shopper confusion: Conceptualization, scale development, and consequences. Journal of Business Research,69(9),3459-3467. 27.Garaus, M., Wagner, U. & Kummer, C. (2015). Cognitive fit, retail shopper confusion, and shopping value: Empirical investigation. Journal of Business Research, 68(5), 1003-1011. 28.Heberle. (1938). The causes of rural-urban migration a survey of German theories. American Journal of Sociology Volume, 43(6). 29.Hoffman, Donna L. & Thomas P. Novak. (2009). Flow Online: Lessons Learned and Future Prospects. Journal of Interactive Marketing, 23(1), 23-34. 30.Hoffman, Donna L. and Thomas P. Novak (1996), Marketing in Hypermedia Computer-Mediated Environments: Conceptual Foundations. Journal of Marketing, 60 (7), 50–68. 31.Hou, A.C.Y., Chern, C.-C. H.-G. Chen & Y.-C. Chen, (2011). Migrating to a new virtual world: Exploring MMORPG switching through human migration theory, Computers in Human Behavior. 27 (5),1892–1903. 32.Hou, A.C.Y., Chern, C.C., Chen, H.G. & Chen, Y.C. (2011). Migrating to a new virtual world: Exploring MMORPG switching through human migration theory. Computers in Human Behavior, 27(5), 1892-1903. 33.Howard Rheingold. (1993).The virtual community: Homesteading on the electronic frontier.MIT: Addison Wesley, 238-239 34.Hsieh, J.-k., Hsieh, Y.-C., Chiu, H.-C., & Feng, Y.-C (2012). Post-adoption switching behavior for online service substitutes: A perspective of the push–pull–mooring framework. Computers in Human Behavior, 28(5),1912-1920. 35.Huang, L.-Y., and Hsieh, Y.-J. (2012). Consumer electronics acceptance based on innovation attributes and switching costs: The case of e-book readers. Electronic Commerce Research and Applications, 11(3), 218–228. 36.Hulland, J. (1999). Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strategic Management Journal, 20(1), 195-204. 37.Inma, R.-A. & Antoni,M.-A (2016). E-learning continuance: The impact of interactivity and the mediating role of imagery, presence and flow. Information & Management. 53(4),504-516. 38.Jones, K. S. (2007). Automatic summarising: The state of the art. Information Processing & Management, 43(6),14491481. 39.Jones, M.A., Mothersbaugh, D.L. & Beatty, S.E. (2002). Why customers stay: measuring the underlying dimensions of services switching costs and managing their differential strategic outcomes. Journal of Business Research, 55(6), 441-450. 40.Jones, M-A. & Mothersbaugh,D. L.& Beatty, S.E. (2000). Switching barriers and repurchase intentions in services. Journal of Retailing, 76(2),259-274. 41.Jung, J., Han, H. & Oh, M. (2017). Travelers’ switching behavior in the airline industry from the perspective of the push-pull-mooring framework. Tourism Management, 59, 139-153. 42.Keil, M., Tan, B. C. Y., Wei, K. K., Saarinen, T., Tuunainen, V., & Wassenaar, A. (2000). A Cross-Cultural Study on Escalation of Commitment Behavior in Software Projects. MIS Quarterly, 24(2), 299-325. 43.Keil, M., Tan,B.C.Y, Wei,K.-K., Saarinen, T., Tuunainen,& Wassenaar.A (2000). A Cross-Cultural Study on Escalation of Commitment Behavior in Software Projects. MIS Quarterly, 24(2), 299-325. 44.Kempf, D. S.& Smith R. E. (1998). Consumer Processing of Product Trial and the Influence of Prior Advertising: A Structural Modeling Approach. Journal of Marketing Research,35(3),325-338. 45.Kempf, D.S. & Smith, R. E. (1998). Consumer Processing of Product Trial and the Influence of Prior Advertising: A Structural Modeling Approach. Journal of Marketing Research,35(3),325-338. 46.Klemperer, P. (1995). Competition when consumers have switching costs: An overview with applications to industrial organization, macroeconomics, and international trade. Review of Economic Studies, 62(4), 515-539. 47.Lee E S. (1996). A theory of migration. Demography, 3(1):47-57. 48.Lee, Y.K., Ahn, W.K. & Kim, K. (2008). A study on the moderating role of alternative attractiveness in the relationship between relational benefits and customer loyalty. International Journal of Hospitality & Tourism Administration, 9(1), 52-70. 49.Leek, Sheena and Dai Kun (2006). Consumer confusion in the Chinese personal computer market, Journal of Product and Brand Management, 15 (3), 184-93. 50.Li Y M, Wu C T, Lai C Y (2013). A social recommender mechanism for e-commerce: combining similarity, trust, and relationship[J].Decision Support System, 55 (3), 740-752. 51.Li, C.Y. & Ku, Y.C. (2018). The power of a thumbs-up: Will e-commerce switch to social commerce? Information & Management.55,340-357. 52.Liang, A.R., Lee, C.L., Tung, W., (2014). The role of sunk costs in online consumer decision-making. Electronic Commerce Research and Applications.13 (1), 56–68. 53.Lin, H.-C. & Chang, C.- M. (2018). What motivates health information exchange in social media? The roles of the social cognitive theory and perceived interactivity. Information & Management, 55,771-7801. 54.Lin, T.-C. &Huang, S.- L.(2014). Understanding the Determinants of Consumers’ Switching Intentions in a Standards War. International Journal of Electronic Commerce.19(1),163-189. 55.Manuel J Sánchez-Franco.∗ and José L. Roldán. (2014). The influence of familiarity, trust and norms of reciprocity on an experienced sense of community: an empirical analysis based on social online services. Behaviour & Information Technology. 34(4), 392–412. 56.Massara, F., Liu, S. S., & Melara, R. D. (2010). Adapting to a retail environment: Modeling consumer–environment interactions. Journal of Business Research, 63(7), 673–681. 57.Mayer, J. D., Chabot, H. F., & Carlsmith, K. M. (1997). Conation, affect, and cognition in personality. In Advances in Psychology,124, 31–63. 58.McMullan, R. A. (2005). multiple-item scale for measuring customer loyalty development. Journal of Services Marketing, 19(7), 470–481. 59.Moon, B. (1995).Paradigms in migration Research: Exploring “morings” as a schema. Progress in Human Geography, 19(4),504-524. 60.Nisbett, R. E. & Ross, L. (1980). The Person and the Situation: Perspectives of Social Psychology. 61.Noort, G van. &H.A.M. Voorveld & E.A. van Reijmersdal, (2012). Interactivity in brand websites: cognitive, affective, and behavioral responses explained by consumers’ online flow experience. Journal of Interactive Marketing. 26(4), 223-234. 62.Oliver, R. L.(1981). Measurement and evaluation of satisfaction process in retail settings. Journal of Retailing.57(3),25-48. 63.Oliver, R.L. (1980). A Cognitive Model of the Antecedents and Consequences of Satisfaction Decisions. Journal of Marketing Research, 14(4),460-469. 64.Oliver, R.L., and Linda, G. (1981) Effect of satisfaction and its antecedents on consumer preference and intention. Association for Consumer Research. (8), 88–93. 65.Pavlou, P. A., & Fygenson, M. (2006). Understanding and predicting electronic commerce adoption: An extension of the theory of planned behavior. MIS Quarterly, 30(1), 115-143. 66.Perkmann, M & Walsh, K. (2007). University–industry relationships and open innovation: Towards a research agenda. International Journal of Management Reviews, 9(4), 259-280. 67.Ping, R.A .(1993). The effects of satisfaction and structural constraints on retailer exiting, voice, loyalty, opportunism, and neglect. Journal of Retailing,69(3),320-352. 68.Ping, R.A. (1993). The effects of satisfaction and structural constraints on retailer exiting, voice, loyalty, opportunism and neglect. Journal of Retailing, 69(3), 320-352. 69.Polites, G.L., & Karahanna, E. (2012). Shackled to the status quo: The inhibiting effects of incumbent system habit, switching costs, and inertia on new system acceptance. MIS Quarterly, 36(1), 21–42. 70.Ravenstein, E. (1885) The laws of migration. Journal of the Statistical Society of London, 52(2), 167–235. 71.Rothaermel, F. T &Sugiyama, S. (2001). Virtual internet communities and commercial success: individual and community-level theory grounded in the atypical case of TimeZone.com. Journal of Management, 27(3),297-312. 72.S. H.-W. Chuah, Malliga, M. &Jay, K. & Anil, B. (2017). What drives Gen Y loyalty? Understanding the mediated moderating roles of switching costs and alternative attractiveness in the value-satisfaction-loyalty chain. Consumer Services, 36(c),124-136. 73.Samuelson, W., and Zeckhauser, R. (1988). Status quo bias in decision making. Journal of Risk and Uncertainty, 1(1), 7–59. 74.Schweizer, M., Kotouc, A. J., & Wagner, T. (2006). Scale development for consumer confusion. Advances in Consumer Research, 33(1), 184–190. 75.Simmel, G. (1949). The sociology of sociability. American. Journal of Sociology, 55, 254-261. 76.Steuer, J. (1992). Defining Virtual Reality: Dimensions Determining Telepresence. Journal of Communication, 42(4), 73-93. 77.Suh, L.-S.& Chang, S. (2006). User interfaces and consumer perceptions of online stores: The role of telepresence. Behaviour & Information Technology, 25 (2), 99-113. 78.Trevino, L. K. & Webster, J. (1992). Flow in Computer-Mediated Communication: Electronic Mail and Voice Mail Evaluation and Impacts. Communication Research, 19(5),539-573. 79.Tung-Ching, Lin. & Shiu-Li, Huang. (2014).Understanding the Determinants of Consumers' Switching Intentions in a Standards War, International Journal of Electronic Commerce, 19(1), 163-189. 80.Turnbull, P., Leek, S., & Ying, G. (2000). Customer confusion: The mobile phone market. Journal of Marketing Management, 16, 143–163. 81.Moungho Park, Jaehyeon Jun & Heejun Park (2017).Understanding Mobile Payment Service Continuous Use Intention: An Expectation - Confirmation Model and Inertia .Quality Innovation Prosperity , 21(3), pp.78 - 94 82.Urbany, J.E. & Dickson, P. R & Wilkie, W. L.(1989). Buyer Uncertainty and Information Search. Journal of Consumer Research, 16(32),208-215. 83.Van Noort, G., Voorveld, H. A. M. & Van Reijmersdal, E. A. (2012). Interactivity in Brand Web Sites: Cognitive, Affective, and Behavioral Responses Explained by Consumers' Online Flow Experience. Journal of Interactive Marketing, 26(4), 223-234. 84.Walsh, G. & Mitchell, V. -W. (2010). The effect of consumer confusion proneness on word of mouth, trust, and customer satisfaction. European Journal of Marketing, 44(6), 838-859. 85.Walsh, G., Henning-Thurau and Mitchell, v.-w. (2007). Consumer confusion proneness: scale development, validation, and application. Journal of Marketing Management, 23(7-8),697-792. 86.Wang, Q. & Shukla, P. (2013). Linking Sources of Consumer Confusion to Decision Satisfaction: The Role of Choice Goals. Psychology and Marketing, 30(4),295-304. 87.Webster, Jane, Linda K. Trevino, and Lisa Ryan (1993). The Dimensionality and Correlates of Flow in Human-computer Interactions. Computers in Human Behavior, 9(4), 411-26. 88.Wu, L.W. (2011). Satisfaction, inertia, and customer loyalty in the varying levels of the zone of tolerance and alternative attractiveness. Journal of Services Marketing, 25(5), 310-322. 89.Yang, Z. & Peterson, R.T. (2004). Customer perceived value, satisfaction, and loyalty: The role of switching costs. Psychology & Marketing, 21(10), 799-822. 90.Yang, Z. & Peterson, R.T. (2004). Customer perceived value, satisfaction, and loyalty: The role of switching costs. Psychology and Marketing, 21(10),799-822. 91.Ye, C., & Potter, R. (2011). The role of habit in post-adoption switching of personal information Technologies: An empirical investigation. Communications of the Association for Information Systems, 28(1),585-610. 92.Zhang, J. (2006). The roles of players and reputation: Evidence from eBay online auctions, Decision Support Systems, 42(3), 1800-1818. 93.Zhang, K.Z.K., Cheung, C.M.K., Lee, M.K.O., (2012). Online service switching behavior: the case of blog service providers. J. Electron. Commer. Res. 13 (3), 184–197. 94.Zhao, L. & Lu, Y. (2012). Enhancing perceived interactivity through network externalities: An empirical study on micro-blogging service satisfaction and continuance intention, Decision Support System, 53(4), 825-834. 95.Zhao, L., and Y. Lu. (2012). Enhancing Perceived Interactivity Through Network Externalities: An Empirical Study on Micro-blogging Service Satisfaction and Continuance Intention. Decision Support Systems, 53(4),825–834. 96.Zhao, L., and Y. Lu. (2012). Enhancing Perceived Interactivity Through Network Externalities: An Empirical Study on Micro-blogging Service Satisfaction and Continuance Intention. Decision Support Systems, 53 (4),825–834.
二、中文部分 1.王 彤 (2020)。電商直播場景下消費者購買慾望研究。中央民族大學,新聞與傳播(專業學位)。 2.王 碩 (2007)。電子商務概論。合肥工業大學,博士後研究工作報告。 3.王昕天,汪向東 (2019)。社群化、流量分配與電商趨勢:對“拼多多”現象的解讀。中國軟科學,2019 (7),47-59。 4.匡亞潔、張澄 (2011)。關於我國移動電子商務發展的瓶頸及趨勢探究。中國商貿,2011 (14),98-99。 5.屈冠銀,張 哲 (2016)。內容電商發展及運營邏輯思考。北京勞動保障職業學院學報,2016(3),33-39。 6.林嘉宏 (2017)。直播主信任轉移對商品購買意願影響之研究:推敲可能性模式觀點。銘傳大學管理研究所。 7.張 軍 (2018)。電商直播平台的現狀及發展策略研究。長春工業大學資訊傳播工程學院。 8.張 瓊 (2016)。移動互聯網 + 視域下零售業態演變路徑及對策。中國流通經濟,2016(2),14-19。 9.郭 恒(2010)。論電子商務的特點及對傳統貿易的影響。中國商貿,2010 (28),118-119。 10.陳純德、陳美如 (2014)。部落客意見領袖信任轉移影響之研究:推敲可能性模式觀點。電子商務學報,16(3),242-275。 11.陳順宇 (2005)。多變量分析。台北:華泰文化。 12.黃鵬飛、黃螢美 (2007)。預付型交易顧客續購意願影響因素之探討。行銷科學學報,3(2),3197-214。 13.劉鈺清 (2018)。抖音短視頻研究。湖南師範大學傳播學院。 14.蔣 芮 (2020)。電商直播平台互動研究--以淘寶直播為例。华中师范大学,傳播學。 15.鄭家宜(2010)。金融服務業顧客滿意與再購意願之關係研究:分析產品知識的效果。中山管理評論,18(2),325-372。 16.盧宏亮、張敏 (2020)。網紅帶貨感知風險對購買意願的影響——有調節的仲介模型。中國流通經濟,2020 (12),20-28。 17.謝博吉 (2016)。影響Twitch使用者忠誠行為因素之研究:神迷理論觀點。銘傳大學管理研究所。 18.羅瑉、李亮宇 (2015)。互聯網時代的商業模式創新:價值創造視角。中國工業經濟,2015(1)。
三、網頁部分 1.排行榜 (2020):https://www.36kr.com/p/1025269536131075 2.中國互聯網路資訊中心 (2020):https://cbndata.com/report/2349/detail?isReading=report&page=4 3.极光大数据 (2017):https://report.iimedia.cn/repo1-0/39000.html 4.中國電子商務報告 (2020):http://www.gov.cn/xinwen/202007/02/5523479/files/0a2c57d8ba6d4e26b83d96cdd764d6f0.pdf 5.中國電商行業研究報告 (2020):file:///D:/%E7%A0%94%E7%A9%B6%E6%89%80%E6%AF%95%E4% B8%9A%E8%AE%BA%E6%96%87/%E6%96%87%E7%8C%AE/2020%E4%B8%AD%E5%9B%BD%E7%9B%B4%E6%92%AD%E7%94%B5%E5%95%86%E8%A1%8C%E4%B8%9A%E7%A0%94%E7%A9%B6%E6%8A%A5%E5%91%8A.pdf 6.商務部電子商務和信息化司 (2020):http://www.gov.cn/xinwen/202007/02/5523479/files/0a2c57d8ba6d4e26b83d96cdd764d6f0.pdf 7.商務部電子商務和信息化司(2019):http://dzsws.mofcom.gov.cn/ 8.全球移動通信系統協會(2020):http://finance.people.com.cn/BIG5/n1/2021/0223/c1004-32034713.html
|