跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/22 17:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉晁沂
研究生(外文):LIU, CHAO-I
論文名稱:高性能非富勒烯系統應用於有機太陽能電池及光感測器
論文名稱(外文):High-Performance non-Fullerene Systems for Organic Solar Cells and Photosensors
指導教授:游洋雁
指導教授(外文):YU, ‪YANG-YEN
口試委員:陳志平林彥丞游洋雁
口試委員(外文):CHEN, CHIH-PINGLIN, YAN-CHENGYU, ‪YANG-YEN
口試日期:2022-06-16
學位類別:碩士
校院名稱:明志科技大學
系所名稱:材料工程系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:91
中文關鍵詞:有機光伏有機光感測器PM6:BTP-eC9氯仿氯苯
外文關鍵詞:Organic photovoltaicOrganic photovoltaicPM6:BTP-eC9ChloroformChlorobenzene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:94
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在有機光伏 (Organic photovoltaic, OPV)元件的製備中,溶劑的選擇會影響到元件中主動層共混薄膜的形態,以及元件的性能和潛在的商業應用價值。在本研究中,兩種不同的溶劑分別是氯仿 (chloroform, CF) 和氯苯 (chlorobenzene, CB),配合以PM6:BTP-eC9 作為主動層材料,被使用來製備OPV元件。原子力顯微鏡和掠入射廣角 X 射線散射被使用來評估材料的共混形態。研究結果顯示,當使用 CB 作為溶劑時,元件的功率轉換效率高達 17.82%,並不需要使用任何添加劑。與使用 CF為溶劑相較之下,優化的 CB 衍生的 OPV 表現出更合適的相分離域尺寸和更強的面上分子堆積,導致更有效的載子傳輸。由此可知,在優化的製備條件和選擇合適的溶劑下,PM6:BTP-eC9 混合物的結構能獲得優化因此有助於提高 OPV元件的性能。
另一方面,本研究亦使用PM6:Y6為主動層材料來製備高效性能有機光電感測器 (Organic photodetectors, OPD)。元件的結構、材料膜厚度、沉積技術和溶劑效應對元件性能的影響,也在本研究中一併被探討。實驗結果顯示,具有厚度約為250 nm的氯仿衍生共混膜的元件具有優異且平衡的 OPD 性能。與優化的體異質結和偽雙層混合物的性能相比之下,我們觀察到兩種系統的最先進的 OPD 性能。OPD元件的暗電流密度可以低於 8.77 × 10-10 A cm-2,響應度大於 0.51 AW-1,檢測率高達 3.1 × 1013 Jones,偏壓為 -2V(870 nm),這些性能均與Si基的光電二極管相當。再者,我們進一步將 OPD 與 LED 集成為光電體積描記 (PPG)元件,並應用於心率感測器。研究結果顯示。與Si-PD 的 PPG 相比較下,本研究所製備之OPD- PPG系統的縱向數值變化較強,因此可提供更高及更精準的檢測率。

For the organic photovoltaics (OPVs), the choice of solvent affects the morphology of the active layer blend as well as the device performance and potential commercial applications. In this study, two different solvents, chloroform (CF) and chlorobenzene (CB) with optimal process parameters, were applied to prepare the OPVs with the PM6:BTP-eC9 as the active layer. The power conversion efficiencies could reach up to 17.82% when using CB as the solvent, without any additives. Compared with the CF-based device, the optimized CB-derived OPV exhibited a more suitable phase-segregated domain size with stronger face-on molecular stacking, leading to more efficient carrier transport. Thus, by optimizing the fabrication conditions and selecting a suitable solvent that could improve the the structure of the PM6:BTP-eC9 blend films and thus also improve the OPV performance.
On the other hand, we also adopted a PM6:Y6 as active layer to prepare the highly efficient organic photodetectors (OPDs). All of the device structure, layer thickness, deposition process and solvent choice effected the subsequent performance of OPDs. In comparison with the performance of optimized bulk-heterojunction and pseudo-bilayer blends, a state-of-the-art OPD performance for both systems were achieved. By choosing the optimal conditions, the prepared OPDs showed a dark current density of lower than 8.77 × 10-10 A cm-2, responsivity of greater than 0.51 AW-1, high detectivity of 3.1 × 1013 Jones at bias of -2 V (870 nm).which is comparable with a silicon-based photodiode. Moreover, the OPD integrated with LED was used as a photoplethysmography (PPG) element and applied to heart rate sensor. Compared with Si-PD-based PPG, the OPD-PPG system prepared in this study deliver a stronger longitudinal numerical variation and thus can provide higher and more accurate detection rate.

指導教授推薦書 i
論文口試委員審定書 ii
中文摘要 iii
Abstract iv
圖目錄 vii
表目錄 x
一、 前言 1
1.1 有機光伏 1
1.2 有機光感測器 8
二、 文獻回顧 11
2.1 有機光伏 11
2.2 有機光感測器 16
三、 動機 21
3.1 有機光伏 21
3.2 有機光感測器 22
四、 實驗方法 23
4.1實驗藥品 23
4.2實驗設備 25
4.3太陽能電池元件製備 27
4.4光學性質分析 28
4.5光電性能分析 30
4.6表面性質分析 35
五、 結果與討論 37
5.1 有機光伏 37
5.2 有機光感測器 52
六、 結論 79
6.1 有機光伏 79
6.2 有機光感測器 80
七、參考文獻 81



圖目錄
圖1-1 歷年太陽能電池裝機及發電量統計圖(2010-2020)。 2
圖1 2 歷年太陽能電池效率統計圖。 3
圖1-3 有機太陽能電池主動層各種型態示意圖。 4
圖1-4 有機太陽能電池機制示意圖。 5
圖1-5 太陽能電池之 J-V curve示意圖。 7
圖1-6 主動層型態 BHJ 和 PHJ 示意圖 9
圖4-1 太陽能電池元件示意圖。 27
圖4-2 光穿過吸收體之示意圖。 28
圖4-3 光致發光躍遷原理示意圖。 29
圖4-4 不同角度之太陽光示意圖。 30
圖4-5 GIWAXS 和 GISAXS 偵測距離不同之示意圖。 36
圖5-1 PM6 和 BTP-eC9 之化學結構。 38
圖5-2 (a) PM6 和 BTP-eC9 和 (b) PM6:BTP-eC9 共混薄膜的UV-Vis 吸收光譜。 (c) 使用各種溶劑和溫度製備的 PM6 和PM6:BTP-eC9 混合薄膜的 PL 光譜。 40
圖5-3 PM6:BTP-eC9 混合薄膜的 AFM 高低差(上圖)和相位(下圖)圖像:(a)CF、(b)CB、(c)CB120 和(d)CB120_TA。 41
圖5-4 使用各種溶劑和溫度製備的 PM6、BTP-eC9 和 PM6:BTP-eC9 混合物薄膜的 2D-GIWAXS 光譜。 42
圖5-5 使用各種溶劑和熱退火溫度處理的 (a) PM6 和 BTP-eC9 和 (b) PM6:BTP-eC9 共混薄膜散射曲線。 44
圖5-6 (a) J-V 曲線和 (b) 包含使用各種溶劑和熱退火溫度處理的 PM6:BTP-eC9 混合薄膜 EQE 光譜。 47
圖5-7 不同溶劑及溫度的 PM6:BTP-eC9 Jph-Veff圖。 48
圖5-8 根據不同光強度下元件的JSC和VOC圖。 50
圖5-9 各種混合形態的內部分佈和堆疊的示意圖。 51
圖5-10 (a) PM6 及 Y6 的化學結構, (b) OPD 的元件結構 53
圖5-11 (a) PEDOT:PSS 和 (b) ZnO OPD 的 JD 曲線和光電流,主動層由不同厚度的 CF 製備。 55
圖5-12 (a) 包含由各種溶劑製備的活性層的 OPD 的 JD 和 (b) R 曲線。 56
圖5-13 (a) AFM 圖像 (上:高低差;下:相位), (b) 使用各種溶劑製備的主動層的UV-Vis圖譜。 57
圖5-14 OPD 的 (a) JD 和 (b) R(-2V)圖。 59
圖5-15 (a) BHJ_220、(b) BHJ_350、(c) SD_250 和 (d) SD_350 OPD 的 R 值曲線。 60
圖5-16 (a) AFM 圖像(上:高低差;下:相位)和 (b) 主動層的 UV-Vis 光譜(厚度:左,220 和 250 nm) 61
圖5-17 (a) 純薄膜, (b) BHJ 和 SD 薄膜的In plane(IP, 紅線)和Out of plane(OOP, 黑線)1D圖, (c) 2D GIWAXS 強度分佈混合薄膜圖。 63
圖5-18 (a) D* 和 (b) OPD 的實際noise圖。 64
圖5-19 (a) BHJ_220、(b) BHJ_350、(c) SD_250 和 (d) SD_350 OPD 的 LDR 曲線,在各種偏壓下測量。 66
圖5-20 (a) BHJ 和 (b) SD OPD 的 rise and fall 時間 (@530 nm),在 -2 V 下測量。 69
圖5-21 BHJ_220 OPD 的rise and fall時間 (@850 nm)。 70
圖5-22 SD_250 OPD 的 rise and fall 時間 (@850 nm)。 71
圖5-23 (a) BHJ_220 和 (b) SD_250 OPD 的光穩定性,在連續照光 (@850 nm) 下測量。 72
圖5-24 (a) BHJ_220 和 (b) SD_250 OPD 的 Photo-CELIV 圖。 73
圖5-25 (a) BHJ_220 和 (b) SD_250 OPD 的 TPC 圖。 74
圖5-26 (a) BHJ_220, (b) SD_250 OPD 的截止頻率。 75
圖5-27 (a) 心跳量測示意圖, (b) 使用 950 和 630 nm LED 對 PPG 設備進行直流讀出。 78

表目錄
表2-1 近年來的OPD性能。 20
表4-1 各種藥品名稱及化學結構表。 23
表4-2 製程設備廠商及型號。 25
表4-3 分析設備廠商及型號。 26
表5-1 PM6、BTP-eC9 和 PM6:BTP-eC9 共混薄膜的π-π層間距離 44
表5-2 在 120 °C 下塗覆 PM6:BTP-eC9 混合溶液,然後在不同溫度下退火後獲得的薄膜的光伏參數。 45
表5-3 將 PM6:BTP-eC9 共混溶液在 120 °C 下塗覆,然後在 120 °C 的固定溫度下退火不同時間段後獲得的薄膜的光伏參數。 46
表5-4 基於 PM6:BTP-eC9 元件的光伏參數。 47
表5-5 用各種溶劑和溫度製備的元件獲得的 α 和 n 值。 50
表5-6 BHJ_220 和 SD_250 元件的 OPD 性能。 56
表5-7 BHJ_220 OPD 手套箱內黑暗中的穩定性 76
表5-8 BHJ_220 OPD 在黑暗環境條件下的穩定性。 76


[1] T.M. Letcher, 1 - Introduction With a Focus on Atmospheric Carbon Dioxide and Climate Change, in: T.M. Letcher (Ed.) Future Energy (Third Edition), Elsevier, 2020, pp. 3-17.
[2] A. Haines, K. Ebi, The Imperative for Climate Action to Protect Health, New England Journal of Medicine, 380 (2019) 263-273.
[3] J. Wu, G. Li, J. Fang, X. Guo, L. Zhu, B. Guo, Y. Wang, G. Zhang, L. Arunagiri, F. Liu, H. Yan, M. Zhang, Y. Li, Random terpolymer based on thiophene-thiazolothiazole unit enabling efficient non-fullerene organic solar cells, Nat. Commun., 11 (2020) 4612.
[4] K. Fukuda, K. Yu, T. Someya, The Future of Flexible Organic Solar Cells, Advanced Energy Materials, 10 (2020) 2000765.
[5] C. Yang, S. Zhang, J. Ren, M. Gao, P. Bi, L. Ye, J. Hou, Molecular design of a non-fullerene acceptor enables a P3HT-based organic solar cell with 9.46% efficiency, Energy & Environmental Science, 13 (2020) 2864-2869.
[6] J.-L. Brédas, J.E. Norton, J. Cornil, V. Coropceanu, Molecular Understanding of Organic Solar Cells: The Challenges, Accounts of Chemical Research, 42 (2009) 1691-1699.
[7] S.Y. Leblebici, T.L. Chen, P. Olalde-Velasco, W. Yang, B. Ma, Reducing exciton binding energy by increasing thin film permittivity: an effective approach to enhance exciton separation efficiency in organic solar cells, ACS Appl Mater Interfaces, 5 (2013) 10105-10110.
[8] K.M. Coakley, M.D. McGehee, Conjugated Polymer Photovoltaic Cells, Chemistry of Materials, 16 (2004) 4533-4542.
[9] S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, J.C. Hummelen, 2.5% efficient organic plastic solar cells, Applied Physics Letters, 78 (2001) 841-843.
[10] Y. Cai, Y. Li, R. Wang, H. Wu, Z. Chen, J. Zhang, Z. Ma, X. Hao, Y. Zhao, C. Zhang, F. Huang, Y. Sun, A Well-Mixed Phase Formed by Two Compatible Non-Fullerene Acceptors Enables Ternary Organic Solar Cells with Efficiency over 18.6%, Advanced Materials, 33 (2021) 2101733.
[11] S. Karg, W. Riess, V. Dyakonov, M. Schwoerer, Electrical and optical characterization of poly(phenylene-vinylene) light emitting diodes, Synthetic Metals, 54 (1993) 427-433.
[12] B.R. Weinberger, M. Akhtar, S.C. Gau, Polyacetylene photovoltaic devices, Synthetic Metals, 4 (1982) 187-197.
[13] C.W. Tang, Two‐layer organic photovoltaic cell, Applied Physics Letters, 48 (1986) 183-185.
[14] G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions, Science, 270 (1995) 1789-1791.
[15] S. Najam, B. Kumar, Organic Solar Cell: Operating Principle, Performance Parameters, Structures and Its Advantages, 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), 2018, pp. 1-6.
[16] N. Kaur, M. Singh, D. Pathak, T. Wagner, J.M. Nunzi, Organic materials for photovoltaic applications: Review and mechanism, Synthetic Metals, 190 (2014) 20-26.
[17] B. Kippelen, J.L. Bredas, Organic photovoltaics, Energy & Environmental Science, 2 (2009) 251-261.
[18] K. Ranabhat, L. Patrikeev, V. Lapshinsky, Hierarchical approach in modelling exciton solar cells, International Journal of Nanotechnology, 16 (2019) 109-114.
[19] C.J. Brabec, A. Cravino, D. Meissner, N.S. Sariciftci, T. Fromherz, M.T. Rispens, L. Sanchez, J.C. Hummelen, Origin of the Open Circuit Voltage of Plastic Solar Cells, Advanced Functional Materials, 11 (2001) 374-380.
[20] N.R. Armstrong, W. Wang, D.M. Alloway, D. Placencia, E. Ratcliff, M. Brumbach, Organic/Organic′ Heterojunctions: Organic Light Emitting Diodes and Organic Photovoltaic Devices, Macromolecular Rapid Communications, 30 (2009) 717-731.
[21] C.Q. Yan, S. Barlow, Z.H. Wang, H. Yan, A.K.Y. Jen, S.R. Marder, X.W. Zhan, Non-fullerene acceptors for organic solar cells, Nat Rev Mater, 3 (2018).
[22] Y. Xu, H. Yao, J. Hou, Recent Advances in Fullerene-free Polymer Solar Cells: Materials and Devices, Chinese Journal of Chemistry, 37 (2019) 207-215.
[23] X. Zhan, Z.a. Tan, B. Domercq, Z. An, X. Zhang, S. Barlow, Y. Li, D. Zhu, B. Kippelen, S.R. Marder, A High-Mobility Electron-Transport Polymer with Broad Absorption and Its Use in Field-Effect Transistors and All-Polymer Solar Cells, Journal of the American Chemical Society, 129 (2007) 7246-7247.
[24] Y. Shu, Y.-F. Lim, Z. Li, B. Purushothaman, R. Hallani, J.E. Kim, S.R. Parkin, G.G. Malliaras, J.E. Anthony, A survey of electron-deficient pentacenes as acceptors in polymer bulk heterojunction solar cells, Chemical Science, 2 (2011) 363-368.
[25] P. Sonar, G.-M. Ng, T.T. Lin, A. Dodabalapur, Z.-K. Chen, Solution processable low bandgap diketopyrrolopyrrole (DPP) based derivatives: novel acceptors for organic solar cells, Journal of Materials Chemistry, 20 (2010) 3626-3636.
[26] J. Zhang, H.S. Tan, X. Guo, A. Facchetti, H. Yan, Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors, Nature Energy, 3 (2018) 720-731.
[27] Q. Yan, Y. Zhou, Y.-Q. Zheng, J. Pei, D. Zhao, Towards rational design of organic electron acceptors for photovoltaics: a study based on perylenediimide derivatives, Chemical Science, 4 (2013) 4389-4394.
[28] Y. Lin, J. Wang, Z.-G. Zhang, H. Bai, Y. Li, D. Zhu, X. Zhan, An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells, Advanced Materials, 27 (2015) 1170-1174.
[29] J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P.A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, Y. Zou, Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core, Joule, 3 (2019) 1140-1151.
[30] Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, J. Hou, Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency, Advanced Materials, 32 (2020) 1908205.
[31] L. Zhu, M. Zhang, G. Zhou, T. Hao, J. Xu, J. Wang, C. Qiu, N. Prine, J. Ali, W. Feng, X. Gu, Z. Ma, Z. Tang, H. Zhu, L. Ying, Y. Zhang, F. Liu, Efficient Organic Solar Cell with 16.88% Efficiency Enabled by Refined Acceptor Crystallization and Morphology with Improved Charge Transfer and Transport Properties, Advanced Energy Materials, 10 (2020) 1904234.
[32] Y. Yu, R. Sun, T. Wang, X. Yuan, Y. Wu, Q. Wu, M. Shi, W. Yang, X. Jiao, J. Min, Improving Photovoltaic Performance of Non-Fullerene Polymer Solar Cells Enables by Fine-Tuning Blend Microstructure via Binary Solvent Mixtures, Advanced Functional Materials, 31 (2021) 2008767.
[33] S.H. Park, S. Park, S. Lee, J. Kim, H. Ahn, B.J. Kim, B. Chae, H.J. Son, Developement of highly efficient large area organic photovoltaic module: Effects of nonfullerene acceptor, Nano Energy, 77 (2020) 105147.
[34] F. Liu, L. Zhou, W. Liu, Z. Zhou, Q. Yue, W. Zheng, R. Sun, W. Liu, S. Xu, H. Fan, L. Feng, Y. Yi, W. Zhang, X. Zhu, Organic Solar Cells with 18% Efficiency Enabled by an Alloy Acceptor: A Two-in-One Strategy, Advanced Materials, 33 (2021) 2100830.
[35] K. Schmidt, C.J. Tassone, J.R. Niskala, A.T. Yiu, O.P. Lee, T.M. Weiss, C. Wang, J.M.J. Fréchet, P.M. Beaujuge, M.F. Toney, A Mechanistic Understanding of Processing Additive-Induced Efficiency Enhancement in Bulk Heterojunction Organic Solar Cells, Advanced Materials, 26 (2014) 300-305.
[36] T. Wang, X.-Y. Yang, P.-Q. Bi, M.-S. Niu, L. Feng, J.-Q. Liu, X.-T. Hao, Effective Exciton Dissociation and Reduced Charge Recombination in Thick‐Film Organic Solar Cells via Incorporation of Insulating Polypropylene, Sol. RRL 3(2019) 1900087.
[37] A. Tournebize, A. Rivaton, H. Peisert, T. Chassé, The Crucial Role of Confined Residual Additives on the Photostability of P3HT:PCBM Active Layers, The Journal of Physical Chemistry C, 119 (2015) 9142-9148.
[38] B.J. Tremolet de Villers, K.A. O’Hara, D.P. Ostrowski, P.H. Biddle, S.E. Shaheen, M.L. Chabinyc, D.C. Olson, N. Kopidakis, Removal of Residual Diiodooctane Improves Photostability of High-Performance Organic Solar Cell Polymers, Chemistry of Materials, 28 (2016) 876-884.
[39] S. Song, K.T. Lee, C.W. Koh, H. Shin, M. Gao, H.Y. Woo, D. Vak, J.Y. Kim, Hot slot die coating for additive-free fabrication of high performance roll-to-roll processed polymer solar cells, Energy & Environmental Science, 11 (2018) 3248-3255.
[40] A. Teichler, R. Eckardt, S. Hoeppener, C. Friebe, J. Perelaer, A. Senes, M. Morana, C.J. Brabec, U.S. Schubert, Combinatorial Screening of Polymer:Fullerene Blends for Organic Solar Cells by Inkjet Printing, Advanced Energy Materials, 1 (2011) 105-114.
[41] J. Huang, J. Lee, J. Vollbrecht, V.V. Brus, A.L. Dixon, D.X. Cao, Z. Zhu, Z. Du, H. Wang, K. Cho, G.C. Bazan, T.-Q. Nguyen, A High-Performance Solution-Processed Organic Photodetector for Near-Infrared Sensing, Advanced Materials, 32 (2020) 1906027.
[42] Q. Song, T. Lin, Z. Su, B. Chu, H. Yang, W. Li, C.-S. Lee, Organic Upconversion Display with an over 100% Photon-to-photon Upconversion Efficiency and a Simple Pixelless Device Structure, The Journal of Physical Chemistry Letters, 9 (2018) 6818-6824.
[43] H.-P. Wang, S. Li, X. Liu, Z. Shi, X. Fang, J.-H. He, Low-Dimensional Metal Halide Perovskite Photodetectors, Advanced Materials, 33 (2021) 2003309.
[44] J. Chen, W. Ouyang, W. Yang, J.-H. He, X. Fang, Recent Progress of Heterojunction Ultraviolet Photodetectors: Materials, Integrations, and Applications, Advanced Functional Materials, 30 (2020) 1909909.
[45] H. Chen, K. Liu, L. Hu, A.A. Al-Ghamdi, X. Fang, New concept ultraviolet photodetectors, Materials Today, 18 (2015) 493-502.
[46] S. Cai, X. Xu, W. Yang, J. Chen, X. Fang, Materials and Designs for Wearable Photodetectors, Advanced Materials, 31 (2019) 1808138.
[47] L. Li, H. Chen, Z. Fang, X. Meng, C. Zuo, M. Lv, Y. Tian, Y. Fang, Z. Xiao, C. Shan, Z. Xiao, Z. Jin, G. Shen, L. Shen, L. Ding, An Electrically Modulated Single-Color/Dual-Color Imaging Photodetector, Advanced Materials, 32 (2020) 1907257.
[48] Y. Gao, Y. Yi, X. Wang, H. Meng, D. Lei, X.-F. Yu, P.K. Chu, J. Li, A Novel Hybrid-Layered Organic Phototransistor Enables Efficient Intermolecular Charge Transfer and Carrier Transport for Ultrasensitive Photodetection, Advanced Materials, 31 (2019) 1900763.
[49] A. Liess, A. Arjona-Esteban, A. Kudzus, J. Albert, A.-M. Krause, A. Lv, M. Stolte, K. Meerholz, F. Würthner, Ultranarrow Bandwidth Organic Photodiodes by Exchange Narrowing in Merocyanine H- and J-Aggregate Excitonic Systems, Advanced Functional Materials, 29 (2019) 1805058.
[50] C. Kaiser, K.S. Schellhammer, J. Benduhn, B. Siegmund, M. Tropiano, J. Kublitski, D. Spoltore, M. Panhans, O. Zeika, F. Ortmann, P. Meredith, A. Armin, K. Vandewal, Manipulating the Charge Transfer Absorption for Narrowband Light Detection in the Near-Infrared, Chemistry of Materials, 31 (2019) 9325-9330.
[51] J. Liu, Y. Wang, H. Wen, Q. Bao, L. Shen, L. Ding, Organic Photodetectors: Materials, Structures, and Challenges, Solar RRL, 4 (2020) 2000139.
[52] C. Wang, X. Zhang, W. Hu, Organic photodiodes and phototransistors toward infrared detection: materials, devices, and applications, Chemical Society Reviews, 49 (2020) 653-670.
[53] S. Limbu, K.-B. Park, J. Wu, H. Cha, S. Yun, S.-J. Lim, H. Yan, J. Luke, G. Ryu, C.-J. Heo, S. Kim, Y.W. Jin, J.R. Durrant, J.-S. Kim, Identifying the Molecular Origins of High-Performance in Organic Photodetectors Based on Highly Intermixed Bulk Heterojunction Blends, ACS Nano, 15 (2021) 1217-1228.
[54] J. Huang, J. Lee, H. Nakayama, M. Schrock, D.X. Cao, K. Cho, G.C. Bazan, T.-Q. Nguyen, Understanding and Countering Illumination-Sensitive Dark Current: Toward Organic Photodetectors with Reliable High Detectivity, ACS Nano, 15 (2021) 1753-1763.
[55] J. Kublitski, A. Hofacker, B.K. Boroujeni, J. Benduhn, V.C. Nikolis, C. Kaiser, D. Spoltore, H. Kleemann, A. Fischer, F. Ellinger, K. Vandewal, K. Leo, Reverse dark current in organic photodetectors and the major role of traps as source of noise, Nature Communications, 12 (2021).
[56] D. Guo, Z. Xu, D. Yang, D. Ma, B. Tang, A. Vadim, Structure design and performance of photomultiplication-type organic photodetectors based on an aggregation-induced emission material, Nanoscale, 12 (2020) 2648-2656.
[57] W. Wang, L. Shi, Y. Zhang, G. Li, Y. Hao, F. Zhu, K. Wang, Y. Cui, Effect of photogenerated carrier distribution on performance enhancement of photomultiplication organic photodetectors, Organic Electronics, 68 (2019) 56-62.
[58] H.J. Eun, H. Kye, D. Kim, I.S. Jin, J.W. Jung, S.-J. Ko, J. Heo, B.-G. Kim, J.H. Kim, Effective Dark Current Suppression for High-Detectivity Organic Near-Infrared Photodetectors Using a Non-Fullerene Acceptor, ACS Applied Materials & Interfaces, 13 (2021) 11144-11150.
[59] W. Jang, S. Rasool, B.G. Kim, J. Kim, J. Yoon, S. Manzhos, H.K. Lee, I. Jeon, D.H. Wang, Superior Noise Suppression, Response Time, and Device Stability of Non-Fullerene System over Fullerene Counterpart in Organic Photodiode, Advanced Functional Materials, 30 (2020) 2001402.
[60] K. Yang, J. Wang, Z. Zhao, F. Zhao, K. Wang, X. Zhang, F. Zhang, Ultraviolet to near-infrared broadband organic photodetectors with photomultiplication, Organic Electronics, 83 (2020) 105739.
[61] G. Liu, T. Li, X. Zhan, H. Wu, Y. Cao, High-Sensitivity Visible–Near Infrared Organic Photodetectors Based on Non-Fullerene Acceptors, ACS Applied Materials & Interfaces, 12 (2020) 17769-17775.
[62] Z. Zhong, F. Peng, Z. Huang, L. Ying, G. Yu, F. Huang, Y. Cao, High-Detectivity Non-Fullerene Organic Photodetectors Enabled by a Cross-Linkable Electron Blocking Layer, ACS Applied Materials & Interfaces, 12 (2020) 45092-45100.
[63] Z. Wu, N. Li, N. Eedugurala, J.D. Azoulay, D.-S. Leem, T.N. Ng, Noise and detectivity limits in organic shortwave infrared photodiodes with low disorder, npj Flexible Electronics, 4 (2020) 6.
[64] H. Bristow, P. Jacoutot, A.D. Scaccabarozzi, M. Babics, M. Moser, A. Wadsworth, T.D. Anthopoulos, A. Bakulin, I. McCulloch, N. Gasparini, Nonfullerene-Based Organic Photodetectors for Ultrahigh Sensitivity Visible Light Detection, ACS Applied Materials & Interfaces, 12 (2020) 48836-48844.
[65] T.-J. Wen, D. Wang, L. Tao, Y. Xiao, Y.-D. Tao, Y. Li, X. Lu, Y. Fang, C.-Z. Li, H. Chen, D. Yang, Simple Near-Infrared Electron Acceptors for Efficient Photovoltaics and Sensitive Photodetectors, ACS Applied Materials & Interfaces, 12 (2020) 39515-39523.
[66] Y. Wei, H. Chen, T. Liu, S. Wang, Y. Jiang, Y. Song, J. Zhang, X. Zhang, G. Lu, F. Huang, Z. Wei, H. Huang, Self-Powered Organic Photodetectors with High Detectivity for Near Infrared Light Detection Enabled by Dark Current Reduction, Advanced Functional Materials, 31 (2021) 2106326.
[67] S. Gielen, C. Kaiser, F. Verstraeten, J. Kublitski, J. Benduhn, D. Spoltore, P. Verstappen, W. Maes, P. Meredith, A. Armin, K. Vandewal, Intrinsic Detectivity Limits of Organic Near-Infrared Photodetectors, Advanced Materials, 32 (2020) 2003818.
[68] G. Bhat, Q. Liu, M. Kielar, Y. Hamada, T. Michinobu, P. Sah, A.K. Ko Kyaw, A.K. Pandey, P. Sonar, Energy-Level Manipulation in Novel Indacenodithiophene-Based Donor–Acceptor Polymers for Near-Infrared Organic Photodetectors, ACS Applied Materials & Interfaces, 13 (2021) 29866-29875.
[69] J.B. Park, J.-W. Ha, S.C. Yoon, C. Lee, I.H. Jung, D.-H. Hwang, Visible-Light-Responsive High-Detectivity Organic Photodetectors with a 1 μm Thick Active Layer, ACS Applied Materials & Interfaces, 10 (2018) 38294-38301.
[70] Z. Zeng, Z. Zhong, W. Zhong, J. Zhang, L. Ying, G. Yu, F. Huang, Y. Cao, High-detectivity organic photodetectors based on a thick-film photoactive layer using a conjugated polymer containing a naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole unit, Journal of Materials Chemistry C, 7 (2019) 6070-6076.
[71] J. Kang, J. Kim, J.H. Won, H. Ahn, J. Kim, S.C. Yoon, E. Lim, I.H. Jung, Enhanced Static and Dynamic Properties of Highly Miscible Fullerene-Free Green-Selective Organic Photodetectors, ACS Applied Materials & Interfaces, 13 (2021) 25164-25174.
[72] J.-H. Lu, B.-H. Jiang, F.-C. Hsiao, Y.-C. Peng, Y.-W. Su, Y.-R. Lin, T.-H. Tsai, M.-N. Shiu, C.-Y. Lin, Y.-T. Fang, C.-P. Chen, High-Performance organic photodiodes for Blue-Light hazard detection, Chemical Engineering Journal, 437 (2022) 135327.
[73] W. Yang, W. Qiu, E. Georgitzikis, E. Simoen, J. Serron, J. Lee, I. Lieberman, D. Cheyns, P. Malinowski, J. Genoe, H. Chen, P. Heremans, Mitigating Dark Current for High-Performance Near-Infrared Organic Photodiodes via Charge Blocking and Defect Passivation, ACS Applied Materials & Interfaces, 13 (2021) 16766-16774.
[74] Z. Zhao, J. Wang, C. Xu, K. Yang, F. Zhao, K. Wang, X. Zhang, F. Zhang, Photomultiplication Type Broad Response Organic Photodetectors with One Absorber Layer and One Multiplication Layer, The Journal of Physical Chemistry Letters, 11 (2020) 366-373.
[75] N. Gasparini, A. Gregori, M. Salvador, M. Biele, A. Wadsworth, S. Tedde, D. Baran, I. McCulloch, C.J. Brabec, Visible and Near-Infrared Imaging with Nonfullerene-Based Photodetectors, Advanced Materials Technologies, 3 (2018) 1800104.
[76] I.K. Kim, X. Li, M. Ullah, P.E. Shaw, R. Wawrzinek, E.B. Namdas, S.-C. Lo, High-Performance, Fullerene-Free Organic Photodiodes Based on a Solution-Processable Indigo, Advanced Materials, 27 (2015) 6390-6395.
[77] J. Lee, S.-J. Ko, H. Lee, J. Huang, Z. Zhu, M. Seifrid, J. Vollbrecht, V.V. Brus, A. Karki, H. Wang, K. Cho, T.-Q. Nguyen, G.C. Bazan, Side-Chain Engineering of Nonfullerene Acceptors for Near-Infrared Organic Photodetectors and Photovoltaics, ACS Energy Letters, 4 (2019) 1401-1409.
[78] W. Li, Y. Xu, X. Meng, Z. Xiao, R. Li, L. Jiang, L. Cui, M. Zheng, C. Liu, L. Ding, Q. Lin, Visible to Near-Infrared Photodetection Based on Ternary Organic Heterojunctions, Advanced Functional Materials, 29 (2019) 1808948.
[79] Z.-X. Liu, T.-K. Lau, G. Zhou, S. Li, J. Ren, S.K. Das, R. Xia, G. Wu, H. Zhu, X. Lu, H.-L. Yip, H. Chen, C.-Z. Li, Achieving efficient organic solar cells and broadband photodetectors via simple compositional tuning of ternary blends, Nano Energy, 63 (2019) 103807.
[80] H. Ko, S. Park, H.J. Son, D.S. Chung, Wide-Linear-Dynamic-Range Polymer Photodiode with a New Benzo[1,2-b:4,5-b′]dithiophene-Copolymer: The Role of Crystalline Orientation, Chemistry of Materials, 32 (2020) 3219-3228.
[81] C. Fuentes-Hernandez, W.-F. Chou, M. Khan Talha, L. Diniz, J. Lukens, A. Larrain Felipe, A. Rodriguez-Toro Victor, B. Kippelen, Large-area low-noise flexible organic photodiodes for detecting faint visible light, Science, 370 (2020) 698-701.
[82] J.H. Kim, A. Liess, M. Stolte, A.-M. Krause, V. Stepanenko, C. Zhong, D. Bialas, F. Spano, F. Würthner, An Efficient Narrowband Near-Infrared at 1040 nm Organic Photodetector Realized by Intermolecular Charge Transfer Mediated Coupling Based on a Squaraine Dye, Advanced Materials, 33 (2021) 2100582.
[83] K.B. Oldham, J.M. Parnis, Shining light on Beer’s law, ChemTexts, 3 (2017) 5.
[84] L.J.A. Koster, V.D. Mihailetchi, H. Xie, P.W.M. Blom, Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells, Applied Physics Letters, 87 (2005) 203502.
[85] A.K.K. Kyaw, D.H. Wang, V. Gupta, W.L. Leong, L. Ke, G.C. Bazan, A.J. Heeger, Intensity Dependence of Current–Voltage Characteristics and Recombination in High-Efficiency Solution-Processed Small-Molecule Solar Cells, ACS Nano, 7 (2013) 4569-4577.
[86] P.W.M. Blom, V.D. Mihailetchi, L.J.A. Koster, D.E. Markov, Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells, Advanced Materials, 19 (2007) 1551-1566.
[87] J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M.H. Huang, C.-S. Hsu, Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk Heterojunction Solar Cells, ACS Nano, 5 (2011) 959-967.
[88] Y. Xiao, X. Lu, Morphology of organic photovoltaic non-fullerene acceptors investigated by grazing incidence X-ray scattering techniques, Materials Today Nano, 5 (2019) 100030.
[89] C. Sinturel, M. Vayer, M. Morris, M.A. Hillmyer, Solvent Vapor Annealing of Block Polymer Thin Films, Macromolecules, 46 (2013) 5399-5415.
[90] D. Chlebosz, K. Janus, K. Danielewicz, W. Goldeman, A. Czapik, G. Glaßer, M. Mezger, A. Kiersnowski, Recrystallization upon solvent vapor annealing and impact of polymer crystallinity on hole transport in poly(3-hexylthiophene):small molecule blends, Molecular Systems Design & Engineering, 5 (2020) 1417-1427.
[91] Y. Ikabata, Q. Wang, T. Yoshikawa, A. Ueda, T. Murata, K. Kariyazono, M. Moriguchi, H. Okamoto, Y. Morita, H. Nakai, Near-infrared absorption of π-stacking columns composed of trioxotriangulene neutral radicals, npj Quantum Materials, 2 (2017) 27.
[92] H. Liu, Y. Dai, Y. Gao, H. Gao, L. Yao, S. Zhang, Z. Xie, K. Wang, B. Zou, B. Yang, Y. Ma, Monodisperse π–π Stacking Anthracene Dimer under Pressure: Unique Fluorescence Behaviors and Experimental Determination of Interplanar Distance at Excimer Equilibrium Geometry, Advanced Optical Materials, 6 (2018) 1800085.
[93] S. Rechberger, N. Gasparini, R. Singh, M. Kim, C.L. Chochos, V.G. Gregoriou, K. Cho, C.J. Brabec, T. Ameri, E. Spiecker, Unraveling the Complex Nanomorphology of Ternary Organic Solar Cells with Multimodal Analytical Transmission Electron Microscopy, Solar RRL, 4 (2020) 2000114.
[94] J. Roels, F. Vernaillen, A. Kremer, A. Gonçalves, J. Aelterman, H.Q. Luong, B. Goossens, W. Philips, S. Lippens, Y. Saeys, An interactive ImageJ plugin for semi-automated image denoising in electron microscopy, Nature Communications, 11 (2020) 771.
[95] Y. Wu, S. Schneider, C. Walter, A.H. Chowdhury, B. Bahrami, H.-C. Wu, Q. Qiao, M.F. Toney, Z. Bao, Fine-Tuning Semiconducting Polymer Self-Aggregation and Crystallinity Enables Optimal Morphology and High-Performance Printed All-Polymer Solar Cells, Journal of the American Chemical Society, 142 (2020) 392-406.
[96] D. Yang, F.C. Löhrer, V. Körstgens, A. Schreiber, B. Cao, S. Bernstorff, P. Müller-Buschbaum, In Operando GISAXS and GIWAXS Stability Study of Organic Solar Cells Based on PffBT4T-2OD:PC71BM with and without Solvent Additive, Advanced Science, 7 (2020) 2001117.
[97] J. Fang, D. Deng, Z. Wang, M.A. Adil, T. Xiao, Y. Wang, G. Lu, Y. Zhang, J. Zhang, W. Ma, Z. Wei, Critical Role of Vertical Phase Separation in Small-Molecule Organic Solar Cells, ACS Applied Materials & Interfaces, 10 (2018) 12913-12920.
[98] H.S. Park, Y.W. Han, H.S. Lee, S.J. Jeon, D.K. Moon, 13.2% Efficiency of Organic Solar Cells by Controlling Interfacial Resistance Resulting from Well-Distributed Vertical Phase Separation, ACS Applied Energy Materials, 3 (2020) 3745-3754.
[99] B. Xiao, P. Calado, R.C.I. MacKenzie, T. Kirchartz, J. Yan, J. Nelson, Relationship between Fill Factor and Light Intensity in Solar Cells Based on Organic Disordered Semiconductors: The Role of Tail States, Physical Review Applied, 14 (2020) 024034.
[100] L. Duan, H. Yi, C. Xu, M.B. Upama, M.A. Mahmud, D. Wang, F.H. Shabab, A. Uddin, Relationship Between the Diode Ideality Factor and the Carrier Recombination Resistance in Organic Solar Cells, IEEE Journal of Photovoltaics, 8 (2018) 1701-1709.
[101] T. Wang, X.-Y. Yang, P.-Q. Bi, M.-S. Niu, L. Feng, J.-Q. Liu, X.-T. Hao, Effective Exciton Dissociation and Reduced Charge Recombination in Thick-Film Organic Solar Cells via Incorporation of Insulating Polypropylene, Solar RRL, 3 (2019) 1900087.
[102] M. Ban, Y. Zou, J.P.H. Rivett, Y. Yang, T.H. Thomas, Y. Tan, T. Song, X. Gao, D. Credgington, F. Deschler, H. Sirringhaus, B. Sun, Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring, Nature Communications, 9 (2018) 3892.
[103] A.P. Parhi, D.C. Tripathi, D. Kataria, Study of the open circuit voltage dependence on incident light intensity of planar heterojunction organic solar cell, Materials Today: Proceedings, 38 (2021) 1267-1271.
[104] N.A. Roslan, S.M. Abdullah, W.H.A. Majid, A. Supangat, Investigation of VTP:PC71BM organic composite as highly responsive organic photodetector, Sensors and Actuators A: Physical, 279 (2018) 361-366.
[105] D. Periyanagounder, T.-C. Wei, T.-Y. Li, C.-H. Lin, T.P. Gonçalves, H.-C. Fu, D.-S. Tsai, J.-J. Ke, H.-W. Kuo, K.-W. Huang, N. Lu, X. Fang, J.-H. He, Fast-Response, Highly Air-Stable, and Water-Resistant Organic Photodetectors Based on a Single-Crystal Pt Complex, Advanced Materials, 32 (2020) 1904634.
[106] S. Saggar, S. Sanderson, D. Gedefaw, X. Pan, B. Philippa, M.R. Andersson, S.-C. Lo, E.B. Namdas, Toward Faster Organic Photodiodes: Tuning of Blend Composition Ratio, Advanced Functional Materials, 31 (2021) 2010661.
[107] K. Jiang, Q. Wei, J.Y.L. Lai, Z. Peng, H.K. Kim, J. Yuan, L. Ye, H. Ade, Y. Zou, H. Yan, Alkyl Chain Tuning of Small Molecule Acceptors for Efficient Organic Solar Cells, Joule, 3 (2019) 3020-3033.
[108] B.-H. Jiang, Y.-J. Peng, Y.-W. Su, J.-F. Chang, C.-C. Chueh, T.-S. Shieh, C.-I. Huang, C.-P. Chen, A polymer donor with versatility for fabricating high-performance ternary organic photovoltaics, Chemical Engineering Journal, 431 (2022) 133950.
[109] S. Chen, Y. Liu, L. Zhang, P.C.Y. Chow, Z. Wang, G. Zhang, W. Ma, H. Yan, A Wide-Bandgap Donor Polymer for Highly Efficient Non-fullerene Organic Solar Cells with a Small Voltage Loss, Journal of the American Chemical Society, 139 (2017) 6298-6301.
[110] W. Zhang, C. Sun, I. Angunawela, L. Meng, S. Qin, L. Zhou, S. Li, H. Zhuo, G. Yang, Z.-G. Zhang, H. Ade, Y. Li, 16.52% Efficiency All-Polymer Solar Cells with High Tolerance of the Photoactive Layer Thickness, Advanced Materials, 34 (2022) 2108749.
[111] Y.S. Lau, Z. Lan, L. Cai, F. Zhu, High-performance solution-processed large-area transparent self-powered organic near-infrared photodetectors, Materials Today Energy, 21 (2021) 100708.
[112] J.-H. Lu, M.-T. Cheng, H.-L. Hsu, S.-W. Liu, C.-P. Chen, Perovskite Photosensors Integrated with Silver Resonant-Cavity Color Filters Display Color Perception Beyond That of the Human Eye, Advanced Functional Materials, 30 (2020) 2002503.
[113] H. Yao, Y. Cui, D. Qian, C.S. Ponseca, A. Honarfar, Y. Xu, J. Xin, Z. Chen, L. Hong, B. Gao, R. Yu, Y. Zu, W. Ma, P. Chabera, T. Pullerits, A. Yartsev, F. Gao, J. Hou, 14.7% Efficiency Organic Photovoltaic Cells Enabled by Active Materials with a Large Electrostatic Potential Difference, Journal of the American Chemical Society, 141 (2019) 7743-7750.
[114] Y.-L. Wu, K. Fukuda, T. Yokota, T. Someya, A Highly Responsive Organic Image Sensor Based on a Two-Terminal Organic Photodetector with Photomultiplication, Advanced Materials, 31 (2019) 1903687.
[115] G. Simone, M.J. Dyson, S.C.J. Meskers, R.A.J. Janssen, G.H. Gelinck, Organic Photodetectors and their Application in Large Area and Flexible Image Sensors: The Role of Dark Current, Advanced Functional Materials, 30 (2020) 1904205.
[116] Q. Lin, A. Armin, D.M. Lyons, P.L. Burn, P. Meredith, Low Noise, IR-Blind Organohalide Perovskite Photodiodes for Visible Light Detection and Imaging, Advanced Materials, 27 (2015) 2060-2064.
[117] J. Liu, M. Gao, J. Kim, Z. Zhou, D.S. Chung, H. Yin, L. Ye, Challenges and recent advances in photodiodes-based organic photodetectors, Materials Today, 51 (2021) 475-503.
[118] H. Ren, J.-D. Chen, Y.-Q. Li, J.-X. Tang, Recent Progress in Organic Photodetectors and their Applications, Advanced Science, 8 (2021) 2002418.
[119] Y.-Y. Yu, Y.-C. Peng, Y.-C. Chiu, S.-J. Liu, C.-P. Chen, Realizing Broadband NIR Photodetection and Ultrahigh Responsivity with Ternary Blend Organic Photodetector, Nanomaterials, 12 (2022).
[120] C. Ji, P. Wang, Z. Wu, Z. Sun, L. Li, J. Zhang, W. Hu, M. Hong, J. Luo, Inch-Size Single Crystal of a Lead-Free Organic–Inorganic Hybrid Perovskite for High-Performance Photodetector, Advanced Functional Materials, 28 (2018) 1705467.
[121] H. Chen, X. Xia, J. Yuan, Q. Wei, W. Liu, Z. Li, C. Zhu, X. Wang, H. Guan, X. Lu, Y. Li, Y. Zou, Compatibility between Solubility and Enhanced Crystallinity of Benzotriazole-Based Small Molecular Acceptors with Less Bulky Alkyl Chains for Organic Solar Cells, ACS Applied Materials & Interfaces, 13 (2021) 36053-36061.
[122] R. Yu, G. Wu, Y. Cui, X. Wei, L. Hong, T. Zhang, C. Zou, S. Hu, J. Hou, Z.a. Tan, Multi-Functional Solid Additive Induced Favorable Vertical Phase Separation and Ordered Molecular Packing for Highly Efficient Layer-by-Layer Organic Solar Cells, Small, 17 (2021) 2103497.
[123] M. Jiang, H. Bai, H. Zhi, L. Yan, H.Y. Woo, L. Tong, J. Wang, F. Zhang, Q. An, Rational compatibility in a ternary matrix enables all-small-molecule organic solar cells with over 16% efficiency, Energy & Environmental Science, 14 (2021) 3945-3953.
[124] P. Jacoutot, A.D. Scaccabarozzi, T. Zhang, Z. Qiao, F. Aniés, M. Neophytou, H. Bristow, R. Kumar, M. Moser, A.D. Nega, A. Schiza, A. Dimitrakopoulou-Strauss, V.G. Gregoriou, T.D. Anthopoulos, M. Heeney, I. McCulloch, A.A. Bakulin, C.L. Chochos, N. Gasparini, Infrared Organic Photodetectors Employing Ultralow Bandgap Polymer and Non-Fullerene Acceptors for Biometric Monitoring, Small, 18 (2022) 2200580.


電子全文 電子全文(網際網路公開日期:20270715)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top