|
[1]Christou, C., & Barber, Z. H. (2000). Ionization of sputtered material in a planar magnetron discharge. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 18(6), 2897-2907. [2]Ma, Q., Li, L., Xu, Y., Gu, J., Wang, L., & Xu, Y. (2017). Effect of bias voltage on TiAlSiN nanocomposite coatings deposited by HiPIMS. Applied Surface Science, 392, 826-833. [3]Hovsepian, P. E., Ehiasarian, A. P., Purandare, Y. P., Biswas, B., Pérez, F. J., Lasanta, M. I., ... & Agüero, A. (2016). Performance of HIPIMS deposited CrN/NbN nanostructured coatings exposed to 650 C in pure steam environment. Materials chemistry and physics, 179, 110-119. [4]Wu, J., Wu, B. H., Ma, D. L., Xie, D., Wu, Y. P., Chen, C. Z., ... & Leng, Y. X. (2017). Effects of magnetic field strength and deposition pressure on the properties of TiN films produced by high power pulsed magnetron sputtering (HPPMS). Surface and Coatings Technology, 315, 258-267. [5]Liu, S., Yang, Y., Ng, F. L., Ji, R., & Zeng, X. T. (2017). Oxidation behaviour of CrAlYN coatings at elevated temperatures. Surface and Coatings Technology, 320, 357-361. [6]Konishi, T., Yukimura, K., & Takaki, K. (2016). Fabrication of diamond-like carbon films using short-pulse HiPIMS. Surface and Coatings Technology, 286, 239-245. [7]Loquai, S., Baloukas, B., Klemberg-Sapieha, J. E., & Martinu, L. J. S. E. M. (2017). HiPIMS-deposited thermochromic VO2 films with high environmental stability. Solar energy materials and solar cells, 160, 217-224. [8]Wu, C. H., Yang, F. C., Chen, W. C., & Chang, C. L. (2016). Influence of oxygen/argon reaction gas ratio on optical and electrical characteristics of amorphous IGZO thin films coated by HiPIMS process. Surface and Coatings Technology, 303, 209-214. [9] Machunze, R., Ehiasarian, A. P., Tichelaar, F. D., & Janssen, G. C. A. M. (2009). Stress and texture in HIPIMS TiN thin films. Thin Solid Films, 518(5), 1561-1565. [10] Luo, Q., Yang, S., & Cooke, K. E. (2013). Hybrid HIPIMS and DC magnetron sputtering deposition of TiN coatings: Deposition rate, structure and tribological properties. Surface and Coatings Technology, 236, 13-21. [11] Ferreira, F., Oliveira, J. C., & Cavaleiro, A. (2016). CrN thin films deposited by HiPIMS in DOMS mode. Surface and Coatings Technology, 291, 365-375. [12] Molarius, J. M., Korhonen, A. S., Harju, E., & Lappalainen, R. (1987). Comparison of cutting performance of ion-plated NbN, ZrN, TiN and (Ti, Al) N coatings. Surface and Coatings Technology, 33, 117-132. [13] Vega, J., Scheerer, H., Andersohn, G., & Oechsner, M. (2018). Experimental studies of the effect of Ti interlayers on the corrosion resistance of TiN PVD coatings by using electrochemical methods. Corrosion science, 133, 240-250. [14] Matei, A A., Pencea, I., Branzei, M., Trancă, D. E., Ţepeş, G., Sfăt, C. E., ... & Stanciu, G. A. (2015). Corrosion resistance appraisal of TiN, TiCN and TiAlN coatings deposited by CAE-PVD method on WC–Co cutting tools exposed to artificial sea water. Applied Surface Science, 358, 572-578. [15] Bull, S. J., Bhat, D. G., & Staia, M. H. (2003). Properties and performance of commercial TiCN coatings. Part 1: coating architecture and hardness modelling. Surface and Coatings technology, 163, 499-506. [16] Bull, S. J., Bhat, D. G., & Staia, M. H. (2003). Properties and performance of commercial TiCN coatings. Part 2: tribological performance. Surface and Coatings Technology, 163, 507-514. [17] Souto, R. M., & Alanyali, H. (2000). Electrochemical characteristics of steel coated with TiN and TiAlN coatings. Corrosion Science, 42(12), 2201-2211. [18] Chang, Y. Y., & Cai, M.C. (2019). Mechanical property and tribological performance of AlTiSiN and AlTiBN hard coatings using ternary alloy targets. Surface and Coatings Technology, 374, 1120-1127. [19] Cheng, Y. H., Browne, T., Heckerman, B., & Meletis, E. I. (2010). Mechanical and tribological properties of nanocomposite TiSiN coatings. Surface and Coatings Technology, 204(14), 2123-2129. [20] Chang, Y. Y., Yang, Y. J., & Weng, S. Y. (2020). Effect of interlayer design on the mechanical properties of AlTiCrN and multilayered AlTiCrN/TiSiN hard coatings. Surface and Coatings Technology, 389, 125637. [21] Mo, J. L., & Zhu, M. H. (2009). Tribological oxidation behaviour of PVD hard coatings. Tribology International, 42(11-12), 1758-1764. [22]da Silva Oliveira, C. I., Martinez-Martinez, D., Cunha, L., Rodrigues, M. S., Borges, J., Lopes, C., ... & Apreutesei, M. (2018). Zr-ON coatings for decorative purposes: Study of the system stability by exploration of the deposition parameter space. Surface and Coatings Technology, 343, 30-37. [23] Vaz, F., Cerqueira, P., Rebouta, L., Nascimento, S. M. C., Alves, E., Goudeau, P., ... & De Rijk, J. (2004). Structural, optical and mechanical properties of coloured TiNxOy thin films. Thin Solid Films, 447, 449-454. [24] Ariza, E., Rocha, L. A., Vaz, F., Cunha, L., Ferreira, S. C., Carvalho, P., ... & Rivière, J. P. (2004). Corrosion resistance of ZrNxOy thin films obtained by rf reactive magnetron sputtering. Thin Solid Films, 469, 274-281. [25] Ariza, E., Rocha, L. A., Ferreira, S. C., Vaz, F., Cunha, L., Carvalho, P., ... & Rivière, J. P. (2004). Corrosion behaviour of single layered ZrNxOy thin films in artificial sweat solutions. [26] Zega, B., Kornmann, M., & Amiguet, J. (1977). Hard decorative TiN coatings by ion plating. Thin Solid Films, 45(3), 577-582. [27] Karlsson, B., Sundgren, J. E., & Johansson, B. O. (1982). Optical constants and spectral selectivity of titanium carbonitrides. Thin Solid Films, 87(2), 181-187. [28] Perry, A. J., Georgson, M., & Sproul, W. D. (1988). Variations in the reflectance of TiN, ZrN and HfN. Thin Solid Films, 157(2), 255-265. [29] Perry, A. J. (1986). The structure and colour of some nitride coatings. Thin Solid Films, 135(1), 73-85. [30] Randhawa, H. (1988). Hard coatings for decorative applications. Surface and Coatings Technology, 36(3-4), 829-836. [31] Mitterer, C., Komenda-Stallmaier, J., Losbichler, P., Schmölz, P., Werner, W. S. M., & Störi, H. (1995). Sputter deposition of decorative boride coatings. Vacuum, 46(11), 1281-1294. [32] Chappé, J. M., Martin, N., Lintymer, J., Sthal, F., Terwagne, G., & Takadoum, J. (2007). Titanium oxynitride thin films sputter deposited by the reactive gas pulsing process. Applied Surface Science, 253(12), 5312-5316. [33] Carvalho, P., Borges, J., Rodrigues, M. S., Barradas, N. P., Alves, E., Espinós, J. P., ... & Vaz, F. (2015). Optical properties of zirconium oxynitride films: The effect of composition, electronic and crystalline structures. Applied Surface Science, 358, 660-669. [34] Schwetz, K. A., Reinmuth, K., & Lipp, A. (1981). Production and industrial application of refractory boron compounds. Radex Rundsch.;(Austria), 3. [35] McKelvy, M. J., Eyring, L., & Storms, E. K. (1984). Analytical and structural analysis of the lanthanum-deficient lanthanum hexaboride. The Journal of Physical Chemistry, 88(9), 1785-1790. [36]Wriedt, H. A., & Murray, J. L. (1987). The N-Ti (nitrogen-titanium) system. Bulletin of Alloy Phase Diagrams, 8(4), 378-388. [37] Qin, Y., Zheng, G., Zhu, L., He, J., Zhang, F., Dong, Y., & Yin, F. (2018). Structure and wear characteristics of TiCN nanocomposite coatings fabricated by reactive plasma spraying. Surface and Coatings Technology, 342, 137-145. [38] Matei, A. A., Pencea, I., Branzei, M., Trancă, D. E., Ţepeş, G., Sfăt, C. E., ... & Stanciu, G. A. (2015). Corrosion resistance appraisal of TiN, TiCN and TiAlN coatings deposited by CAE-PVD method on WC–Co cutting tools exposed to artificial sea water. Applied Surface Science, 358, 572-578. [39]Window, B., & Savvides, N. (1986). Charged particle fluxes from planar magnetron sputtering sources. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 4(2), 196-202. [40]Window, B., & Savvides, N. (1986). Unbalanced dc magnetrons as sources of high ion fluxes. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 4(3), 453-456. [41]Kelly, P. J., & Arnell, R. D. (2000). Magnetron sputtering: a review of recent developments and applications. Vacuum, 56(3), 159-172. [42] Kelly, P. J., & Arnell, R. D. (1998). The influence of magnetron configuration on ion current density and deposition rate in a dual unbalanced magnetron sputtering system. Surface and Coatings Technology, 108, 317-322. [43] Bugaev, S. P., Koval, N. N., Sochugov, N. S., & Zakharov, A. N. (1996, July). Investigation of a high-current pulsed magnetron discharge initiated in the low-pressure diffuse arc plasma. In Proceedings of 17th International Symposium on Discharges and Electrical Insulation in Vacuum (Vol. 2, pp. 1074-1076). IEEE. [44]Kouznetsov, V., Macak, K., Schneider, J. M., Helmersson, U., & Petrov, I. (1999). A novel pulsed magnetron sputter technique utilizing very high target power densities. Surface and coatings technology, 122(2-3), 290-293. [45]Roth, J. R. (1995). Industrial plasma engineering. Institute of Physics Publishing, 1, 366-367. [46]Anders, A. (2010). High power impulse magnetron sputtering and related discharges: Scalable plasma sources for plasma-based ion implantation and deposition. Surface and Coatings Technology, 204(18-19), 2864-2868. [47]Ehiasarian, A. P., New, R., Münz, W. D., Hultman, L., Helmersson, U., & Kouznetsov, V. (2002). Influence of high power densities on the composition of pulsed magnetron plasmas. Vacuum, 65(2), 147-154. [48]Sarakinos, K., Alami, J., & Konstantinidis, S. (2010). High power pulsed magnetron sputtering: A review on scientific and engineering state of the art. Surface and coatings technology, 204(11), 1661-1684. [49]Alami, J., Sarakinos, K., Mark, G., & Wuttig, M. (2006). On the deposition rate in a high power pulsed magnetron sputtering discharge. Applied physics letters, 89(15), 154104. [50]Thornton, J. A. (1978). Magnetron sputtering: basic physics and application to cylindrical magnetrons. Journal of Vacuum Science and Technology, 15(2), 171-177. [51]Arnell, R. D., & Kelly, P. J. (1999). Recent advances in magnetron sputtering. Surface and Coatings Technology, 112(1-3), 170-176. [52]Ganciu, M., Konstantinidis, S., Paint, Y., Dauchot, J. P., Hecq, M., De Poucques, L., ... & Touzeau, M. (2005). Preionised pulsed magnetron discharges for ionised physical vapour deposition. J. Optoelectron. Adv. Mater, 7(5), 2481-2484. [53]Konstantinidis, S., Dauchot, J. P., Ganciu, M., Ricard, A., & Hecq, M. (2006). Influence of pulse duration on the plasma characteristics in high-power pulsed magnetron discharges. Journal of applied physics, 99(1), 013307. [54]Christie, D. J. (2005). Target material pathways model for high power pulsed magnetron sputtering. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 23(2), 330-335. [55]Ehiasarian, A. P., Wen, J. G., & Petrov, I. (2007). Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion. Journal of applied physics, 101(5), 054301. [56]Schönjahn, C., Ehiasarian, A. P., Lewis, D. B., New, R., Münz, W. D., Twesten, R. D., & Petrov, I. (2001). Optimization of in situ substrate surface treatment in a cathodic arc plasma: A study by TEM and plasma diagnostics. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 19(4), 1415-1420. [57]Håkansson, G., Hultman, L., Sundgren, J. E., Greene, J. E., & Münz, W. D. (1991). Microstructures of TiN films grown by various physical vapour deposition techniques. Surface and Coatings Technology, 48(1), 51-67. [58]Helmersson, U., Lattemann, M., Bohlmark, J., Ehiasarian, A. P., & Gudmundsson, J. T. (2006). Ionized physical vapor deposition (IPVD): A review of technology and applications. Thin solid films, 513(1-2), 1-24. [59]Schönjahn, C., Donohue, L. A., Lewis, D. B., Münz, W. D., Twesten, R. D., & Petrov, I. (2000). Enhanced adhesion through local epitaxy of transition-metal nitride coatings on ferritic steel promoted by metal ion etching in a combined cathodic arc/unbalanced magnetron deposition system. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 18(4), 1718-1723. [60] Ehiasarian, A. P., Münz, W. D., Hultman, L., Helmersson, U., & Petrov, I. (2003). High power pulsed magnetron sputtered CrNx films. Surface and coatings technology, 163, 267-272. [61]Vetter, J., Michler, T., & Steuernagel, H. (1999). Hard coatings on thermochemically pretreated soft steels: application potential for ball valves. Surface and Coatings Technology, 111(2-3), 210-219. [62]Barna, P. B., & Adamik, M. J. T. S. F. (1998). Fundamental structure forming phenomena of polycrystalline films and the structure zone models. Thin solid films, 317(1-2), 27-33. [63]Koehler, J. S. (1970). Attempt to design a strong solid. Physical review B, 2(2), 547. [64]Tellier, C. R., & Tosser, A. J. (2016). Size effects in thin films (Vol. 2). Elsevier. [65]Matacotta, F. C., & Ottaviani, G. (1995). Science and technology of thin films. World scientific. [66]Ehiasarian, A. P., Hovsepian, P. E., Hultman, L., & Helmersson, U. (2004). Comparison of microstructure and mechanical properties of chromium nitride-based coatings deposited by high power impulse magnetron sputtering and by the combined steered cathodic arc/unbalanced magnetron technique. Thin solid films, 457(2), 270-277. [67]Alami, J., Sarakinos, K., Uslu, F., & Wuttig, M. (2008). On the relationship between the peak target current and the morphology of chromium nitride thin films deposited by reactive high power pulsed magnetron sputtering. Journal of Physics D: Applied Physics, 42(1), 015304. [68]Patsalas, P., Gravalidis, C., & Logothetidis, S. (2004). Surface kinetics and subplantation phenomena affecting the texture, morphology, stress, and growth evolution of titanium nitride films. Journal of applied physics, 96(11), 6234-6246. [69]Hultman, L., Sundgren, J., Greene, J. E., Bergstrom, D. B., & Petrov, I. (1995). High-flux low-energy ({congruent} 20 eV) N {sup+}{sub 2} ion irradiation during TiN deposition by reactive magnetron sputtering: Effects on microstructure and preferred orientation. Journal of Applied Physics, 78(9). [70]Alami, J., Persson, P. Å., Music, D., Gudmundsson, J. T., Bohlmark, J., & Helmersson, U. (2005). Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 23(2), 278-280. [71]Bobzin, K., Bagcivan, N., Immich, P., Bolz, S., Alami, J., & Cremer, R. (2009). Advantages of nanocomposite coatings deposited by high power pulse magnetron sputtering technology. Journal of materials processing technology, 209(1), 165-170. [72]Patscheider, J., Zehnder, T., & Diserens, M. (2001). Structure–performance relations in nanocomposite coatings. Surface and Coatings Technology, 146, 201-208. [73]Jiang, X., Yang, F. C., Chen, W. C., Lee, J. W., & Chang, C. L. (2017). Effect of nitrogen-argon flow ratio on the microstructural and mechanical properties of AlSiN thin films prepared by high power impulse magnetron sputtering. Surface and Coatings Technology, 320, 138-145. [74]Leyland, A., & Matthews, A. (2000). On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear, 246(1-2), 1-11. [75]Pharr, G. M., & Oliver, W. C. (1992). Measurement of thin film mechanical properties using nanoindentation. Mrs Bulletin, 17(7), 28-33. [76]Bull, S. J., & Berasetegui, E. G. (2006). An overview of the potential of quantitative coating adhesion measurement by scratch testing. Tribology International, 39(2), 99-114. [77]Odén, M., Ericsson, C., Håkansson, G., & Ljungcrantz, H. (1999). Microstructure and mechanical behavior of arc-evaporated Cr–N coatings. Surface and Coatings Technology, 114(1), 39-51. [78]N. Vidakis, A. Antoniadis, and N. Bilalis, The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds, Journal of Materials Processing Technology, 143 (2003) 481-485. [79]Andrade, C., & Alonso, C. (2004). Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method. Materials and Structures, 37(9), 623-643. [80]Poynton, C. (2012). Digital video and HD: Algorithms and Interfaces. Elsevier.
|