跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/20 13:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王聖曄
研究生(外文):WANG, SHENG-YEH
論文名稱:利用稻殼製備SBA-15和添加TiO2 對甲基橙之光催化研究
論文名稱(外文):Preparation of SBA-15 from rice husk and addition of TiO2 for photocatalytic degradation on methyl orange
指導教授:劉宗宏劉宗宏引用關係
指導教授(外文):LIOU, TZONG-HORNG
口試委員:郭茂穗陳岡宏劉宗宏
口試委員(外文):KOU, MAW-SUEYCHEN, KANG-HUNGLIOU, TZONG-HORNG
口試日期:2022-07-28
學位類別:碩士
校院名稱:明志科技大學
系所名稱:化學工程系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:106
中文關鍵詞:中孔材料SBA-15二氧化鈦甲基橙光催化
外文關鍵詞:mesoporous materialSBA-15TiO2methyl orangephotocatalytic activity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
本研究以稻殼農業廢棄物萃取矽製備中孔材料RH-SBA-15,實驗中先以稻殼製備矽酸鈉,並以P123為界面活性劑以合成RH-SBA-15中孔材料,再以合成的RH-SBA-15,加入二氧化鈦(TiO2)以探討對甲基橙(MO)進行光催化研究,並針對不同實驗條件探討最佳光催化之效果。製備完成後之樣品利用XRD測其晶相、FESEM觀察樣品外觀、TEM觀察細微結構、FTIR測定官能基、BET測定比表面積、UV-Vis DRS測定材料吸收波峰、XPS測定元素鍵結能以及UV/Vis測定染料濃度。
光催化實驗中探討染料pH值、染料濃度、催化劑負載量、煅燒溫度、不同光源及催化劑添加量對其降解影響,找尋最佳光催化條件。研究結果以染料pH為2,濃度於20ppm、催化劑負載量30wt%、煅燒溫度800°C、燈源波長於254nm及催化劑添加量至80mg時有最佳的光催化效果,回收實驗也發現催化劑重複利用後降解效率微幅下降,但整體仍維持於80%以上,自由基反應性探討也發現O2-對催化劑降解影響較明顯。


This research studied the preparation of RH-SBA-15 from rice husk agriculture waste. During the experiment, the source of silicon is from sodium silicate, and Symmetrical Triblock Copolymer P123 was used as the surfactant to produce the material. After the SBA-15 was produced, adding TiO2 to alter material property and implementing the photocatalysis on methyl orange(MO) with different parameters such as pH value, MO concentration, TiO2 loading percentage, light source, calcined temperature, and different dosage of material. In addition, the materials were inspected by different instruments such as XRD, FESEM, TEM, FTIR, BET, DRS , XPS and UV/Vis.
The results indicate when methyl orange pH=2, initial concentration 20ppm, light source 254nm, TiO2 30wt% loading, calcined temperature 800°C and 80mg has the best photocatalytic activity. The recycle experiment also reveals that efficiency maintain 80% above after fourth cycles, in addition, adding different scavenger discovers O2- influence the degradation efficiency.

目錄
口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1-1研究背景 1
1-2 研究內容 2
第二章 文獻回顧 3
2-1中孔材料 3
2-2 SBA-15 簡介 4
2-2-1 SBA-15應用 5
2-3 界面活性劑(Surfactant)介紹 6
2-3-1界面活性劑的分類 7
2-3-2 非離子界面活性劑 8
2-3-3 界面活性劑與矽源量對吸附的影響 8
2-4 光觸媒 9
2-4-1 二氧化鈦 13
2-4-2 TiO2晶相結構與特性 14
2-4-3 TiO2光催化原理 17
2-4-4 TiO2光催化之影響因素 18
2-5甲基橙簡介 21
第三章 實驗方法與設備 22
3-1 實驗藥品與氣體 22
3-2 實驗設備與分析儀器 23
3-3 稻殼萃取矽製備矽酸鈉溶液 24
3-4 RH-SBA-15製備 25
3-5 TiO2製備 26
3-6 TiO2/RH-SBA-15製備 26
3-7材料性質分析方法 27
3-7-1 X 光繞射儀(XRD) 27
3-7-2 場發式電子顯微鏡(FE-SEM) 29
3-7-3 穿透式電子顯微鏡(TEM) 30
3-7-4 傅立葉紅外線光譜儀(FTIR) 31
3-7-5 比表面積分析儀(BET) 32
3-7-6 紫外-可見光漫反射光譜儀(UV-Vis DRS) 33
3-7-7 X射線光電子能譜儀(XPS) 34
3-7-8 UV/Vis分光光度計 35
3-8光催化活性測試 36
3-8-1不同pH值之光催化實驗 36
3-8-2不同染料濃度之光催化實驗 36
3-8-3不同催化劑負載量之光催化實驗 37
3-8-4不同煅燒溫度之光催化實驗 37
3-8-5不同光源之光催化實驗 37
3-8-6不同催化劑添加量之光催化實驗 37
3-8-7催化劑回收再生實驗 37
3-8-8自由基反應性探討 37
第四章 實驗結果與討論 38
4-1材料性質分析 38
4-1-1 X 光繞射儀(XRD)之分析 38
4-1-2場發式電子顯微鏡(FE-SEM)之分析 45
4-1-3 穿透式電子顯微鏡(TEM)之分析 51
4-1-4比表面積分析(BET) 62
4-1-5 紫外-可見光漫反射光譜分析(UV-Vis DRS) 67
4-1-6 傅立葉紅外線光譜儀(FTIR)之分析 69
4-1-7 X射線光電子能譜儀(XPS)之分析 71
4-2 甲基橙染料測試 74
4-2-1直接照光實驗 74
4-2-2 甲基橙檢測 75
4-2-3 甲基橙檢量線 76
4-3光催化實驗 77
4-3-1不同pH值之實驗 77
4-3-2 不同染料濃度之實驗 79
4-3-3 不同催化劑負載量之實驗 81
4-3-4 不同煅燒溫度之實驗 83
4-3-5 不同光源之實驗 85
4-3-6 不同催化劑添加量之實驗 87
4-3-7 催化劑回收再生實驗 91
4-3-8自由基反應性探討 93
第五章 結論 98
第六章 參考文獻 99



圖目錄
圖2-1 SBA-15形成示意圖 4
圖2-2 微胞示意圖 6
圖2-3光催化反應機制示意圖 9
圖2-4不同導體能帶示意圖 10
圖2-5 常見二氧化鈦之應用 13
圖2-6 TiO2結構示意圖 (a):銳鈦礦 (b):金紅石(c):板鈦礦 14
圖2-7二氧化鈦之相圖 16
圖2-8 TiO2光催化反應機制 17
圖2-9微粒與奈米粒子之光催化示意圖 18
圖2-10甲基橙結構圖 21
圖3-1布拉格定律式(Bragg's Law) X 光繞射示意圖 28
圖4-1 RH-SBA-15 之小角度XRD 圖 38
圖4-2 RH-SBA-15 之一般角度XRD 圖 39
圖4-3 不同負載量TiO2/RH-SBA-15之XRD圖 40
圖4-4不同負載量TiO2/RH-SBA-15之一般角度XRD圖 41
圖4-5 30wt%TiO2/RH-SBA-15之小角度XRD圖 42
圖4-6 30wt% TiO2/RH-SBA-15不同煅燒溫度之一般角度XRD圖 43
圖4-7 RH-SBA-15 之SEM圖 45
圖4-8 20wt% 600°C TiO2/RH-SBA-15之SEM圖 46
圖4-9 30wt% 400°C TiO2/RH-SBA-15之SEM圖 46
圖4-10 30wt% 500°C TiO2/RH-SBA-15之SEM圖 47
圖4-11 30wt% 600°C TiO2/RH-SBA-15之SEM圖 47
圖4-12 30wt% 700°C TiO2/RH-SBA-15之SEM圖 48
圖4-13 30wt% 800°C TiO2/RH-SBA-15之SEM圖 48
圖4-14 40wt% 600°C TiO2/RH-SBA-15之SEM圖 49
圖4-15 50wt% 600°C TiO2/RH-SBA-15之SEM圖 49
圖4-16 60wt% 600°C TiO2/RH-SBA-15之SEM圖 50
圖4-17 600°C TiO2之SEM圖 50
圖4-18 RH-SBA-15之TEM圖 51
圖4-19 20 wt% 600°C TiO2/RH-SBA-15之TEM圖 52
圖4-20 20 wt% 600°C TiO2/RH-SBA-15之EDS圖 52
圖4-21 30 wt% 400°C之TiO2/RH-SBA-15 TEM圖 53
圖4-22 30 wt% 400°C之TiO2/RH-SBA-15 EDS圖 53
圖4-23 30 wt% 500°C之TiO2/RH-SBA-15 TEM圖 54
圖4-24 30 wt% 500°C之TiO2/RH-SBA-15 EDS圖 54
圖4-25 30 wt% 600°C TiO2/RH-SBA-15之TEM圖 55
圖4-26 30 wt% 600°C TiO2/RH-SBA-15之EDS圖 55
圖4-27 30 wt% 700°C之TiO2/RH-SBA-15 TEM圖 56
圖4-28 30 wt% 700°C之TiO2/RH-SBA-15 EDS圖 56
圖4-29 30 wt% 800°C之TiO2/RH-SBA-15 TEM圖 57
圖4-30 30 wt% 800°C之TiO2/RH-SBA-15 EDS圖 57
圖4-31 40 wt% 600°C TiO2/RH-SBA-15之TEM圖 58
圖4-32 40 wt% 600°C TiO2/RH-SBA-15之EDS圖 58
圖4-33 50 wt% 600°C TiO2/RH-SBA-15之TEM圖 59
圖4-34 50 wt% 600°C TiO2/RH-SBA-15之EDS圖 59
圖4-35 60 wt% 600°C TiO2/RH-SBA-15之TEM圖 60
圖4-36 60 wt% 600°C TiO2/RH-SBA-15之EDS圖 60
圖4-37 600°C TiO2之TEM圖 61
圖4-38 600°C TiO2之EDS圖 61
圖4-39 RH-SBA-15 BET圖 62
圖4-40 RH-SBA-15 孔徑分佈圖 63
圖4-41 不同催化劑負載量之TiO2/RH-SBA-15 BET圖 64
圖4-42 不同催化劑負載量之TiO2/RH-SBA-15 孔徑分佈圖 64
圖4-43不同煅燒溫度之30wt% 催化劑 BET圖 65
圖4-44不同煅燒溫度之30wt% 催化劑孔徑分佈圖 65
圖4-45不同負載量之TiO2/RH-SBA-15吸收光譜圖 67
圖4-46 不同煅燒溫度之TiO2/RH-SBA-15吸收光譜圖 68
圖4-47不同負載量TiO2/RH-SBA-15之FTIR圖 69
圖4-48 不同煅燒溫度之30wt% TiO2/RH-SBA-15 FTIR圖 70
圖4-49 20wt% TiO2/RH-SBA-15之全掃描圖譜 71
圖4-50 800°C之30wt% TiO2/RH-SBA-15全掃描圖譜 71
圖4-51 20wt% TiO2/RH-SBA-15之單元素圖譜 72
圖4-52 800°C之30wt% TiO2/RH-SBA-15單元素圖譜 73
圖4-53 直接照光實驗 74
圖4-54 甲基橙UV-Vis圖譜 75
圖4-55 甲基橙檢量線 76
圖4-56 不同pH值之降解圖 77
圖4-57 不同pH值之整體降解效率圖 78
圖4-58 不同pH值之光降解效率圖 78
圖4-59不同染料濃度之降解圖 79
圖4-60 不同染料濃度之整體降解效率圖 80
圖4-61 不同染料濃度之光降解效率圖 80
圖4-62不同TiO2/RH-SBA-15負載量之降解圖 81
圖4-63 不同TiO2/RH-SBA-15負載量之整體降解效率圖 82
圖4-64 不同TiO2/RH-SBA-15負載量之光降解效率圖 82
圖4-65 不同煅燒溫度之TiO2/RH-SBA-15降解圖 83
圖4-66 不同煅燒溫度之TiO2/RH-SBA-15整體降解效率圖 84
圖4-67不同煅燒溫度之TiO2/RH-SBA-15光降解效率圖 84
圖4-68 不同光源之降解圖 85
圖4-69 不同光源之整體降解效率圖 86
圖4-70 不同光源之光降解效率圖 86
圖4-71 254nm下不同TiO2/RH-SBA-15添加量之降解圖 87
圖4-72 254nm下不同TiO2/RH-SBA-15添加量之整體降解效率圖 88
圖4-73 254nm下不同TiO2/RH-SBA-15添加量之光降解效率圖 88
圖4-74 365nm下不同TiO2/RH-SBA-15添加量之降解圖 89
圖4-75 365nm下不同TiO2/RH-SBA-15添加量之整體降解效率圖 90
圖4-76 365nm下不同TiO2/RH-SBA-15添加量之光降解效率圖 90
圖4-77 TiO2/RH-SBA-15催化劑回收實驗降解圖 91
圖4-78 TiO2/RH-SBA-15催化劑回收實驗整體降解效率圖 92
圖4-79 TiO2/RH-SBA-15催化劑回收實驗光降解效率圖 92
圖4-80 254nm下自由基反應性探討降解圖 94
圖4-81 254nm下自由基反應性探討整體降解效率圖 95
圖4-82 254nm下自由基反應性探討光降解效率圖 95
圖4-83 365nm下自由基反應性探討降解圖 96
圖4-84 365nm下自由基反應性探討整體降解效率圖 97
圖4-85 365nm下自由基反應性探討光降解效率圖 97



表目錄
表2-1孔洞分類 3
表2-2光觸媒能隙與激發半導體之波長 12
表2-3 銳鈦礦與金紅石相之物性比較 15
表3-1 實驗藥品與氣體 22
表3-2 實驗設備與儀器 23
表4-1 不同條件下之催化劑平均晶粒尺寸 44
表4-2 RH-SBA-15與煅燒溫度600°C之不同催化劑負載量BET分析 66
表4-3 不同煅燒溫度之30wt% 催化劑 BET分析 66





[1]Chaudhary, V. and S. Sharma (2017). "An overview of ordered mesoporous material SBA-15: synthesis, functionalization and application in oxidation reactions." Journal of Porous Materials 24(3): 741-749.

[2]Zhao, D., J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky (1998). "Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores." science 279(5350): 548-552.

[3]Ryoo, R., C. H. Ko, M. Kruk, V. Antochshuk and M. Jaroniec (2000). "Block-copolymer-templated ordered mesoporous silica: array of uniform mesopores or mesopore− micropore network?" The Journal of Physical Chemistry B 104(48): 11465-11471.

[4]Fuertes, A. B. (2004). "Synthesis of ordered nanoporous carbons of tunable mesopore size by templating SBA-15 silica materials." Microporous and Mesoporous Materials 67(2-3): 273-281.

[5]Fulvio, P. F., S. Pikus and M. Jaroniec (2005). "Short-time synthesis of SBA-15 using various silica sources." Journal of Colloid and Interface Science 287(2): 717-720.

[6]Ulrich, K., P. Galvosas, J. r. Kärger, F. Grinberg, J. Vernimmen, V. Meynen and P. Cool (2010). "Self-assembly and diffusion of block copolymer templates in SBA-15 nanochannels." The Journal of Physical Chemistry B 114(12): 4223-4229.

[7]Ma, K., Y. Tian, Z.-J. Zhao, Q. Cheng, T. Ding, J. Zhang, L. Zheng, Z. Jiang, T. Abe, N. Tsubaki, J. Gong and X. Li (2019). "Achieving efficient and robust catalytic reforming on dual-sites of Cu species." Chemical Science 10(9): 2578-2584.

[8]Soler-Illia, G. J. d. A. A., E. L. Crepaldi, D. Grosso and C. Sanchez (2003). "Block copolymer-templated mesoporous oxides." Current Opinion in Colloid & Interface Science 8(1): 109-126.

[9]Zhao, D., J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky (1998). "Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores." science 279(5350): 548-552.

[10]Jin, Z.-W., C.-L. Liu and H. Liang (2009). "Effects of pH on the Structure of Non-Ionically Templated MSU-X Mesoporous Silica via a Two-Step Synthesis." Acta Physico-Chimica Sinica 25.

[11]Chaudhary, D. and S. Sharma (2017). "An overview of ordered mesoporous material SBA-15: synthesis, functionalization and application in oxidation reactions." Journal of Porous Materials.

[12]Ryoo, R., J. Kim, C. Ko and C. Shin (1996). "Disordered molecular sieve with branched mesoporous channel network." The Journal of Physical Chemistry 100(45): 17718-17721.

[13]Huang, M. H., A. Choudrey and P. Yang (2000). "Ag nanowire formation within mesoporous silica."Chemical Communications(12): 1063-1064.

[14]Zhao, D., J. Sun, Q. Li and G. D. Stucky (2000). "Morphological Control of Highly Ordered Mesoporous Silica SBA-15." Chemistry of Materials 12(2): 275-279.

[15]Suzdalev, I. P. (2006). "Physical Chemistry of Nanoclusters, Nanostructures, and Nanomaterials." Nanotechnology), Moscow: KomKniga.

[16]Trados, T. F. (1984). Surfactants. London, Academic Press.

[17]Chen, C.-Y., H.-X. Li and M. E. Davis (1993). "Studies on mesoporous materials: I. Synthesis and characterization of MCM-41." Microporous Materials 2(1): 17-26.

[18]Moradi, Z., S. Z. Jahromi and M. Ghaedi (2021). Chapter 9 - Design of active photocatalysts and visible light photocatalysis. Interface Science and Technology. M. Ghaedi, Elsevier. 32: 557-623.

[19]Gaya, U. I. and A. H. Abdullah (2008). "Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems." Journal of Photochemistry and Photobiology C: Photochemistry Reviews 9(1): 1-12.

[20]Wei, W.-Q., J.-H. Wang, Y. Gong, J.-A. Shi, L. Gu, H.-X. Xu, T. Wang and J.-J. Zhang (2017). C/L-band emission of InAs QDs monolithically grown on Ge platform. Asia Communications and Photonics Conference, Guangzhou, Guangdong, Optical Society of America.

[21]M.Warner and B. L. Grung (2005). 半導體器件電子學, 電子工業出版社.

[22]何親賢 (1973). 半導體物理, 中央圖書.

[23]Spanhel, L., M. Haase, H. Weller and A. Henglein (1987). "Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles." Journal of the American Chemical Society 109(19): 5649-5655.

[24]Ollis, D. F., E. Pelizzetti and N. Serpone (1991). "Photocatalyzed destruction of water contaminants." Environmental science & technology 25(9): 1522-1529.

[25]Hoffman, A. J., E. R. Carraway and M. R. Hoffmann (1994). "Photocatalytic production of H2O2 and organic peroxides on quantum-sized semiconductor colloids." Environmental science & technology 28(5): 776-785.

[26]Liu, B.-J., T. Torimoto, H. Matsumoto and H. Yoneyama (1997). "Effect of solvents on photocatalytic reduction of carbon dioxide using TiO2 nanocrystal photocatalyst embedded in SiO2 matrices." Journal of Photochemistry and Photobiology A: Chemistry 108(2): 187-192.

[27]Navio, J. A., G. Colón and J. M. Herrmann (1997). "Photoconductive and photocatalytic properties of ZrTiO4. Comparison with the parent oxides TiO2 and ZrO2." Journal of Photochemistry and Photobiology A: Chemistry 108(2): 179-185.

[28]Lakshmi, B. B., C. J. Patrissi and C. R. Martin (1997). "Sol−Gel Template Synthesis of Semiconductor Oxide Micro- and Nanostructures." Chemistry of Materials 9(11): 2544-2550.

[29]Kasuga, T., M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara (1998). "Formation of Titanium Oxide Nanotube." Langmuir 14(12): 3160-3163.

[30]Hosseini, A., K. Ç. Içli, M. Özenbaş and Ç. Erçelebi (2014). "Fabrication and Characterization of Spin-coated TiO2 Films." Energy Procedia 60: 191-198.

[31]Burns, G. P. (1989). "Titanium dioxide dielectric films formed by rapid thermal oxidation." Journal of Applied Physics 65(5): 2095-2097.

[32]Wang, R., K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi and T. Watanabe (1997). "Light-induced amphiphilic surfaces." Nature 388(6641): 431-432.

[33]Khaselev, O. and J. A. Turner (1998). "A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting." science 280(5362): 425-427.

[34]Ma, J., W. Li and D. Dambournet (2016). Solution-Based Synthesis of Nano-Sized TiO2 Anatase in Fluorinating Media: 651-670.

[35]Ahmed, M. S. and Y. A. Attia (1995). "Aerogel materials for photocatalytic detoxification of cyanide wastes in water." Journal of Non-Crystalline Solids 186: 402-407.

[36]Playford, H. (2020). "Variations in the local structure of nano-sized anatase TiO2." Journal of Solid State Chemistry 288: 121414.

[37]Narksitipan, S. and S. Thongtem (2012). "PREPARATION AND CHARACTERISATION OF RUTILE TiO2 FILMS." Journal of Ceramic Processing Research 13(1): 35-37.

[38]陳亮富 (2003). 最新奈米光觸媒應用技術, 普林斯頓國際.

[39]Hanaor, D. and C. Sorrell (2011). "Review of the Anatase to Rutile Phase Transformation." Journal of Materials Science 46: 855-874.

[40]Ren, R., Z. Yang and L. L. Shaw (2000). "Polymorphic transformation and powder characteristics of TiO2 during high energy milling." Journal of Materials Science 35(23): 6015-6026.

[41]Etacheri, V., C. Di Valentin, J. Schneider, D. Bahnemann and S. C. Pillai (2015). "Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments." Journal of Photochemistry and Photobiology C: Photochemistry Reviews 25: 1-29.

[42]Gratzel, M. (1989). Heterogeneous photochemical electron transfer. Boca Raton, Fla., CRC Press.

[43]Nosaka, Y., T. Daimon, A. Y. Nosaka and Y. Murakami (2004). "Singlet oxygen formation in photocatalytic TiO2 aqueous suspension." Physical Chemistry Chemical Physics 6(11): 2917-2918.

[44]Daimon, T., T. Hirakawa, M. Kitazawa, J. Suetake and Y. Nosaka (2008). "Formation of singlet molecular oxygen associated with the formation of superoxide radicals in aqueous suspensions of TiO2 photocatalysts." Applied Catalysis A: General 340: 169-175.

[45]Sakai, H., R. Baba, K. Hashimoto, A. Fujishima and A. Heller (1995). "Local Detection of Photoelectrochemically Produced H2O2 with a "Wired" Horseradish Peroxidase Microsensor." The Journal of Physical Chemistry 99(31): 11896-11900.

[46]Ranjit, K. T., I. Willner, S. H. Bossmann and A. M. Braun (2001). "Lanthanide Oxide-Doped Titanium Dioxide Photocatalysts: Novel Photocatalysts for the Enhanced Degradation of p-Chlorophenoxyacetic Acid." Environmental science & technology 35(7): 1544-1549.

[47]Harbour, J. R. and M. L. Hair (1979). "Radical intermediates in the photosynthetic generation of hydrogen peroxide with aqueous zinc oxide dispersions." The Journal of Physical Chemistry 83(6): 652-656.

[48]Banerjee, S., D. D. Dionysiou and S. C. Pillai (2015). "Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis." Applied Catalysis B: Environmental 176-177: 396-428.

[49]Yamazaki, S., D. Takaki, N. Nishiyama and Y. Yamazaki (2020). Factors affecting photocatalytic activity of TiO2: 23-38.

[50]Vajda, K., K. Saszet, E. Z. Kedves, Z. Kása, V. Danciu, L. Baia, K. Magyari, K. Hernádi, G. Kovács and Z. Pap (2016). "Shape-controlled agglomeration of TiO2 nanoparticles. New insights on polycrystallinity vs. single crystals in photocatalysis." Ceramics International 42(2, Part B): 3077-3087.

[51]Li, D., H. Song, X. Meng, T. Shen, J. Sun, W. Han and X. Wang (2020). "Effects of Particle Size on the Structure and Photocatalytic Performance by Alkali-Treated TiO2." Nanomaterials 10(3): 546.

[52]Allen, N. S., V. Vishnyakov, P. J. Kelly, R. J. Kriek, N. Mahdjoub and C. Hill (2019). "Characterisation and photocatalytic assessment of TiO2 nano-polymorphs: Influence of crystallite size and influence of thermal treatment on paint coatings and dye fading kinetics." Journal of Physics and Chemistry of Solids 126: 131-142.

[53]Li, G., B. Wang, W. Q. Xu, Y. Han and Q. Sun (2018). "Rapid TiO2/SBA-15 synthesis from ilmenite and use in photocatalytic degradation of dimethoate under simulated solar light." Dyes and Pigments 155: 265-275.

[54]Barka, N., A. Assabbane, A. Nounah, J. Dussaud and Y. Ichou (2008). "Photocatalytic degradation of methyl orange with immobilized TiO2 nanoparticles: effect of pH and some inorganic anions." Physical and Chemical News 41: 85.

[55]Ai, L., C. Zhang and L. Meng (2011). "Adsorption of Methyl Orange from Aqueous Solution on Hydrothermal Synthesized Mg–Al Layered Double Hydroxide." Journal of Chemical & Engineering Data 56.

[56]Sahu, D. R., L. Y. Hong, S.-C. Wang and J.-L. Huang (2009). "Synthesis, analysis and characterization of ordered mesoporous TiO2/SBA-15 matrix: Effect of calcination temperature." Microporous and Mesoporous Materials 117(3): 640-649.

[57]Liou, T.-H., L.-W. Hung, C.-L. Liu and T.-Y. Zhang (2018). "Direct synthesis of nano titania on highly-ordered mesoporous SBA-15 framework for enhancing adsorption and photocatalytic activity." Journal of Porous Materials 25(5): 1337-1347.

[58]. "Thermo Fisher Scientific MSDS of Methyl Orange."

[59]Ljubas, D., G. Smoljanić and H. Juretić (2015). "Degradation of Methyl Orange and Congo Red dyes by using TiO2 nanoparticles activated by the solar and the solar-like radiation." J Environ Manage 161: 83-91.

[60]Hosseini Koupaie, E., M. R. Alavi Moghaddam and S. H. Hashemi (2013). "Evaluation of integrated anaerobic/aerobic fixed-bed sequencing batch biofilm reactor for decolorization and biodegradation of azo dye acid red 18: comparison of using two types of packing media." Bioresour Technol 127: 415-421.

[61]Namasivayam, C. and D. Kavitha (2002). "Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste." Dyes and Pigments 54(1): 47-58.

[62]Alaton, I. A., I. A. Balcioglu and D. W. Bahnemann (2002). "Advanced oxidation of a reactive dyebath effluent: comparison of O3, H2O2/UV-C and TiO2/UV-A processes." Water Res 36(5): 1143-1154.

[63]Baskaran, S. (2010). "Structure and Regulation of Yeast Glycogen Synthase."

[64]Bai, L., S. Wang, Z. Wang, E. Hong, Y. Wang, C. Xia and B. Wang (2019). "Kinetics and mechanism of photocatalytic degradation of methyl orange in water by mesoporous Nd-TiO2-SBA-15 nanocatalyst." Environmental Pollution 248: 516-525.

[65]Police, D. A. K. R., S. Basavaraju, D. Valluri and M. Subrahmanyam (2015). "Photocatalytic activity of Ce-modified SBA-15 for the degradation of isoproturon." Bulletin of Materials Science 38: 1-8.

[66]Gheno, G., N. Basso, P. Livotto, M. Ribeiro, J. Lourenço, A. Ferreira and G. Galland (2016). "A New Post-Metallocene-Ti Catalyst with Maltolate Bidentade Ligand: an Investigation in Heterogeneous Polymerization Reactions in Different Mesoporous Supports." Journal of the Brazilian Chemical Society 27.

[67]Soongprasit, C., D. Aht-ong, V. Sricharoenchaikul, S. Vichaphund and D. Atong (2020). "Hydrocarbon Production from Catalytic Pyrolysis-GC/MS of Sacha Inchi Residues Using SBA-15 Derived from Coal Fly Ash." Catalysts 10: 1031.

[68]Henglein, A. (1989). "Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles." Chemical Reviews 89(8): 1861-1873.

[69]Davis, R. J. and Z. Liu (1997). "Titania−Silica:  A Model Binary Oxide Catalyst System." Chemistry of Materials 9(11): 2311-2324.

[70]Guo, G., H. Guo, F. Wang, L. J. France, W. Yang, Z. Mei and Y. Yu (2020). "Dye-sensitized TiO2@SBA-15 composites: Preparation and their application in photocatalytic desulfurization." Green Energy & Environment 5(1): 114-120.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊