|
1. Abraham, A., Nath, B., & Mahanti, P.K. (2001). Hybrid intelligent systems for stock market analysis. In Computational Science-ICCS 2001 (pp.337-345). Springer. 2. Ahn, Jae Joon; Kim, Dong Ha; Oh, Kyong Joo; and Kim, Tae Yoon (2012). Applying option Greeks to directional forecasting of implies volatility in the options market: An intelligent approach. Expert Systems with Applications. Aug2012, Vol.39 Issue 10, p9315-9322. 8p. 3. Awrey, Dan (2016). The Mechanisms of Derivatives Market Efficiency. New York University Law Review. Nov 2016, Vol.91 Issue 5, p1104-1182. 79p. 4. Baek, Y. & Kim, H.Y. (2018). ModAugNet: A new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module. Expert Syst. Appl. 2018, 113, 457-480. 5. Chen, C.N., Chen, C.R., & Huang, Y.S. (2014). Which types of traders and orders profit from futures market trading? Journal of Derivatives, 21(4), 49-62. 6. Chen, H.C. & Wu, J. (2009). Volatility, depth, and order composition: Evidence from a pure limit order futures market. Emerging Markets Finance and Trade, 45(5), 72-85. 7. Chong, E., Han, C., & Park, F.C. (2017). Deep learning network for stock market analysis and prediction: Methodology, data representations, and case studies. Expert Syst. Appl. 2017, 83, 187-205. 8. Chou, H.C., Chen, W.N., & Chen, D.H. (2006). The expiration effects of stock-index derivatives – Empirical evidence from the Taiwan Futures Exchange. Emerging Markets Finance and Trade, 42(5), 81-102. 9. Chou, R.K. & Wang, Y.Y. (2009). Strategic order splitting, order choice, and aggressiveness: Evidence from the Taiwan Future Exchange. Journal of Futures Markets, 29(12), 1102-1129. 10. Chung, H. & Shin, K.-S. (2020). Genetic algorithm-optimized multi-channel convolutional neural network for stock market prediction. Neural Comput. Appl. 2020, 2, 7897-7914. 11. Erdinc Altay & Hakan Satman (2005). Journal of Financial Management and Analysis. 18(2), 18-33. 12. Garcia, F., Guijarro, F., Oliver, J. & Tamoŝiŭnienė, R. (2018). Hybrid fuzzy neural network to predict price prediction in the German DAX-30 index. Technol. Econ. Dev. Econ. 2018, 24, 2161-2178. 13. Goutam Datta, Pankaj Jha, Arnab Kumar Laha & Neeraj Mohan (2006). Journal of Emerging Market Finance, 5(3), 283-295. 14. Hsieh, W.L.G (2009). Expiration-day effects on individual stocks and the overall market: Evidence from Taiwan. Journal of Futures Markets, 29(10), 920-945. 15. Hsu, Tien-Yu (2021). Machine learning applied to stock index performance enhancement.Journal of Banking and Financial Technology. Published online on 25 January 2021. https://doi.org/10.1007/s42786-021-00025-6. 16. Huang, Y.C., & Chan, S.H. (2010). Trading behavior on expiration days and quarter-end days: The effect of a new closing method. Emerging Markets Finance and Trade, 46(4), 105-125. 17. Jeo Jasic & Douglas Wood (2004). Applied Financial Economics. 14, 285-297. 18. Jinyuan Shen, Huaiyu Fan & Shengjiang Chang (2007). Springer-Verlag Berlin Heidelberg, 457-464. 19. Kelotra, A., & Pandey, P. (2020). Stock Market Prediction Using Optimized Deep ConvLSTM Model. Big Data 2020, 8, 5-24. 20. Kyoung-jae, Kim & Won Boo Lee (2004). Neural Computation and Application, 13, 255-260. 21. Lee, Hsiu-Chuan; Chien, Cheng-Yi; Liao, Tzu-Hsiang (2012). Commonality in trading activity and future-cash basis: Evidence from the Taiwan futures and stock markets. Journal of Futures Markets. October 2012, Vol.32, Issue 10, pages 964-994. 22. Liu, F., & Wang, J. (2012). Fluctuation prediction of stock market index by Legendre neural network with random time strength function. Neurocomputing, 83, 12-21. 23. Mishra, R. K., Sehgal, S., & Bhanumurthy, N. (2011). A search for long-range dependence and chaotic structure in India stock market. Review of Financial Economics, 20, 96-104. 24. M. Nabipour, P. Nayyeri, H.Jabani,Shahab S. (2020). Predicting Stock Market Trends Using Machine Learning and Deep Learning Algorithms via Continuous and Binary Data; a Comparative Analysis. IEEE Access. Volume 8, 2020. Digital Object Identifier 10.1109/ACCESS.2020.3015966 25. Monica Isfan, Rui Menezes & Diana A, Mendes (2010). Journal on physics, 7th International Conference on Applications of Physics in Financial Analysis, 221, 1-14. 26. Pang, X., Zhou, Y., Wang, P., Lin, W., & Chang, V. (2018). An innovative neural network approach for stock market prediction. J. Supercomput.2018, 11, 1-21. 27. Qing Cao, Mark E. Parry & Karyl B. Leggio (2009). Springer Science and Business media, 250, 89-102. 28. Ramon Lawrence (1997). www.umanitoba.com, 1-21. 29. S.D. Bekiros & D.A Georgoutsos (2008). Journal of Forecasting. 19, 407-417. 30. Sharma, D.K, Hota,H.S., Handa, Richa (2021). Integration of genetic algorithm with artificial neural network for stock market forecasting. Int J Syst Assur Eng Manag. https://doi.org/10.1007/s13198-021-01209-5. 31. Taiwan Future Stock Exchange. Taiwan. Available at: http://www.taifex.com.tw 32. Taiwan Stock Exchange. Taiwan. Available at: http://www.twse.com.tw 33. TilaKaratne C.C., Mammadov M.A. & Morris S.A. (2009). Journal of Applied Mathematics and Decision Science. 1-22. 34. Vipul. (2005). Futures and options expiration-day effects: The Indian evidence. Journal of Futures Markets, 25(11), 1045-1065. 35. Vipul. (2008). Cross-market efficiency in the Indian derivatives market: A test of put-call parity. Journal of Futures Markets, 28(9), 889-910. 36. Xun Liang (2006). Springer-Verlag Berlin Heidelberg, 442-451. 37. Youngohc Yoon & George Swales (1991). Proceedings of the IEEE International Conference on Neural Networks, 156-162. 38. Zhou, X., Pan, Z., Hu, G., Tang, S., Zhao, C. (2018). Stock market prediction on high-frequency data using generative adversaries nets. Math. Probl. Eng. 2018, 2018. 39.https://www.investmentexecutive.com/news/research-and-markets/otc-derivatives-markets-growing-in-2019/
|