跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/27 04:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱顯鴻
研究生(外文):CIOU, SIAN-HONG
論文名稱:基於石墨烯原子級層狀複合材料之溶液式閘極場效電晶體生物感測器於阿茲海默症生物標誌物磷酸化tau蛋白217之偵測
論文名稱(外文):Atomic layered graphene composite-based solution gate field-effect transistor biosensor for Alzheimer's disease biomarker p-tau217 detection
指導教授:黃啟賢黃啟賢引用關係
指導教授(外文):HUANG, CHI-HSIEN
口試委員:黃啟賢林致廷阮弼群蘇清源郭昶甫
口試委員(外文):HUANG, CHI-HSIENLIN, CHIH-TINGJUAN, PI-CHUNSU, CHING-YUANKUO, CHANG-FU
口試日期:2022-07-06
學位類別:碩士
校院名稱:明志科技大學
系所名稱:材料工程系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:91
中文關鍵詞:石墨烯石墨烯氧化物低損傷電漿系統溶液式閘極生物感測元件阿茲海默症p-tau217
外文關鍵詞:graphenegraphene oxidelow damage plasma treatment (LDPT)solution-gate graphene transistorsbiosensorAlzheimer's diseasep-tau217
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
阿茲海默症為一種神經退化性疾病,佔所有罹患失智症患者的70%之高。許多研究結果顯示磷酸tau蛋白p-tau217與阿茲海默症密切相關,並且可以在患者的血液中發現它,可視為此疾病相當重要的生物標誌物。溶液式柵極石墨烯電晶體(solution-gated graphene transistor, SGGT)被視為相當具有潛力的感測器,因其具有很高的靈敏度,並且此類感測器能夠於溶液中進行量測,這對於阿茲海默症生物標誌物之檢測極具發展性。
在本研究中,我們提出使用石墨烯氧化物/石墨烯原子級層狀結構之複合材料作為SGGT中的通道材料來檢測p-tau217。利用低壓化學氣相沉積法成長雙層石墨烯,經由濕式轉印至基板上,上層的石墨烯通過低損傷電漿處理被氧化為石墨烯氧化物,此層可作為生物接受端。抗體可透過共價鍵固定在石墨烯氧化物/石墨烯表面,並在固定後與其目標物p-tau217進行抗原抗體反應;而下層的石墨烯則未受電漿處理影響而保有原本特性,可作為電性傳輸層。
經過電流-閘極電壓測量,顯示抗體透過共價鍵固定於表面後,此電晶體感測器之狄拉克點(Dirac point)產生左移,可證明帶負電荷的抗體導致石墨烯的N型摻雜,證實了我們成功將抗體固定於感測器。接有抗體之電晶體感測器在檢測目標物p-tau217之濃度範圍為10 fg/mL-100 pg/mL時,狄拉克點(Dirac point)往右位移,結果表明帶正電荷的抗原p-tau217導致石墨烯的P型摻雜;也發現隨著位移量增加,位移量隨之增加,此感測元件線性度為0.9909,檢測極限可低至10 fg/mL。藉由霍爾測量更能觀察通道載子變化的情形。最後於干擾性及穩定性測量結果顯示SGGT感測器之表現對於實際應用上具有潛力。

Alzheimer's disease is a neurodegenerative disease that accounts for up to 70% of all dementia cases. Biomarkers are important in the diagnosis of Alzheimer’s and many researchers have identified p-tau217 as one such biomarker.
In this study, we propose using graphene oxide/graphene as a channel material in an SGGT for detecting p-tau217. High-quality bilayer graphene is grown by chemical vapor deposition and is wet-transferred onto a substrate. The top graphene layer is oxidized via low-damage plasma treatment to graphene oxide, which serves as a bio-receptor.
Current–gate voltage measurements showed a leftward shift in the Dirac point when the antibody was covalently bonded to the graphene top surface. This demonstrates that negatively charged antibodies lead to n-doping of graphene, further confirming successful immobilization of antibodies in the sensor. The Dirac point shifted to the right to enable detection at target p-tau217 concentrations ranging from 10 fg/mL to 100 pg/mL. These results indicated that the positively charged antigen p-tau217 leads to p-doping of graphene. The linearity of the sensing element is 0.9909 and concentrations as low as 10 fg/mL can be measured. The change of the channel carriers can be observed better by the Hall measurement. Finally, the interference and stability measurements show that the performance of the SGGT sensor has potential for practical applications.

目錄
口試委員審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目錄 v
圖目錄 ix
表目錄 xiv
第一章 、緒論 1
1-1 前言 1
1-2 石墨烯簡介 2
1-3 石墨烯製備 4
1-4 石墨烯氧化物簡介及特性 5
1-5 溶液式閘極石墨烯電晶體(SGGTs) 7
第二章、文獻回顧 10
2-1 石墨烯氧化物製備 10
2-2 基於石墨烯電晶體的生物感測器 14
2-2-1 SGGT感測器種類 15
2-2-2 傳輸特性及偵測機制 16
2-2-3 電解液對感測性能之影響 18
2-3 基於阿茲海默症之診斷技術 24
2-3-1 阿茲海默症生物標的物之生物感測器(Biosensors) 24
2-3-2 阿茲海默症之生物標誌物 26
2-4 研究動機與目的 30
第三章、實驗流程及機台介紹 31
3-1 感測元件製程與分析流程 31
3-2 實驗藥品及材料 32
3-3 實驗儀器介紹 33
3-3-1低壓化學氣相沈積系統 (Low Pressure Chemical Vapor Deposition, LP-CVD) 33
3-3-2 旋轉塗佈機 (Spin coating) 35
3-3-3 熱退火爐 36
3-3-4 低損傷電漿系統 (Low Damage Plasma System, LDPT) 37
3-3-5 拉曼光譜儀 (Raman Spectroscopy, Raman) 40
3-3-6 紫外光-可見光光譜儀(Ultraviolet-visible spectroscopy, UV-vis) 44
3-3-7 水接觸角(contact angle) 45
3-3-8 四點探針 (four-point probe) 46
3-4實驗方法 47
3-4-1低壓化學氣相沈積系統製備雙層石墨烯 47
3-4-2 清洗Al2O3/Si基板 48
3-4-3 蒸鍍SGGT電極 49
3-4-4 轉印雙層石墨烯至SGGT電極區 50
3-4-6 利用低損傷電漿系統製備單層石墨烯氧化物 52
3-4-7 電極區製備 53
3-4-8 濃度配置與固定化探針(抗體)與抗原抗體結合反應目標物(抗原 p-tau217)濃度 53
3-4-8-2抗原抗體結合反應目標物(抗原 p-tau217) 54
第四章、實驗結果與討論 55
4-1 低壓化學氣相沈積成長之單層石墨烯特性分析 55
4-2 電漿改質製程對雙層石墨烯特性之影響 59
4-3 溶液式閘極石墨烯電晶體特性 63
4-4 抗體固定化於不同時間之差異 66
4-5 偵測不同濃度之阿茲海默症生物標誌物p-tau217 69
4-5 SGGT感測器干擾性之分析 74
4-6 SGGT感測器穩定性之分析 76
第五章、結論 78
第六章、未來展望 79
第七章、參考文獻 80


圖目錄
圖1- 1 石墨烯生物感測器上的生物組件示例 2
圖1- 2 同素異形體結構 3
圖1- 3 濕式轉印 5
圖1- 4 石墨烯氧化物 6
圖1- 5典型胺基梭-基脫水反應 7
圖1- 6 溶液式閘極石墨烯電晶體 7
圖1- 7 石墨烯雙極性效應 9
圖2- 1 Hummers法製備石墨烯氧化物示意圖 10
圖2- 2 電漿改質修飾示意圖 11
圖2- 3 氧電漿不同時間改質石墨烯之拉曼光譜圖 12
圖2- 4 離子轟擊能量與缺陷深度關係圖 12
圖2- 5 電漿氣體所產生的真空紫外光與缺陷深度關係圖 13
圖2- 6 低損傷電漿系統示意圖 14
圖2- 7 低損傷電漿系統改質石墨烯拉曼圖 14
圖2- 8 SGGT生物感測器的關鍵要素 15
圖2- 9 平面式閘極構成之溶液式閘極石墨烯電晶體 16
圖2- 10 閘極偏壓調控通道電流 17
圖2- 11 帶負電的目標物引起N型摻雜 18
圖2- 12帶正電的目標物引起的P型摻雜 18
圖2- 13 溶液式柵極場效應電晶體電雙層 19
圖2- 14 不同濃度PBS溶液具有不同德拜長度 20
圖2- 15 不同濃度PBS溶液的V CNP差異 21
圖2- 16不同濃度PBS溶液對檢測目標物DNA的V CNP位移量 21
圖2- 17 不同PH值緩衝溶液之V CNP差異 22
圖2- 18 德拜長度的調製 23
圖2- 19 平面與皺褶結構於GFET DIRAC POINT 位移量差異 23
圖2- 20 SNO2/CDCO3/CDS的無標記光電免疫傳感器的製備示意圖 25
圖2- 21 適體-抗原-抗體夾心型電化學生物感測器 26
圖2- 22 正常大腦與阿茲海默病患者大腦中之差異 27
圖2- 23 TAU蛋白主要結構域與磷酸化位點的位置 27
圖2- 24 受試者神經原纏結評分與血液中P-TAU217濃度之關係 28
圖2- 25 受試者腦脊液中P-TAU217濃度之對照 29
圖2- 26受試者腦脊液中P-TAU181濃度之對照 30
圖3-1 元件製備流程圖 31
圖3- 2 低壓化學氣相沉積系統 33
圖3- 3 CVD製備石墨烯之成長機制示意圖 34
圖3- 4旋轉塗佈機 35
圖3- 5 熱退火爐 36
圖3- 6低損傷電漿系統 38
圖3- 7 不鏽鋼材質之互補式過濾片 38
圖3- 8 高密度感應式耦合低損傷電漿系統示意圖 38
圖3- 9互補式過濾片示意圖 39
圖3- 10 互補式過濾片的過濾效果 39
圖3- 11 拉曼光譜儀系統 40
圖3- 12石墨與石墨烯的拉曼光譜圖 41
圖3- 13 石墨與石墨烯的拉曼光譜圖 42
圖3- 14 石墨烯層數與2D PEAK關係圖 43
圖3- 15石墨烯層數與2D峰的關係圖 43
圖3- 16 UV-VIS 紫外光可見光光譜儀 44
圖3- 17水接觸角親疏水性差異 45
圖3- 18 四點探針儀器 46
圖3- 19 四點探針示意圖 46
圖3- 20 化學氣相沉積示意圖 47
圖3- 21 成長雙層石墨烯之製程圖 48
圖3- 22 互為對稱的SGGT電極尺寸設計圖 50
圖3- 23濕式轉印流程圖 51
圖3- 24 本研究生物感測元件示意圖 54
圖4- 1雙層石墨烯之拉曼光譜圖 55
圖4- 2 雙層石墨烯之UV-VIS光譜圖 56
圖4- 3 雙層石墨烯之TEM分析 57
圖4- 4 石墨烯雙極性特性 58
圖4- 5 改質處理後之雙層石墨烯拉曼光譜圖 59
圖4- 6 不同電漿改質條件之XPS能譜 61
圖4- 7 電漿製程不同RF POWER條件於感測器之電阻變化率 61
圖4- 8 改質前後水接觸角之差異 62
圖4- 9 改質前後之ID-VG圖 63
圖4- 10 不同閘極電壓的輸出特性 64
圖4- 11 SGGT感測器漏電流 64
圖4- 12 SGGT中兩量測區域之DIRAC POINT差異 65
圖4- 13 P-TAU217抗體於不同固定化時間之摻雜效應 67
圖4- 14 P-TAU217抗體於不同固定化時間下DIRAC POINT之位移量 67
圖4- 15 不同結構對於ID-VD圖影響 68
圖4- 16 不同濃度P-TAU217之ID-VG圖 69
圖4- 17 不同濃度P-TAU217之ID-VG量測趨勢圖 70
圖4- 18 (A)無胺化(B)有胺化之抗體示意圖 71
圖4- 19 (A)無胺化(B)有胺化之抗體於通道表面示意圖 72
圖4- 20 胺化抗體檢測不同濃度P-TAU217之ID-VG圖 72
圖4- 21 胺化抗體檢測不同濃度P-TAU217之ID-VG量測趨勢圖 72
圖4- 22 霍爾效應元件的載子遷移率與載子濃度 73
圖4- 23 干擾性測量之之ID-VG圖 74
圖4- 24 P-TAU217感測元件之干擾性分析 75
圖4- 25 穩定性測量之之ID-VG圖 76
圖4- 26 SGGT感測器於不同放置時間下DIRAC POINT之位移量 77



表目錄
表1- 1 石墨烯基本性質 4
表1- 2 石墨烯製程比較 5
表2- 1 阿茲海默症診斷技術之差異 24
表3- 1 蒸鍍製程參數 49
表4- 1 用於診斷阿茲海默症之基於石墨烯電晶體的生物感測器特性比較 70


1.Brazaca, L. C.; Sampaio, I.; Zucolotto, V.; Janegitz, B. C., Applications of biosensors in Alzheimer's disease diagnosis. Talanta 2020, 210, 120644.
2.Huang, Y.; Mucke, L., Alzheimer mechanisms and therapeutic strategies. Cell 2012, 148 (6), 1204-1222.
3.Breijyeh, Z.; Karaman, R., Comprehensive Review on Alzheimer's Disease: Causes and Treatment. Molecules 2020, 25 (24) , 5789.
4.Kimura, T.; Sharma, G.; Ishiguro, K.; Hisanaga, S.-i., Phospho-tau bar code: Analysis of phosphoisotypes of tau and its application to tauopathy. Frontiers in neuroscience 2018, 12, 44.
5.De Calignon, A.; Polydoro, M.; Suárez-Calvet, M.; William, C.; Adamowicz, D. H.; Kopeikina, K. J.; Pitstick, R.; Sahara, N.; Ashe, K. H.; Carlson, G. A., Propagation of tau pathology in a model of early Alzheimer's disease. Neuron 2012, 73 (4), 685-697.
6.Lin, P.-J.; Fillit, H. M.; Cohen, J. T.; Neumann, P. J., Potentially avoidable hospitalizations among Medicare beneficiaries with Alzheimer’s disease and related disorders. Alzheimer's & Dementia 2013, 9 (1), 30-38.
7.Béraud, A.; Sauvage, M.; Bazán, C. M.; Tie, M.; Bencherif, A.; Bouilly, D., Graphene field-effect transistors as bioanalytical sensors: design, operation and performance. Analyst 2021, 146 (2), 403-428.
8.Kuila, T.; Bose, S.; Khanra, P.; Mishra, A. K.; Kim, N. H.; Lee, J. H., Recent advances in graphene-based biosensors. Biosensors and bioelectronics 2011, 26 (12), 4637-4648.
9.Yan, F.; Zhang, M.; Li, J., Solution‐gated graphene transistors for chemical and biological sensors. Advanced healthcare materials 2014, 3 (3), 313-331.
10.Kwak, Y. H.; Choi, D. S.; Kim, Y. N.; Kim, H.; Yoon, D. H.; Ahn, S.-S.; Yang, J.-W.; Yang, W. S.; Seo, S., Flexible glucose sensor using CVD-grown graphene-based field effect transistor. Biosensors and Bioelectronics 2012, 37 (1), 82-87.
11.Campos, R.; Borme, J.; Guerreiro, J. R.; Machado, G., Jr.; Cerqueira, M. F.; Petrovykh, D. Y.; Alpuim, P., Attomolar Label-Free Detection of DNA Hybridization with Electrolyte-Gated Graphene Field-Effect Transistors. ACS Sens 2019, 4 (2), 286-293.
12.Chen, Y.; Michael, Z. P.; Kotchey, G. P.; Zhao, Y.; Star, A., Electronic detection of bacteria using holey reduced graphene oxide. ACS applied materials & interfaces 2014, 6 (6), 3805-3810.
13.Shahriari, S.; Sastry, M.; Panjikar, S.; Raman, R. S., Graphene and Graphene Oxide as a Support for Biomolecules in the Development of Biosensors. Nanotechnology, Science and Applications 2021, 14, 197.
14.Yi, M.; Shen, Z., A review on mechanical exfoliation for the scalable production of graphene. Journal of Materials Chemistry A 2015, 3 (22), 11700-11715.
15.Seyller, T.; Bostwick, A.; Emtsev, K.; Horn, K.; Ley, L.; McChesney, J.; Ohta, T.; Riley, J. D.; Rotenberg, E.; Speck, F., Epitaxial graphene: a new material. physica status solidi (b) 2008, 245 (7), 1436-1446.
16.Dash, S.; Patnaik, A., Material selection for TH z antennas. Microwave and Optical Technology Letters 2018, 60 (5), 1183-1187.
17.Zhong, Y.; Zhen, Z.; Zhu, H., Graphene: Fundamental research and potential applications. FlatChem 2017, 4, 20-32.
18.Du, J.; Zhang, D.; Wang, X.; Jin, H.; Zhang, W.; Tong, B.; Liu, Y.; Burn, P. L.; Cheng, H.-M.; Ren, W., Extremely efficient flexible organic solar cells with a graphene transparent anode: Dependence on number of layers and doping of graphene. Carbon 2021, 171, 350-358.
19.Asad, M.; Bonmann, M.; Yang, X.; Vorobiev, A.; Jeppson, K.; Banszerus, L.; Otto, M.; Stampfer, C.; Neumaier, D.; Stake, J., The dependence of the high-frequency performance of graphene field-effect transistors on channel transport properties. IEEE Journal of the Electron Devices Society 2020, 8, 457-464.
20.Wojtoniszak, M.; Chen, X.; Kalenczuk, R. J.; Wajda, A.; Łapczuk, J.; Kurzewski, M.; Drozdzik, M.; Chu, P. K.; Borowiak-Palen, E., Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Colloids and Surfaces B: Biointerfaces 2012, 89, 79-85.
21.Huet, B.; Raskin, J.-P.; Snyder, D. W.; Redwing, J. M., Fundamental limitations in transferred CVD graphene caused by Cu catalyst surface morphology. Carbon 2020, 163, 95-104.
22.Mustonen, P.; Mackenzie, D. M.; Lipsanen, H., Review of fabrication methods of large-area transparent graphene electrodes for industry. Frontiers of Optoelectronics 2020, 1-23.
23.Bae, S.; Kim, S. J.; Shin, D.; Ahn, J.-H.; Hong, B. H., Towards industrial applications of graphene electrodes. Physica Scripta 2012, 2012 (T146), 014024.
24.Kashyap, P. K.; Sharma, I.; Gupta, B. K., Continuous Growth of Highly Reproducible Single-Layer Graphene Deposition on Cu Foil by Indigenously Developed LPCVD Setup. ACS omega 2019, 4 (2), 2893-2901.
25.Han, M. Y.; Özyilmaz, B.; Zhang, Y.; Kim, P., Energy band-gap engineering of graphene nanoribbons. Physical review letters 2007, 98 (20), 206805.
26.Hunt, A.; Kurmaev, E.; Moewes, A., Band gap engineering of graphene oxide by chemical modification. Carbon 2014, 75, 366-371.
27.Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S., Graphene and graphene oxide: synthesis, properties, and applications. Advanced materials 2010, 22 (35), 3906-3924.
28.Brodie, B., Hydration behavior and dynamics of water molecules in graphite oxide. Ann Chim Phys 1860, 59, 466-72.
29.Hummers Jr, W. S.; Offeman, R. E., Preparation of graphitic oxide. Journal of the american chemical society 1958, 80 (6), 1339-1339.
30.Chen, J.; Yao, B.; Li, C.; Shi, G., An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 2013, 64, 225-229.
31.Jain, V.; Kandasubramanian, B., Functionalized graphene materials for hydrogen storage. Journal of Materials Science 2020, 55 (5), 1865-1903.
32.Siew, Q. Y.; Pang, E. L.; Loh, H.-S.; Tan, M. T., Highly sensitive and specific graphene/TiO2 impedimetric immunosensor based on plant-derived tetravalent envelope glycoprotein domain III (EDIII) probe antigen for dengue diagnosis. Biosensors and Bioelectronics 2021, 176, 112895.
33.Karimi, H.; Yusof, R.; Rahmani, R.; Hosseinpour, H.; Ahmadi, M. T., Development of solution-gated graphene transistor model for biosensors. Nanoscale research letters 2014, 9 (1), 1-11.
34.Lin, P.; Yan, F., Organic thin‐film transistors for chemical and biological sensing. Advanced materials 2012, 24 (1), 34-51.
35.Sarkar, S.; Bekyarova, E.; Haddon, R. C., Chemistry at the Dirac point: Diels–Alder reactivity of graphene. Accounts of chemical research 2012, 45 (4), 673-682.
36.Singh, P.; Abedini Sohi, P.; Kahrizi, M., Finite Element Modelling of Bandgap Engineered Graphene FET with the Application in Sensing Methanethiol Biomarker. Sensors 2021, 21 (2), 580.
37.McEvoy, N.; Nolan, H.; Ashok Kumar, N.; Hallam, T.; Duesberg, G. S., Functionalisation of graphene surfaces with downstream plasma treatments. Carbon 2013, 54, 283-290.
38.Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., The chemistry of graphene oxide. Chem Soc Rev 2010, 39 (1), 228-40.
39.Kondratowicz, I.; Nadolska, M.; Şahin, S.; Łapiński, M.; Prześniak-Welenc, M.; Sawczak, M.; Eileen, H. Y.; Sadowski, W.; Żelechowska, K., Tailoring properties of reduced graphene oxide by oxygen plasma treatment. Applied Surface Science 2018, 440, 651-659.
40.Surwade, S. P.; Smirnov, S. N.; Vlassiouk, I. V.; Unocic, R. R.; Veith, G. M.; Dai, S.; Mahurin, S. M., Water desalination using nanoporous single-layer graphene. Nature nanotechnology 2015, 10 (5), 459-464.
41.Coburn, J. W.; Winters, H. F., Plasma etching—A discussion of mechanisms. Journal of vacuum Science and Technology 1979, 16 (2), 391-403.
42.Ohchi, T.; Kobayashi, S.; Fukasawa, M.; Kugimiya, K.; Kinoshita, T.; Takizawa, T.; Hamaguchi, S.; Kamide, Y.; Tatsumi, T., Reducing damage to Si substrates during gate etching processes. Japanese Journal of Applied Physics 2008, 47 (7R), 5324.
43.Samukawa, S.; Hori, M.; Rauf, S.; Tachibana, K.; Bruggeman, P.; Kroesen, G.; Whitehead, J. C.; Murphy, A. B.; Gutsol, A. F.; Starikovskaia, S., The 2012 plasma roadmap. Journal of Physics D: Applied Physics 2012, 45 (25), 253001.
44.Huang, C.-H.; Su, C.-Y.; Lai, C.-S.; Li, Y.-C.; Samukawa, S., Ultra-low-damage radical treatment for the highly controllable oxidation of large-scale graphene sheets. Carbon 2014, 73, 244-251.
45.Casiraghi, C.; Hartschuh, A.; Qian, H.; Piscanec, S.; Georgi, C.; Fasoli, A.; Novoselov, K.; Basko, D.; Ferrari, A., Raman spectroscopy of graphene edges. Nano letters 2009, 9 (4), 1433-1441.
46.Beraud, A.; Sauvage, M.; Bazan, C. M.; Tie, M.; Bencherif, A.; Bouilly, D., Graphene field-effect transistors as bioanalytical sensors: design, operation and performance. Analyst 2021, 146 (2), 403-428.
47.Zhu, Y.; Wang, C.; Petrone, N.; Yu, J.; Nuckolls, C.; Hone, J.; Lin, Q. In A solid-gated graphene fet sensor for PH measurements, 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), IEEE: 2015; pp 869-872.
48.Cai, B.; Wang, S.; Huang, L.; Ning, Y.; Zhang, Z.; Zhang, G.-J., Ultrasensitive label-free detection of PNA–DNA hybridization by reduced graphene oxide field-effect transistor biosensor. ACS nano 2014, 8 (3), 2632-2638.
49.Zhan, B.; Li, C.; Yang, J.; Jenkins, G.; Huang, W.; Dong, X., Graphene field‐effect transistor and its application for electronic sensing. Small 2014, 10 (20), 4042-4065.
50.Mao, S.; Lu, G.; Chen, J., Nanocarbon-based gas sensors: progress and challenges. Journal of Materials Chemistry A 2014, 2 (16), 5573-5579.
51.Zhu, Y.; Wang, C.; Petrone, N.; Yu, J.; Nuckolls, C.; Hone, J.; Lin, Q., A solid dielectric gated graphene nanosensor in electrolyte solutions. Applied physics letters 2015, 106 (12), 123503.
52.Park, D.; Kim, J. H.; Kim, H. J.; Lee, D.; Lee, D. S.; Yoon, D. S.; Hwang, K. S., Multiplexed femtomolar detection of Alzheimer's disease biomarkers in biofluids using a reduced graphene oxide field-effect transistor. Biosens Bioelectron 2020, 167, 112505.
53.Akram, K. B.; Hassan, M. U.; Karim, A.; Mehmood, M.; Rafiq, M. A.; Sabahat, S.; Manzoor, S., Electrolyte-induced modulation of electronic transport in the presence of surface charge impurities on bilayer graphene. physica status solidi (a) 2017, 214 (9), 1700156.
54.Stern, E.; Wagner, R.; Sigworth, F. J.; Breaker, R.; Fahmy, T. M.; Reed, M. A., Importance of the Debye screening length on nanowire field effect transistor sensors. Nano letters 2007, 7 (11), 3405-3409.
55.Chen, K.-I.; Li, B.-R.; Chen, Y.-T., Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano today 2011, 6 (2), 131-154.
56.Chen, T.-Y.; Loan, P. T. K.; Hsu, C.-L.; Lee, Y.-H.; Tse-Wei Wang, J.; Wei, K.-H.; Lin, C.-T.; Li, L.-J., Label-free detection of DNA hybridization using transistors based on CVD grown graphene. Biosensors and Bioelectronics 2013, 41, 103-109.
57.Xu, S.; Zhan, J.; Man, B.; Jiang, S.; Yue, W.; Gao, S.; Guo, C.; Liu, H.; Li, Z.; Wang, J., Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor. Nature communications 2017, 8 (1), 1-10.
58.Her, J.-L.; Pan, T.-M.; Lin, W.-Y.; Wang, K.-S.; Li, L.-J., Label-free detection of alanine aminotransferase using a graphene field-effect biosensor. Sensors and Actuators B: Chemical 2013, 182, 396-400.
59.Kulkarni, G. S.; Zhong, Z., Detection beyond the Debye Screening Length in a High-Frequency Nanoelectronic Biosensor. Nano Letters 2012, 12 (2), 719-723.
60.Hwang, M. T.; Heiranian, M.; Kim, Y.; You, S.; Leem, J.; Taqieddin, A.; Faramarzi, V.; Jing, Y.; Park, I.; van der Zande, A. M.; Nam, S.; Aluru, N. R.; Bashir, R., Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. Nat Commun 2020, 11 (1), 1543.
61.Palladino, P.; Aura, A. M.; Spoto, G., Surface plasmon resonance for the label-free detection of Alzheimer’s β-amyloid peptide aggregation. Analytical and bioanalytical chemistry 2016, 408 (3), 849-854.
62.Zhang, Y.; Wang, M.; Wang, Y.; Feng, J.; Zhang, Y.; Sun, X.; Du, B.; Wei, Q., Label-free photoelectrochemical immunosensor for amyloid β-protein detection based on SnO2/CdCO3/CdS synthesized by one-pot method. Biosensors and Bioelectronics 2019, 126, 23-29.
63.Zhu, G.; Lee, H. J., Electrochemical sandwich-type biosensors for α− 1 antitrypsin with carbon nanotubes and alkaline phosphatase labeled antibody-silver nanoparticles. Biosensors and bioelectronics 2017, 89, 959-963.
64.Breijyeh, Z.; Karaman, R., Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules 2020, 25 (24), 5789.
65.Xia, Y.; Prokop, S.; Giasson, B. I., “Don’t Phos Over Tau”: recent developments in clinical biomarkers and therapies targeting tau phosphorylation in Alzheimer’s disease and other tauopathies. Molecular Neurodegeneration 2021, 16 (1), 1-19.
66.Palmqvist, S.; Janelidze, S.; Quiroz, Y. T.; Zetterberg, H.; Lopera, F.; Stomrud, E.; Su, Y.; Chen, Y.; Serrano, G. E.; Leuzy, A.; Mattsson-Carlgren, N.; Strandberg, O.; Smith, R.; Villegas, A.; Sepulveda-Falla, D.; Chai, X.; Proctor, N. K.; Beach, T. G.; Blennow, K.; Dage, J. L.; Reiman, E. M.; Hansson, O., Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders. JAMA 2020, 324 (8), 772-781.
67.Janelidze, S.; Stomrud, E.; Smith, R.; Palmqvist, S.; Mattsson, N.; Airey, D. C.; Proctor, N. K.; Chai, X.; Shcherbinin, S.; Sims, J. R., Cerebrospinal fluid p-tau217 performs better than p-tau181 as a biomarker of Alzheimer’s disease. Nature communications 2020, 11 (1), 1-12.
68.Yan, Z.; Lin, J.; Peng, Z.; Sun, Z.; Zhu, Y.; Li, L.; Xiang, C.; Samuel, E. L.; Kittrell, C.; Tour, J. M., Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS nano 2012, 6 (10), 9110-9117.
69.Huang, C.-H.; Lin, C.-T.; Wang, J.-C.; Chou, C.; Ye, Y.-R.; Cheng, B.-M.; Lai, C.-S., Tunable bandgap energy of fluorinated nanocrystals for flash memory applications produced by low-damage plasma treatment. Nanotechnology 2012, 23 (47), 475201.
70.Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S., Raman spectrum of graphene and graphene layers. Physical review letters 2006, 97 (18), 187401.
71.Crowe, C. D.; Hendrickson-Stives, A. K.; Kuhn, S. L.; Jackson, J. B.; Keating, C. D., Designing and 3D Printing an Improved Method of Measuring Contact Angle in the Middle School Classroom. Journal of Chemical Education 2021.
72.Naftaly, M.; Das, S.; Gallop, J.; Pan, K.; Alkhalil, F.; Kariyapperuma, D.; Constant, S.; Ramsdale, C.; Hao, L., Sheet Resistance Measurements of Conductive Thin Films: A Comparison of Techniques. Electronics 2021, 10 (8), 960.
73.Malard, L.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M., Raman spectroscopy in graphene. Physics reports 2009, 473 (5-6), 51-87.
74.Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M.; Geim, A. K., Fine structure constant defines visual transparency of graphene. Science 2008, 320 (5881), 1308-1308.
75.Popov, A. M.; Lebedeva, I. V.; Knizhnik, A. A.; Lozovik, Y. E.; Potapkin, B. V.; Poklonski, N. A.; Siahlo, A. I.; Vyrko, S. A., AA stacking, tribological and electronic properties of double-layer graphene with krypton spacer. The Journal of chemical physics 2013, 139 (15), 154705.
76.Adhikari, S.; Perello, D. J.; Biswas, C.; Ghosh, A.; Van Luan, N.; Park, J.; Yao, F.; Rotkin, S. V.; Lee, Y. H., Determining the Fermi level by absorption quenching of monolayer graphene by charge transfer doping. Nanoscale 2016, 8 (44), 18710-18717.
77.Su, S.; Chen, B.; He, M.; Hu, B., Graphene oxide–silica composite coating hollow fiber solid phase microextraction online coupled with inductively coupled plasma mass spectrometry for the determination of trace heavy metals in environmental water samples. Talanta 2014, 123, 1-9.
78.Kozbial, A.; Li, Z.; Conaway, C.; McGinley, R.; Dhingra, S.; Vahdat, V.; Zhou, F.; D’Urso, B.; Liu, H.; Li, L., Study on the surface energy of graphene by contact angle measurements. Langmuir 2014, 30 (28), 8598-8606.
79.Novodchuk, I.; Bajcsy, M.; Yavuz, M., Graphene-based field effect transistor biosensors for breast cancer detection: A review on biosensing strategies. Carbon 2020.
80.Roberts, A.; Chauhan, N.; Islam, S.; Mahari, S.; Ghawri, B.; Gandham, R. K.; Majumdar, S. S.; Ghosh, A.; Gandhi, S., Graphene functionalized field-effect transistors for ultrasensitive detection of Japanese encephalitis and Avian influenza virus. Sci Rep 2020, 10 (1), 14546.
81.Seo, G.; Lee, G.; Kim, M. J.; Baek, S.-H.; Choi, M.; Ku, K. B.; Lee, C.-S.; Jun, S.; Park, D.; Kim, H. G., Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS nano 2020, 14 (4), 5135-5142.
82.Chae, M.-S.; Yoo, Y. K.; Kim, J.; Kim, T. G.; Hwang, K. S., Graphene-based enzyme-modified field-effect transistor biosensor for monitoring drug effects in Alzheimer’s disease treatment. Sensors and Actuators B: Chemical 2018, 272, 448-458.
83.Xu, S.; Wang, T.; Liu, G.; Cao, Z.; Frank, L. A.; Jiang, S.; Zhang, C.; Li, Z.; Krasitskaya, V. V.; Li, Q., Analysis of interactions between proteins and small-molecule drugs by a biosensor based on a graphene field-effect transistor. Sensors and Actuators B: Chemical 2021, 326, 128991.
84.Salehirozveh, M.; Dehghani, P.; Zimmermann, M.; Roy, V. A.; Heidari, H., Graphene field effect transistor biosensors based on aptamer for amyloid-β detection. IEEE Sensors Journal 2020, 20 (21), 12488-12494.
85.Bungon, T.; Haslam, C.; Damiati, S.; O'Driscoll, B.; Whitley, T.; Davey, P.; Siligardi, G.; Charmet, J.; Awan, S. A., Graphene FET Sensors for Alzheimer's Disease Protein Biomarker Clusterin Detection. Front Mol Biosci 2021, 8, 651232-651232.
86.Novoselov, K. S.; McCann, E.; Morozov, S.; Fal’ko, V. I.; Katsnelson, M.; Zeitler, U.; Jiang, D.; Schedin, F.; Geim, A., Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nature physics 2006, 2 (3), 177-180.
87.Hwang, M. T.; Heiranian, M.; Kim, Y.; You, S.; Leem, J.; Taqieddin, A.; Faramarzi, V.; Jing, Y.; Park, I.; van der Zande, A. M., Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. Nature communications 2020, 11 (1), 1-11.


電子全文 電子全文(網際網路公開日期:20240815)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊