跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/10 01:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:毛芮涵
研究生(外文):MAO, RUI-HAN
論文名稱:消費者使用直播帶貨之轉換意圖研究:推拉繫住力觀點
論文名稱(外文):The Study of Factors Influencing Consumer’s Switching Intention toward Live Streaming Commerce: The Perspective of Push-Pull-Mooring Forces
指導教授:陳純德陳純德引用關係
指導教授(外文):CHEN, CHUN-DER
口試委員:王嘉珍謝佳宏
口試委員(外文):WANG,JIA-ZHENXIE,JIA-HONG
口試日期:2021-12-20
學位類別:碩士
校院名稱:銘傳大學
系所名稱:企業管理學系
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:90
中文關鍵詞:推拉繫住力觀點直播帶貨直播帶貨吸引程度轉換成本
外文關鍵詞:The Pull-Push-Mooring PerspectiveLive Streaming CommerceAttractivenessSwitching Costs
相關次數:
  • 被引用被引用:1
  • 點閱點閱:303
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
隨著電子商務不斷發展加上疫情強烈催化作用,網紅直播帶貨新模式逐漸成為主流行銷模式。直播帶貨這樣的創新商務交易發展方式,同時也為既有的電商銷售模式帶來了威脅。近幾年,直播行業在經歷爆發式增長之後,發展漸趨成熟,就目前發展階段來說,直播行業不僅僅只是單純關注用戶數量和網紅熱度而已,而是側重產品變現和商業落地能力。不過,雖然抖音直播是近年來最佳典型代表,但究竟有哪些因素影響了消費者從原有電商平台轉換利用抖音直播來進行購買的意願,相關研究仍相對有限。因此,本研究之研究目的,係試圖透過「推拉繫住力模型」架構,探索影響消費者轉換至使用直播帶貨購買商品之意願程度如何。
本研究回顧並整理相關影響因素外,事前亦同步進行多次消費者訪談並歸納出相關推拉繫住力因素,後續則透過微信群及微信朋友圈等進行問卷發放。問卷共計回收306份,經信效度檢定及後續假說檢定後,本研究發現,「直播帶貨吸引程度」(拉力) 對消費者直播帶貨轉換意圖影響最大,「現有購買方式不滿意程度」(推力) 影響則次之,而「轉換成本」(繫住力) 影響則不顯著。此外「低互動性」對「現有購買方式不滿意程度」影響最大,「直播主魅力」也影響「直播帶貨吸引程度」最多,而「直播帶貨不熟悉程度」則對「轉換成本」影響最大。本研究後續也以「性別」及「職業」進行分群分析,從中也獲得許多相關研究發現。本研究後續針對上述研究發現進行討論後,並闡述相關研究與實務貢獻及意涵。期待透過消費者的角度並了解其轉換選擇網紅直播帶貨的動機因素,進而促使直播帶貨的直播族們可以更清楚瞭解並掌握消費者的真實需求,改進並優化直播帶貨的方式,為各位直播族提高消費者的留存率提供策略建議,最終增強直播帶貨族的核心競爭力是盼。

With the continuous development of e-commerce and the strong catalytic effect of the epidemic, the new model of live streaming ecommerce has gradually become the main popular sales model. The development of innovative business transactions such as live streaming ecommerce also poses a threat to the existing e-commerce sales model. In recent years, the live streaming industry has experienced explosive growth, and its development has gradually matured. As far as the current stage of development is concerned, the live streaming industry is not only concerned with the number of users and the popularity of Internet celebrities, but also focuses on abilities of product realization and commercial landing. Although,Tik Tok Live Streaming is the best representative in recent years,what factors affect consumers' willingness to buy from the original Tik Tok platform, and the related research is still relatively limited. Therefore, the purpose of this study is to explore the extent to which consumers' willingness to switch to live delivery to buy goods is affected through the framework of "push-pull tethering force model".
In addition to reviewing and sorting out the relevant influencing factors, this study also conducted a number of consumer interviews and summarized the relevant push-pull binding force factors in advance, and then distributed the questionnaire through wechat group and wechat circle of friends. In total, 306 questionnaires were recovered. After reliability and validity tests and subsequent hypothesis tests, this study found that the degree of attraction (pull) of live delivery has the greatest impact on consumers’ intention to switch to live streaming ecommerce, the degree of dissatisfaction (push) of existing purchase methods has the second impact, and the impact of switching cost (mooring force) is not significant. In addition, low interactivity has the greatest impact on dissatisfaction with existing purchase methods, and charisma also has the greatest impact on attraction of live broadcasting commerce, while unfamiliarity with live broadcasting commerce has the greatest impact on switching cost. In the follow-up of this study, cluster analysis was also carried out by gender and occupation, from which many related research findings were also obtained. After discussing the above findings, this study expounds the relevant research and practical contributions and implications. It is hoped that through the perspective of consumers and understanding the motivational factors for their conversion and selection of online Red live goods, so as to enable the live broadcast families with goods to better understand and master the real needs of consumers, improve and optimize the way of live goods, provide strategic suggestions for the live broadcast families to improve the retention rate of consumers, and finally enhance the core competitiveness of the live broadcast families.

目錄 I
圖目錄 III
表目錄 IV
第一章 緒論 1
1.1研究背景 1
1.2研究動機 2
1.3研究目的 3
1.4研究流程 4
第二章 文獻探討 5
2.1大陸電商發展概況及抖音直播帶貨發展 5
2.1.1 網站及社群電商 8
2.2轉換行爲意圖及PPM理論觀點介紹 11
2.3PPM理論觀點之過去相關研究 11
2.4 抖音直播帶貨購買轉換意圖之相關PPM驅力因素 13
2.4.1 推力 (Push Effect) 13
2.4.2 拉力 (Pull Effect) 15
2.4.3 繫助力 (Mooring Effect) 18
第三章 研究方法 21
3.1研究架構 21
3.2研究假說與推論 22
3.3操作型定義與衡量題項來源 27
3.4研究設計 34
3.4.1問卷設計 34
3.4.2研究對象 35
3.5 資料分析方法 35
3.5.1 敘述性統計分析 35
3.5.2 信效度分析 35
3.5.3 假說檢定 36
第四章 資料分析與實證結果 38
4.1 樣本結構分析 38
4.1.1 人口統計變數之敘述性統計分析 38
4.1.2 使用行為之敘述性統計分析 39
4.2 效度分析 41
4.2.1 收斂效度分析 41
4.2.2 區別效度分析 44
4.3 假說檢定 44
4.3.1 研究假說檢定 45
4.3.2 假說分析與討論 47
4.4.1依性別分群 51
4.4.2依職位分群 53
第五章 結論與建議 56
5.1研究結論 56
5.2研究貢獻與建議 57
5.3 管理意涵 59
5.4 研究限制與未來研究方向 60



圖目錄
圖1-1 研究流程圖 4
圖2-1 中國大陸電子商務產業發展歷程圖 6
圖2-2 抖音電商佈局發展歷程 18
圖3-1 研究架構 22
圖4-1 整體模式路徑分析圖 43
圖4-2 路徑分析圖 (男性) 50
圖4-3 路徑分析圖 (女性) 51
圖4-4 路徑分析圖 (學生) 52
圖4-5 路徑分析圖 (非學生) 53

表目錄
表3-1 研究假說彙整 26
表3-2 操作型定義 26
表3-3 對現有購買方式不滿意之題項整理 26
表3-4 直播帶貨的吸引程度之題項整理 26
表3-5 轉換成本之題項整理 26
表3-6 消費混亂程度之題項整理 26
表3-7 低互動性之題項整理 30
表3-8 魅力之題項整理 30
表3-9 產品知識之題項整理 31
表3-10 沉浸式體驗之題項整理 31
表3-11 直播帶貨不熟悉程度的題項整理 32
表3-12 個人習慣之題項整理整理 32
表3-13 轉換意圖的題項 32
表4-1 基本資料之樣本特性 36
表4-2 使用行為之樣本特性 38
表4-3 因素負荷量表 40
表4-4 組合信度與平均變異抽取量彙整表 41
表4-5 各構念間相關係數矩陣 42
表4-6 各研究假說之 t-value與路徑係數 44



一、英文部分
1.A. Bhattacherjee (2001). Understanding information systems continuance: an expectation-confirmation model, MIS Quarterly. 25, 351–370.
2.Alba, J. W. & Hutchinson, J.-W. (1987). Dimensions of Consumer Expertise. Journal of Consumer Research, 13(4), 411-454.
3.Animesh, A., Pinsonneault, A., Yang, S. B. & Oh, W. (2011). An Odyssey into Virtual worlds: Exploring the Impacts of Technological and Spatial Environments. MIS Quarterly, 35(3), 789-810.
4.Bansal, H.S., Taylor, S.F.,& James, Y.S.(2005). “Migrating” to new service providers: Toward a unifying framework of consumers’ switching behaviors. Journal of the Academy of Marketing Science volume 33(1), 96–115.
5.Bettman, J. R & Park, W.C (1980). Effects of Prior Knowledge and Experience and Phase of the Choice Process on Consumer Decision Processes: A Protocol Analysis. Journal of Consumer Research.7(3),234-248.
6.Bhattacherjee, A. (2001). Understanding information systems continuance: an expectation-confirmation model, MIS Quarterly. 25, 351–370.
7.Black, N., A. Lockett, C. Ennew, H. Winklhofer, and S. McKechnie. (2002). Modelling Consumer Choice of Distribution Channels: An Illustration from Financial Services. The International Journal of Bank Marketing, 20 (4), 161–173.
8.Blut, M. & Beatty, S. E. & Evanschitzky, H. & Brock, C. (2014). The Impact of Service Characteristics on the Switching Costs–Customer Loyalty Link. Journal of Retailing, 90(2), 141-153.
9.Bowman, C.& Ambrosini, V. (2000). Value creation versus value capture: Towards a coherent definition of value in strategy. British Journal of Management, 11,1-15.
10.Broekhunizen, T. &Hoffmann, A (2012).Interactivity perceptions and online newspaper preference, J. Interact Advert. 12(2),29-43.
11.Chang, I.C., Liu, C.C. & Chen, K. (2014). The push, pull and mooring effects in virtual migration for social networking sites. Information Systems Journal, 24(4), 323-346.
12.Cheng, Z., Yang, Y., & Lim, J., (2009). Cyber Migration: An Empirical Investigation on Factors that Affect Users' Switch Intentions in Social Networking Sites. The 42nd Hawaii International Conference on System Sciences.
13.Chin, W. W., & Newsted, P. R. (1999). Structural equation modeling analysis with small samples using partial least squares. Statistical strategies for small sample research, 1(1), 307-341.
14.Chin, W.W. (1998). The Partial Least Squares Approach to Structural Equation Modeling. Modern Methods for Business Research, 15(2), 295-336.
15.Chou, S. Y., Shen G. C., Chiu, H. C. & Chou, Y. T. (2016). Multichannel Service Providers’ Strategy: Understanding Customers’ Switching and Free-Riding Behavior. Journal of Business Research, 69(6), 2226-2232.
16.Chuah, Malliga, Jay and Anil (2017). What drives Gen Y loyalty? Understanding the mediated moderating roles of switching costs and alternative attractiveness in the value-satisfaction-loyalty chain. Journal of Retailing and Consumer Services, 36(C), 124-136.
17.Coats, D. W., Swierenga, L. & Wickert, J. (1972). Student Perceptions of Teachers: A Factor Analytic Study. The Journal of Educational Research, 65(8), 357-360.
18.Coskun, Gupta and Burnaz, (2018). Human crowding and store messiness: Drivers of retail shopper confusion and behavioral intentions. Journal of Consumer Behaviour,18(4),313-331.
19.Csikszentmihalyi, M. (1975). Beyond Boredom and Anxiety. San Francisco: Jossey-Bass.
20.Csikszentmihalyi, M. (1990). Flow: The Psychology of Optimal Experience, New York: Harper & Row.
21.Devellis, R. F. (1991). Scale development: Theory and applications. Newbury Park, CA: Sage.
22.Dogu, U., & Erkip, F. (2000). Spatial factors affecting wayfinding and orientation: A case study in a shopping mall. Environment and Behavior,32(6),731–755.
23.Eleanor, A. D. (2007). Conclusion : tailor-made Islam. Teaching Islam: Textbooks and Religion in the Middle East.
24.Fornell, C. & Larcker, D. F. (1981). Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. Journal of Marketing Research, 18(3),382-388.
25.Garaus, M. & Wagner, U. & Kummer, C. (2015). Cognitive fit, retail shopper confusion, and shopping value: Empirical investigation. Journal of Business Research, 68(5), 1003-1011.
26.Garaus, M. & Wagner, U. (2016). Retail shopper confusion: Conceptualization, scale development, and consequences. Journal of Business Research,69(9),3459-3467.
27.Garaus, M., Wagner, U. & Kummer, C. (2015). Cognitive fit, retail shopper confusion, and shopping value: Empirical investigation. Journal of Business Research, 68(5), 1003-1011.
28.Heberle. (1938). The causes of rural-urban migration a survey of German theories. American Journal of Sociology Volume, 43(6).
29.Hoffman, Donna L. & Thomas P. Novak. (2009). Flow Online: Lessons Learned and Future Prospects. Journal of Interactive Marketing, 23(1), 23-34.
30.Hoffman, Donna L. and Thomas P. Novak (1996), Marketing in Hypermedia Computer-Mediated Environments: Conceptual Foundations. Journal of Marketing, 60 (7), 50–68.
31.Hou, A.C.Y., Chern, C.-C. H.-G. Chen & Y.-C. Chen, (2011). Migrating to a new virtual world: Exploring MMORPG switching through human migration theory, Computers in Human Behavior. 27 (5),1892–1903.
32.Hou, A.C.Y., Chern, C.C., Chen, H.G. & Chen, Y.C. (2011). Migrating to a new virtual world: Exploring MMORPG switching through human migration theory. Computers in Human Behavior, 27(5), 1892-1903.
33.Howard Rheingold. (1993).The virtual community: Homesteading on the electronic frontier.MIT: Addison Wesley, 238-239
34.Hsieh, J.-k., Hsieh, Y.-C., Chiu, H.-C., & Feng, Y.-C (2012). Post-adoption switching behavior for online service substitutes: A perspective of the push–pull–mooring framework. Computers in Human Behavior, 28(5),1912-1920.
35.Huang, L.-Y., and Hsieh, Y.-J. (2012). Consumer electronics acceptance based on innovation attributes and switching costs: The case of e-book readers. Electronic Commerce Research and Applications, 11(3), 218–228.
36.Hulland, J. (1999). Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strategic Management Journal, 20(1), 195-204.
37.Inma, R.-A. & Antoni,M.-A (2016). E-learning continuance: The impact of interactivity and the mediating role of imagery, presence and flow. Information & Management. 53(4),504-516.
38.Jones, K. S. (2007). Automatic summarising: The state of the art. Information Processing & Management, 43(6),14491481.
39.Jones, M.A., Mothersbaugh, D.L. & Beatty, S.E. (2002). Why customers stay: measuring the underlying dimensions of services switching costs and managing their differential strategic outcomes. Journal of Business Research, 55(6), 441-450.
40.Jones, M-A. & Mothersbaugh,D. L.& Beatty, S.E. (2000). Switching barriers and repurchase intentions in services. Journal of Retailing, 76(2),259-274.
41.Jung, J., Han, H. & Oh, M. (2017). Travelers’ switching behavior in the airline industry from the perspective of the push-pull-mooring framework. Tourism Management, 59, 139-153.
42.Keil, M., Tan, B. C. Y., Wei, K. K., Saarinen, T., Tuunainen, V., & Wassenaar, A. (2000). A Cross-Cultural Study on Escalation of Commitment Behavior in Software Projects. MIS Quarterly, 24(2), 299-325.
43.Keil, M., Tan,B.C.Y, Wei,K.-K., Saarinen, T., Tuunainen,& Wassenaar.A (2000). A Cross-Cultural Study on Escalation of Commitment Behavior in Software Projects. MIS Quarterly, 24(2), 299-325.
44.Kempf, D. S.& Smith R. E. (1998). Consumer Processing of Product Trial and the Influence of Prior Advertising: A Structural Modeling Approach. Journal of Marketing Research,35(3),325-338.
45.Kempf, D.S. & Smith, R. E. (1998). Consumer Processing of Product Trial and the Influence of Prior Advertising: A Structural Modeling Approach. Journal of Marketing Research,35(3),325-338.
46.Klemperer, P. (1995). Competition when consumers have switching costs: An overview with applications to industrial organization, macroeconomics, and international trade. Review of Economic Studies, 62(4), 515-539.
47.Lee E S. (1996). A theory of migration. Demography, 3(1):47-57.
48.Lee, Y.K., Ahn, W.K. & Kim, K. (2008). A study on the moderating role of alternative attractiveness in the relationship between relational benefits and customer loyalty. International Journal of Hospitality & Tourism Administration, 9(1), 52-70.
49.Leek, Sheena and Dai Kun (2006). Consumer confusion in the Chinese personal computer market, Journal of Product and Brand Management, 15 (3), 184-93.
50.Li Y M, Wu C T, Lai C Y (2013). A social recommender mechanism for e-commerce: combining similarity, trust, and relationship[J].Decision Support System, 55 (3), 740-752.
51.Li, C.Y. & Ku, Y.C. (2018). The power of a thumbs-up: Will e-commerce switch to social commerce? Information & Management.55,340-357.
52.Liang, A.R., Lee, C.L., Tung, W., (2014). The role of sunk costs in online consumer decision-making. Electronic Commerce Research and Applications.13 (1), 56–68.
53.Lin, H.-C. & Chang, C.- M. (2018). What motivates health information exchange in social media? The roles of the social cognitive theory and perceived interactivity. Information & Management, 55,771-7801.
54.Lin, T.-C. &Huang, S.- L.(2014). Understanding the Determinants of Consumers’ Switching Intentions in a Standards War. International Journal of Electronic Commerce.19(1),163-189.
55.Manuel J Sánchez-Franco.∗ and José L. Roldán. (2014). The influence of familiarity, trust and norms of reciprocity on an experienced sense of community: an empirical analysis based on social online services. Behaviour & Information Technology. 34(4), 392–412.
56.Massara, F., Liu, S. S., & Melara, R. D. (2010). Adapting to a retail environment: Modeling consumer–environment interactions. Journal of Business Research, 63(7), 673–681.
57.Mayer, J. D., Chabot, H. F., & Carlsmith, K. M. (1997). Conation, affect, and cognition in personality. In Advances in Psychology,124, 31–63.
58.McMullan, R. A. (2005). multiple-item scale for measuring customer loyalty development. Journal of Services Marketing, 19(7), 470–481.
59.Moon, B. (1995).Paradigms in migration Research: Exploring “morings” as a schema. Progress in Human Geography, 19(4),504-524.
60.Nisbett, R. E. & Ross, L. (1980). The Person and the Situation: Perspectives of Social Psychology.
61.Noort, G van. &H.A.M. Voorveld & E.A. van Reijmersdal, (2012). Interactivity in brand websites: cognitive, affective, and behavioral responses explained by consumers’ online flow experience. Journal of Interactive Marketing. 26(4), 223-234.
62.Oliver, R. L.(1981). Measurement and evaluation of satisfaction process in retail settings. Journal of Retailing.57(3),25-48.
63.Oliver, R.L. (1980). A Cognitive Model of the Antecedents and Consequences of Satisfaction Decisions. Journal of Marketing Research, 14(4),460-469.
64.Oliver, R.L., and Linda, G. (1981) Effect of satisfaction and its antecedents on consumer preference and intention. Association for Consumer Research. (8), 88–93.
65.Pavlou, P. A., & Fygenson, M. (2006). Understanding and predicting electronic commerce adoption: An extension of the theory of planned behavior. MIS Quarterly, 30(1), 115-143.
66.Perkmann, M & Walsh, K. (2007). University–industry relationships and open innovation: Towards a research agenda. International Journal of Management Reviews, 9(4), 259-280.
67.Ping, R.A .(1993). The effects of satisfaction and structural constraints on retailer exiting, voice, loyalty, opportunism, and neglect. Journal of Retailing,69(3),320-352.
68.Ping, R.A. (1993). The effects of satisfaction and structural constraints on retailer exiting, voice, loyalty, opportunism and neglect. Journal of Retailing, 69(3), 320-352.
69.Polites, G.L., & Karahanna, E. (2012). Shackled to the status quo: The inhibiting effects of incumbent system habit, switching costs, and inertia on new system acceptance. MIS Quarterly, 36(1), 21–42.
70.Ravenstein, E. (1885) The laws of migration. Journal of the Statistical Society of London, 52(2), 167–235.
71.Rothaermel, F. T &Sugiyama, S. (2001). Virtual internet communities and commercial success: individual and community-level theory grounded in the atypical case of TimeZone.com. Journal of Management, 27(3),297-312.
72.S. H.-W. Chuah, Malliga, M. &Jay, K. & Anil, B. (2017). What drives Gen Y loyalty? Understanding the mediated moderating roles of switching costs and alternative attractiveness in the value-satisfaction-loyalty chain. Consumer Services, 36(c),124-136.
73.Samuelson, W., and Zeckhauser, R. (1988). Status quo bias in decision making. Journal of Risk and Uncertainty, 1(1), 7–59.
74.Schweizer, M., Kotouc, A. J., & Wagner, T. (2006). Scale development for consumer confusion. Advances in Consumer Research, 33(1), 184–190.
75.Simmel, G. (1949). The sociology of sociability. American. Journal of Sociology, 55, 254-261.
76.Steuer, J. (1992). Defining Virtual Reality: Dimensions Determining Telepresence. Journal of Communication, 42(4), 73-93.
77.Suh, L.-S.& Chang, S. (2006). User interfaces and consumer perceptions of online stores: The role of telepresence. Behaviour & Information Technology, 25 (2), 99-113.
78.Trevino, L. K. & Webster, J. (1992). Flow in Computer-Mediated Communication: Electronic Mail and Voice Mail Evaluation and Impacts. Communication Research, 19(5),539-573.
79.Tung-Ching, Lin. & Shiu-Li, Huang. (2014).Understanding the Determinants of Consumers' Switching Intentions in a Standards War, International Journal of Electronic Commerce, 19(1), 163-189.
80.Turnbull, P., Leek, S., & Ying, G. (2000). Customer confusion: The mobile phone market. Journal of Marketing Management, 16, 143–163.
81.Moungho Park, Jaehyeon Jun & Heejun Park (2017).Understanding Mobile Payment Service Continuous Use Intention: An Expectation - Confirmation Model and Inertia .Quality Innovation Prosperity , 21(3), pp.78 - 94
82.Urbany, J.E. & Dickson, P. R & Wilkie, W. L.(1989). Buyer Uncertainty and Information Search. Journal of Consumer Research, 16(32),208-215.
83.Van Noort, G., Voorveld, H. A. M. & Van Reijmersdal, E. A. (2012). Interactivity in Brand Web Sites: Cognitive, Affective, and Behavioral Responses Explained by Consumers' Online Flow Experience. Journal of Interactive Marketing, 26(4), 223-234.
84.Walsh, G. & Mitchell, V. -W. (2010). The effect of consumer confusion proneness on word of mouth, trust, and customer satisfaction. European Journal of Marketing, 44(6), 838-859.
85.Walsh, G., Henning-Thurau and Mitchell, v.-w. (2007). Consumer confusion proneness: scale development, validation, and application. Journal of Marketing Management, 23(7-8),697-792.
86.Wang, Q. & Shukla, P. (2013). Linking Sources of Consumer Confusion to Decision Satisfaction: The Role of Choice Goals. Psychology and Marketing, 30(4),295-304.
87.Webster, Jane, Linda K. Trevino, and Lisa Ryan (1993). The Dimensionality and Correlates of Flow in Human-computer Interactions. Computers in Human Behavior, 9(4), 411-26.
88.Wu, L.W. (2011). Satisfaction, inertia, and customer loyalty in the varying levels of the zone of tolerance and alternative attractiveness. Journal of Services Marketing, 25(5), 310-322.
89.Yang, Z. & Peterson, R.T. (2004). Customer perceived value, satisfaction, and loyalty: The role of switching costs. Psychology & Marketing, 21(10), 799-822.
90.Yang, Z. & Peterson, R.T. (2004). Customer perceived value, satisfaction, and loyalty: The role of switching costs. Psychology and Marketing, 21(10),799-822.
91.Ye, C., & Potter, R. (2011). The role of habit in post-adoption switching of personal information Technologies: An empirical investigation. Communications of the Association for Information Systems, 28(1),585-610.
92.Zhang, J. (2006). The roles of players and reputation: Evidence from eBay online auctions, Decision Support Systems, 42(3), 1800-1818.
93.Zhang, K.Z.K., Cheung, C.M.K., Lee, M.K.O., (2012). Online service switching behavior: the case of blog service providers. J. Electron. Commer. Res. 13 (3), 184–197.
94.Zhao, L. & Lu, Y. (2012). Enhancing perceived interactivity through network externalities: An empirical study on micro-blogging service satisfaction and continuance intention, Decision Support System, 53(4), 825-834.
95.Zhao, L., and Y. Lu. (2012). Enhancing Perceived Interactivity Through Network Externalities: An Empirical Study on Micro-blogging Service Satisfaction and Continuance Intention. Decision Support Systems, 53(4),825–834.
96.Zhao, L., and Y. Lu. (2012). Enhancing Perceived Interactivity Through Network Externalities: An Empirical Study on Micro-blogging Service Satisfaction and Continuance Intention. Decision Support Systems, 53 (4),825–834.

二、中文部分
1.王 彤 (2020)。電商直播場景下消費者購買慾望研究。中央民族大學,新聞與傳播(專業學位)。
2.王 碩 (2007)。電子商務概論。合肥工業大學,博士後研究工作報告。
3.王昕天,汪向東 (2019)。社群化、流量分配與電商趨勢:對“拼多多”現象的解讀。中國軟科學,2019 (7),47-59。
4.匡亞潔、張澄 (2011)。關於我國移動電子商務發展的瓶頸及趨勢探究。中國商貿,2011 (14),98-99。
5.屈冠銀,張 哲 (2016)。內容電商發展及運營邏輯思考。北京勞動保障職業學院學報,2016(3),33-39。
6.林嘉宏 (2017)。直播主信任轉移對商品購買意願影響之研究:推敲可能性模式觀點。銘傳大學管理研究所。
7.張 軍 (2018)。電商直播平台的現狀及發展策略研究。長春工業大學資訊傳播工程學院。
8.張 瓊 (2016)。移動互聯網 + 視域下零售業態演變路徑及對策。中國流通經濟,2016(2),14-19。
9.郭 恒(2010)。論電子商務的特點及對傳統貿易的影響。中國商貿,2010 (28),118-119。
10.陳純德、陳美如 (2014)。部落客意見領袖信任轉移影響之研究:推敲可能性模式觀點。電子商務學報,16(3),242-275。
11.陳順宇 (2005)。多變量分析。台北:華泰文化。
12.黃鵬飛、黃螢美 (2007)。預付型交易顧客續購意願影響因素之探討。行銷科學學報,3(2),3197-214。
13.劉鈺清 (2018)。抖音短視頻研究。湖南師範大學傳播學院。
14.蔣 芮 (2020)。電商直播平台互動研究--以淘寶直播為例。华中师范大学,傳播學。
15.鄭家宜(2010)。金融服務業顧客滿意與再購意願之關係研究:分析產品知識的效果。中山管理評論,18(2),325-372。
16.盧宏亮、張敏 (2020)。網紅帶貨感知風險對購買意願的影響——有調節的仲介模型。中國流通經濟,2020 (12),20-28。
17.謝博吉 (2016)。影響Twitch使用者忠誠行為因素之研究:神迷理論觀點。銘傳大學管理研究所。
18.羅瑉、李亮宇 (2015)。互聯網時代的商業模式創新:價值創造視角。中國工業經濟,2015(1)。


三、網頁部分
1.排行榜 (2020):https://www.36kr.com/p/1025269536131075
2.中國互聯網路資訊中心 (2020):https://cbndata.com/report/2349/detail?isReading=report&page=4
3.极光大数据 (2017):https://report.iimedia.cn/repo1-0/39000.html
4.中國電子商務報告 (2020):http://www.gov.cn/xinwen/202007/02/5523479/files/0a2c57d8ba6d4e26b83d96cdd764d6f0.pdf
5.中國電商行業研究報告 (2020):file:///D:/%E7%A0%94%E7%A9%B6%E6%89%80%E6%AF%95%E4% B8%9A%E8%AE%BA%E6%96%87/%E6%96%87%E7%8C%AE/2020%E4%B8%AD%E5%9B%BD%E7%9B%B4%E6%92%AD%E7%94%B5%E5%95%86%E8%A1%8C%E4%B8%9A%E7%A0%94%E7%A9%B6%E6%8A%A5%E5%91%8A.pdf
6.商務部電子商務和信息化司 (2020):http://www.gov.cn/xinwen/202007/02/5523479/files/0a2c57d8ba6d4e26b83d96cdd764d6f0.pdf
7.商務部電子商務和信息化司(2019):http://dzsws.mofcom.gov.cn/
8.全球移動通信系統協會(2020):http://finance.people.com.cn/BIG5/n1/2021/0223/c1004-32034713.html

電子全文 電子全文(網際網路公開日期:20260212)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top