跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/10 04:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳聖諺
研究生(外文):CHEN,SHENG-YAN
論文名稱:TiZrSiCN薄膜的微結構和機械性質研究 -矽與碳含量的影響
論文名稱(外文):Microstructure and mechanical properties investigation of TiZrSiCN coatings: Effect of Si and C contents
指導教授:李志偉李志偉引用關係張麗君張麗君引用關係
指導教授(外文):LEE, JYH-WEICHANG, LI-CHUN
口試委員:李志偉張麗君吳芳賓
口試委員(外文):LEE, JYH-WEICHANG, LI-CHUNWu, FAN-BEAN
口試日期:2022-07-19
學位類別:碩士
校院名稱:明志科技大學
系所名稱:材料工程系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:127
中文關鍵詞:高功率脈衝磁控濺鍍裝飾性鍍膜TiZrSiCxNy薄膜耐磨性動電位極化試驗
外文關鍵詞:High power impulse magnetron sputteringDecorative coatingsTiZrSiCxNy coatingsWear resistancePotentiodynamic polarization test
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來過渡金屬氮化物薄膜和過渡金屬碳氮化物薄膜由於其硬度、熱穩定性、耐磨性和抗腐蝕性而在許多領域中被廣泛應用,可作為切削加工、汽車工業和3C產品中的裝飾鍍膜。過渡金屬碳氮化物(TMCxNy)兼備了TiN和TiC的優點,已成為一類新的功能性鍍膜和裝飾性鍍膜材料,主要歸功於它們優異的機械性能以及耐磨性、耐腐蝕性和可調節的色彩。
本研究利用高功率脈衝磁控濺射(High Power Impulse Magnetron Sputtering, HiPIMS)系統和射頻電源(Radio Frequency, RF)搭配Ti靶與Zr50Ti15Si35靶,於矽晶片(100)、304不銹鋼及420不銹鋼沉積碳氮化鈦鋯矽(TiZrSiCxNy)薄膜。並探討TiZrSiNy薄膜在不同矽和碳含量對薄膜微結構與機械性質的影響。第一階段改變氬、氮氣及改變Zr50Ti15Si35靶功率,分別鍍製不同矽和氮含量的TiZrSiNy薄膜。第二階段實驗為固定氣體總流量約30 sccm,改變氬、氮氣、乙炔流量鍍製TiZrSiCxNy薄膜,第三階段實驗為固定氣體總流量約30 sccm,改變乙炔流量鍍製TiZrSiCxNy薄膜。透過電子微探儀進行成分定量分析,低掠角X光繞射儀進行薄膜晶相分析;使用掃描式電子顯微鏡與穿透式電子顯微鏡觀察薄膜之截面微結構;利用奈米壓痕儀、刮痕試驗、磨耗試驗評估薄膜的硬度、附著性和耐磨性質;以動電位極化試驗測試薄膜的抗腐蝕特性;再以紫外光-可見光分光光譜儀以CIE L*a*b*色彩空間測量TiZrSiCxNy薄膜的顏色。
研究發現,碳含量為11.9 at.% 的TiZrSiCxNy薄膜具有最高的硬度34.4 GPa,較佳的彈性係數294 GPa。而碳含量為9.9 at.% 的TiZrSiCxNy薄膜具有較佳的臨界荷重43.1N,摩擦係數0.23,最低的磨耗率1.96×10-6 mm3/N·m,以及極佳的腐蝕阻抗,並擁有玫瑰金色調的外觀。本研究已成功使用HiPIMS技術製備出具有高硬度、附著性佳等機械性質以及良好的抗腐蝕性的TiZrSiCxNy薄膜,可作為裝飾性鍍膜之用。

In recent years, transition metal nitride films and transition metal carbonitride films have been widely used as functional coatings in many fields due to their high hardness, good thermal stability, wear resistance, and corrosion resistance. Their industrial applications include the decorative coatings and protective hard coatings in jewelry, machining, and automotive industries. Transition metal carbonitrides (TMCxNy) combine the advantages of TiN and TiC coatings, which has become a new class of functional coating and decorative coating materials mainly due to their excellent mechanical properties, abrasion resistance, corrosion resistance, and adjustable color.
This study used high power impulse magnetron sputtering system and radio frequency with Ti target and Zr50Ti15Si35 target to deposit TiZrSiCxNy coatings on silicon wafer (100), 304 stainless steel, and 420 stainless steel substrates. Effects of different silicon and carbon contents on the microstructure and mechanical properties of TiZrSiNy coatings were discussed. In the first stage changes, the gas flow rates of Ar, N2 and the power of Zr50Ti15Si35 target power were changed to deposit TiZrSiNy coatings. In the second stage, the total gas flow of 30 sccm was fixed and the gas flow rates of Ar, N2 and C2H2 were adjusted to grow TiZrSiCxNy coatings. In the third stage, TiZrSiCxNy coatings were fabricated at different C2H2 flow rates and the total gas flow rate was fixed at 30 sccm. The chemical compositions of coatings were analyzed by means of an electron microprobe microanalyzer. The phase structure of coatings was evaluated by a low grazing angle X-ray Diffractometry. The cross-sectional microstructures of coatings were observed using scanning electron microscopy and transmission electron microscopy. The hardness, adhesion and wear properties were examined by nanoindenter, scratch test, and wear test. The corrosion resistance of coatings was evaluated by potentiodynamic polarization test. The CIE L*a*b* color space of TiZrSiCxNy films was measured by an UV-Vis spectrometer.
We can conclude that the highest hardness of 34.4 GPa and adequate elastic modulus of 294 GPa were obtained for the TiZrSiCxNy coating containing 11.9 at.% C. Excellent adhesion critical load of 43.1 N, coefficient of friction of 0.23, the lowest wear loss of 1.96×10-6 mm3/N·m, and the best corrosion resistance were achieved for the pink-gold colored TiZrSiCxNy coating containing 9.9 at.% C. In this study, we already fabricated the TiZrSiCxNy coatings with high hardness, good adhesion and excellent corrosion resistance, which can be used as decorative coatings.

指導教授推薦書 i
口試委員會審定書 ii
致謝 iii
中文摘要 iv
英文摘要 vi
目錄 viii
圖目錄 xiii
表目錄 xix
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 文獻回顧 3
2.1裝飾性硬膜 3
2.1.1氮化鈦薄膜 3
2.1.2碳氮化鈦薄膜 4
2.2 磁控濺射 7
2.3高功率脈衝磁控濺鍍(High-Power Impulse Magnetron Sputtering, HiPIMS) 10
2.3.1高功率脈衝電源系統 12
2.3.2高功率脈衝磁控濺鍍之薄膜特性 16
2.4添加矽元素對過鍍金屬氮化鈦薄膜的影響 23
2.5不同氮氬比對薄膜的影響 24
第三章 實驗方法 26
3.1 實驗規劃流程與簡介 26
3.2 實驗方法與步驟 27
3.2.1 基材試片規格與前處理 27
3.2.2 實驗方法與流程 27
3.2.3 不同Zr50Ti15Si35靶功率及氮氣流量之TiZrSiNy薄膜性質分析 28
3.2.4 不同氮氣及乙炔流量之TiZrSiCxNy薄膜性質分析 29
3.2.5 固定氮氣流量3 sccm改變不同乙炔流量對TiZrSiCxNy薄膜性質分析 31
3.3 製程儀器 32
3.3.1 鍍膜設備 32
3.4 分析儀器 33
3.4.1 成分分析 33
3.4.2 晶體結構分析 34
3.4.3 XPS(X光電子能譜儀)分析 36
3.4.4 微結構分析 37
3.4.5 表面形貌分析 38
3.4.6 硬度分析 39
3.4.7 刮痕試驗 40
3.4.7 壓痕試驗 41
3.4.8 磨耗分析 43
3.4.9 耐蝕性分析 44
3.4.10 光學性質分析 46
第四章 結果與討論 47
4.1不同Zr50Ti15Si35靶功率及氮氣流量對於TiZrSiNy薄膜特性的影響 47
4.1.1 化學成分分析 47
4.1.2 晶體結構分析 48
4.1.3 薄膜組成以及化學鍵結分析 50
4.1.4 表面形貌與橫截面結構分析 51
4.1.5 TEM結構分析 53
4.1.6 表面粗糙度分析 59
4.1.7硬度分析 60
4.1.8附著性分析 62
4.1.9 殘留應力分析 65
4.1.10 耐蝕性分析 66
4.1.11 CIELAB色彩空間L*a*b*分析 68
4.2 不同氮氣及乙炔流量對TiZrSiCxNy薄膜特性的影響 70
4.2.1 化學成分分析 70
4.2.2 晶體結構分析 71
4.2.3 橫截面結構分析 72
4.2.4 表面粗糙度分析 75
4.2.5 硬度分析 77
4.2.6附著性分析 79
4.2.7 磨耗及磨耗率分析 82
4.2.8 殘留應力分析 86
4.2.9 CIELAB色彩空間L*a*b*分析 87
4.3 固定氮氣流量3 sccm改變不同乙炔流量之TiZrSiCxNy薄膜特性的影響 90
4.3.1 化學成分分析 90
4.3.2 晶體結構分析 91
4.3.3 薄膜組成以及化學鍵結分析 93
4.3.4 橫截面結構分析 94
4.3.5 TEM結構分析 96
4.3.6 表面粗糙度分析 104
4.3.7 硬度分析 106
4.3.8附著性分析 108
4.3.9 磨耗及磨耗率分析 110
4.3.10 殘留應力分析 113
4.3.11 耐蝕性分析 114
4.3.12 CIELAB色彩空間L*a*b*分析 116
第五章 結論 118
參考文獻 120

圖2.1 TiN之二元相圖[36] 4
圖2.2 TiN和TiCN薄膜在不同載荷下對GCr15鋼的平均摩擦係數和平均磨損量曲線[37] 5
圖2.3 WC-CO底材、TiN、TiCN和TiAlN薄膜在3.5 wt.% Nacl溶液中的動電位極化曲線圖[38] 6
圖2.4 平衡磁控濺鍍(內外圈磁鐵強度相同)、(b)內圈磁場加強和(c)外圈磁場加強之非平衡磁控濺鍍磁場示意圖[41] 8
圖2.5 (a)為封閉式(雙靶同一邊放置),(b)為閉場式(雙靶面對面放置)和(c)為鏡像式(雙靶面對面放置)之非平衡磁控靶配置[41] 9
圖2.6 為離子與原子比在基板與靶材之間的距離變化對於封閉式磁場(CFUBMS),鏡像式磁場(MFUBMS)及單隻非平衡磁控靶(UBMS)的影響[42] 9
圖2.7真空放電I-V圖及不同電漿源之放電作用區域[45] 11
圖2.8 HiPIMS電漿密度與其他鍍膜技術之比較[48] 12
圖2.9 HiPIMS電源供應系統配置圖[48] 13
圖2.10 dcMS與HiPIMS電之靶電流密度與靶電壓關係圖[47,49] 13
圖2.11 (a)單極(Unipolar)和(B)雙極(Bipolar)脈衝波型示意圖[51] 14
圖2.12 佔空比(On/off-time)對靶材峰值電壓與峰值電流之影響圖[48] 15
圖2.13 Nb金屬離子蝕刻基材與薄膜界面的元素成分[48] 17
圖2.14 金屬薄膜沉積結構區模型的定性示意圖[62] 19
圖2.15 (a) dcMS和(b) HiPIMS沉積CrN薄膜之TEM截面圖[67] 20
圖2.16 (a) dcMS及HiPIMS在(b) 44 A,(c) 74 A和(d)180 A的峰值電流沉積CrN薄膜之SEM截面圖[67] 20
圖2.17 (a) dcMS和(b) HiPIMS沉積TaN薄膜之SEM截面圖[70] 21
圖2.18 利用dcMS沉積TiAlSiN在不同角度之SEM斷面圖[71] 22
圖2.19 利用HiPIMS沉積TiAlSiN不同角度之SEM斷面圖[71] 22
圖2.20 不同矽含量對於TiN薄膜結構示意圖[72] 23
圖2.21 矽含量添加對於TiN薄膜硬度關係圖[72] 23
圖2.22 不同氮氬比下AlSiN薄膜Al,Si,N和O的元素成分[70] 24
圖2.23 不同氮氬比AlSiN薄膜(a)表面形貌和(b)截面形貌[73] 25
圖2.24 不同氮氬比下AlSiN薄膜厚度及沈積速率[73] 25
圖3.1實驗流程圖 26
圖3.2二維式物理氣相沉積系統示意圖 32
圖3.3高解析場發射電子微探儀 33
圖3.4 X光繞射原理示意圖 34
圖3.5 X光繞射儀 (X-ray diffraction) 36
圖3.6 X光射線光電子能譜儀 (XPS) 37
圖3.7 場發射掃描電子顯微鏡 37
圖3.8 高階三束型聚焦離子束顯微鏡 38
圖3.9 穿透式電子顯微鏡 38
圖3.10 原子力顯微鏡 39
圖3.11奈米壓痕儀(Nanoindentation) 40
圖3.12刮痕試驗儀(Scratch Tester) 41
圖3.13刮痕實驗之結果分析圖例[77] 41
圖 3.14附著性標準HF1~HF6 [78] 42
圖3.15磨耗試驗儀 44
圖3.16 恆電位儀 45
圖3.17 耐蝕性測試示意圖 45
圖3.18 紫外光-可見光光譜儀(UV-Vis) 46
圖4.1不同Zr50Ti15Si35靶功率與氮氣流量之TiZrSiNy薄膜之X光繞射圖譜 49
圖4.2不同Zr50Ti15Si35靶功率與氮氣流量之TiZrSiNy薄膜的Si2p軌域分峰圖 50
圖4.3不同Zr50Ti15Si35靶功率與氮氣流量之TiZrSiNy薄膜表面形貌 51
圖4.4 不同Zr50Ti15Si35靶功率與氮氣流量之TiZrSiNy薄膜之橫截面形貌 52
圖4.5 50N2的薄膜截面之TEM影像 (a)橫截面;(b)、(c)、(e)高倍率影像;(d) 選區繞射圖;(f)暗視野(111)方向影像;(g)暗視野(200)方向影像和(h)暗視野(220)方向影像 54
圖4.6 80N2的薄膜截面之TEM影像 (a)橫截面;(b)、(c)、(d)高倍率影像;(e) 選區繞射圖;(f)暗視野(111)方向影像;(g)暗視野(200)方向影像和(h)暗視野(220)方向影像 56
圖4.7 100N3的薄膜截面之TEM影像 (a)橫截面;(b)、(c)、(d)高倍率影像;(e) 選區繞射圖;(f)暗視野(111)方向影像;(g)暗視野(200)方向影像和(h)暗視野(220)方向影像 57
圖4.8 200N10的薄膜截面之TEM影像 (a)橫截面、(b);(c)高倍率影像和(d)選區繞射圖 58
圖4.9 不同Zr50Ti15Si35靶功率與氮氣流量之TiZrSiNy薄膜表面形貌 59
圖4.10 不同Zr50Ti15Si35靶功率與氮氣流量之TiZrSiNy薄膜硬度、彈性係數及抵抗塑性變形圖 60
圖4.11 不同Zr50Ti15Si35靶功率與氮氣流量之TiZrSiNy薄膜的刮道光學顯微鏡照片 63
圖4.12 不同Zr50Ti15Si35靶功率與氮氣流量之TiZrSiNy薄膜的HRC-DB測試結果 64
圖4.13 不同Zr50Ti15Si35靶功率與氮氣流量之TiZrSiNy薄膜動電位極化曲線 67
圖4.14 不同Zr50Ti15Si35靶功率與氮氣流量之TiZrSiNy薄膜的CIE L*a*b*色彩空間圖 68
圖4.15不同Zr50Ti15Si35靶功率與氮氣流量之TiZrSiNy薄膜鍍製於硬化420不銹鋼於一般日光燈下拍攝圖 69
圖4.16 不同氮氣與乙炔流量之TiZrSiCxNy薄膜之X光繞射圖 71
圖4.17 不同氮氣及乙炔流量之TiZrSiCxNy薄膜橫截面形貌 (a)N2、(b) N2C01、(c) N2C02、(d) N2.5C02、(e) N3、(f) N3C01和(g) N3C02 73
圖4.18 不同氮氣及乙炔流量之TiZrSiCxNy薄膜表面形貌 75
圖4.19 不同氮氣及乙炔流量之TiZrSiCxNy薄膜硬度、彈性係數及抵抗塑性變形圖 77
圖4.20 不同氮氣及乙炔流量之TiZrSiCxNy薄膜之刮道光學顯微鏡的照片 79
圖4.21 不同氮氣及乙炔流量之TiZrSiCxNy薄膜之HRC-DB測試結果 82
圖4.22不同氮氣及乙炔流量之TiZrSiCxNy薄膜之磨擦係數與磨耗距離關係 83
圖4.23不同氮氣及乙炔流量之TiZrSiCxNy薄膜之磨道形貌 84
圖4.24不同氮氣及乙炔流量之TiZrSiCxNy薄膜的CIE L*a*b*色彩空間圖 88
圖4.25 不同氮氣及乙炔流量之TiZrSiCxNy薄膜鍍製於硬化420不銹鋼於一般日光燈下拍攝圖 89
圖4.26不同乙炔流量之TiZrSiCxNy薄膜之X光繞射圖。 91
圖4.27不同乙炔流量之TiZrSiCxNy薄膜的C1s軌域分峰圖 93
圖4.28 不同乙炔流量之TiZrSiCxNy薄膜橫截面形貌 (a) C0、(b) C01、(c) C02、(d) C03和(e) C04 95
圖4.29 C0的薄膜截面之TEM影像 (a)橫截面;(b)、(c)、(d)高倍率影像;(e) 選區繞射圖;(f)暗視野(111)方向影像;(g)暗視野(200)方向影像和(h)暗視野(220)方向影像 97
圖4.30 C01的薄膜截面之TEM影像 (a)橫截面;(b)、(c)、(d)高倍率影像;(e) 選區繞射圖;(f)暗視野(111)方向影像;(g)暗視野(200)方向影像與(h)暗視野(220)方向影像 99
圖4.31 C02的薄膜截面之TEM影像 (a)橫截面;(b)、(c)、(d)高倍率影像;(e) 選區繞射圖;(f)暗視野(111)方向影像;(g)暗視野(200)方向影像和 (h)暗視野(220)方向影像 100
圖4.32 C03的薄膜截面之TEM影像 (a)橫截面;(b)、(c)、(d)高倍率影像;(e) 選區繞射圖;(f)暗視野(111)方向影像;(g)暗視野(200)方向影像和(h)暗視野(220)方向影像 102
圖4.33 C04的薄膜截面之TEM影像 (a)橫截面;(b)、(c)、(d)高倍率影像;(e) 選區繞射圖;(f)暗視野(111)方向影像;(g)暗視野(200)方向影像和(h)暗視野(220)方向影像 103
圖4.34 不同乙炔流量之TiZrSiCxNy薄膜表面形貌 104
圖4.35 不同乙炔流量之TiZrSiCxNy薄膜硬度、彈性係數及抵抗塑性變形圖 106
圖4.36 不同乙炔流量之TiZrSiCxNy薄膜的刮道光學顯微鏡照片 108
圖4.37 不同乙炔流量之TiZrSiCxNy薄膜HRC-DB測試結果 109
圖4.38不同乙炔流量之TiZrSiCxNy薄膜之摩擦係數與磨耗距離關係 110
圖4.39不同乙炔流量之TiZrSiCxNy薄膜之磨道形貌 111
圖4.40 不同乙炔流量之TiZrSiCxNy薄膜動電位極化曲線 114
圖4.41 不同乙炔流量之TiZrSiCxNy薄膜的CIE L*a*b*色彩空間圖 116
圖4.42 不同乙炔流量之TiZrSiCxNy薄膜鍍製於硬化420不銹鋼於一般日光燈下拍攝圖 117

表2.1 WC-CO底材、TiN、TiCN和TiAlN薄膜在3.5 wt.% Nacl溶液中的動電位極化曲線數值[38] 6
表2.2 不同濺鍍技術與HiPIMS技術之比較表[46] 11
表3.1 不同Zr50Ti15Si35靶功率及氮氣流量之TiZrSiNy薄膜製程參數 29
表3.2 不同氮氣及乙炔流量之TiZrSiCxNy薄膜製程參數 30
表3.3 不同乙炔流量之TiZrSiCxNy薄膜製程參數 31
表4.1不同Zr50Ti15Si35靶功率與氮氣流量之TiZrSiNy薄膜成分分析 48
表4.2 不同Zr50Ti15Si35靶功率與氮氣流量之TiZrSiNy薄膜之晶粒尺寸 49
表4.3不同Zr50Ti15Si35靶功率與氮氣流量之TiZrSiNy薄膜厚度與沉積速率 52
表4.4不同Zr50Ti15Si35靶功率與氮氣流量之TiZrSiNy薄膜平均粗糙度 59
表4.5不同Zr50Ti15Si35靶功率與氮氣流量之TiZrSiNy薄膜硬度與彈性係數 61
表4.6 不同Zr50Ti15Si35靶功率與氮氣流量之TiZrSiNy薄膜之臨界荷重數值 63
表4.7不同Zr50Ti15Si35靶功率與氮氣流量之TiZrSiNy薄膜的殘留應力 65
表4.8不同Zr50Ti15Si35靶功率與氮氣流量之TiZrSiNy薄膜抗腐蝕數據 67
表4.9不同Zr50Ti15Si35靶功率與氮氣流量之TiZrSiNy薄膜CIE L*a*b*色彩空間數值 69
表4.10不同氮氣與乙炔流量之TiZrSiCxNy薄膜定量成分分析 70
表4.11不同氮氣及乙炔流量之TiZrSiCxNy薄膜厚度與沉積速率 74
表4.12不同氮氣及乙炔流量之TiZrSiCxNy薄膜平均粗糙度 76
表4.13不同氮氣及乙炔流量之TiZrSiCxNy薄膜硬度與彈性係數 78
表4.14不同氮氣及乙炔流量之TiZrSiCxNy薄膜之臨界荷重數值 80
表4.15不同氮氣及乙炔流量之TiZrSiCxNy薄膜之磨擦係數及磨耗率 85
表4.16不同氮氣及乙炔流量之TiZrSiCxNy薄膜的殘留應力 86
表4.17不同氮氣及乙炔流量之TiZrSiCxNy薄膜CIE L*a*b*色彩空間數值 89
表4.18不同乙炔流量之TiZrSiCxNy薄膜定量成分分析 90
表4.19不同乙炔流量之TiZrSiCxNy薄膜之晶粒尺寸 92
表4.20不同乙炔流量之TiZrSiCxNy薄膜厚度與沉積速率 95
表4.21不同乙炔流量之TiZrSiCxNy薄膜平均粗糙度 105
表4.22不同乙炔流量之TiZrSiCxNy薄膜硬度與彈性係數 107
表4.23不同乙炔流量之TiZrSiCxNy薄膜之臨界荷重數值 108
表4.24不同乙炔流量之TiZrSiCxNy薄膜之摩擦係數及磨耗率 112
表4.25不同乙炔流量之TiZrSiCxNy薄膜的殘留應力 113
表4.26不同乙炔流量之TiZrSiCxNy薄膜抗腐蝕數據 115
表4.27不同乙炔流量之TiZrSiCxNy薄膜CIE L*a*b*色彩空間數值 117


[1]Christou, C., & Barber, Z. H. (2000). Ionization of sputtered material in a planar magnetron discharge. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 18(6), 2897-2907.
[2]Ma, Q., Li, L., Xu, Y., Gu, J., Wang, L., & Xu, Y. (2017). Effect of bias voltage on TiAlSiN nanocomposite coatings deposited by HiPIMS. Applied Surface Science, 392, 826-833.
[3]Hovsepian, P. E., Ehiasarian, A. P., Purandare, Y. P., Biswas, B., Pérez, F. J., Lasanta, M. I., ... & Agüero, A. (2016). Performance of HIPIMS deposited CrN/NbN nanostructured coatings exposed to 650 C in pure steam environment. Materials chemistry and physics, 179, 110-119.
[4]Wu, J., Wu, B. H., Ma, D. L., Xie, D., Wu, Y. P., Chen, C. Z., ... & Leng, Y. X. (2017). Effects of magnetic field strength and deposition pressure on the properties of TiN films produced by high power pulsed magnetron sputtering (HPPMS). Surface and Coatings Technology, 315, 258-267.
[5]Liu, S., Yang, Y., Ng, F. L., Ji, R., & Zeng, X. T. (2017). Oxidation behaviour of CrAlYN coatings at elevated temperatures. Surface and Coatings Technology, 320, 357-361.
[6]Konishi, T., Yukimura, K., & Takaki, K. (2016). Fabrication of diamond-like carbon films using short-pulse HiPIMS. Surface and Coatings Technology, 286, 239-245.
[7]Loquai, S., Baloukas, B., Klemberg-Sapieha, J. E., & Martinu, L. J. S. E. M. (2017). HiPIMS-deposited thermochromic VO2 films with high environmental stability. Solar energy materials and solar cells, 160, 217-224.
[8]Wu, C. H., Yang, F. C., Chen, W. C., & Chang, C. L. (2016). Influence of oxygen/argon reaction gas ratio on optical and electrical characteristics of amorphous IGZO thin films coated by HiPIMS process. Surface and Coatings Technology, 303, 209-214.
[9] Machunze, R., Ehiasarian, A. P., Tichelaar, F. D., & Janssen, G. C. A. M. (2009). Stress and texture in HIPIMS TiN thin films. Thin Solid Films, 518(5), 1561-1565.
[10] Luo, Q., Yang, S., & Cooke, K. E. (2013). Hybrid HIPIMS and DC magnetron sputtering deposition of TiN coatings: Deposition rate, structure and tribological properties. Surface and Coatings Technology, 236, 13-21.
[11] Ferreira, F., Oliveira, J. C., & Cavaleiro, A. (2016). CrN thin films deposited by HiPIMS in DOMS mode. Surface and Coatings Technology, 291, 365-375.
[12] Molarius, J. M., Korhonen, A. S., Harju, E., & Lappalainen, R. (1987). Comparison of cutting performance of ion-plated NbN, ZrN, TiN and (Ti, Al) N coatings. Surface and Coatings Technology, 33, 117-132.
[13] Vega, J., Scheerer, H., Andersohn, G., & Oechsner, M. (2018). Experimental studies of the effect of Ti interlayers on the corrosion resistance of TiN PVD coatings by using electrochemical methods. Corrosion science, 133, 240-250.
[14] Matei, A A., Pencea, I., Branzei, M., Trancă, D. E., Ţepeş, G., Sfăt, C. E., ... & Stanciu, G. A. (2015). Corrosion resistance appraisal of TiN, TiCN and TiAlN coatings deposited by CAE-PVD method on WC–Co cutting tools exposed to artificial sea water. Applied Surface Science, 358, 572-578.
[15] Bull, S. J., Bhat, D. G., & Staia, M. H. (2003). Properties and performance of commercial TiCN coatings. Part 1: coating architecture and hardness modelling. Surface and Coatings technology, 163, 499-506.
[16] Bull, S. J., Bhat, D. G., & Staia, M. H. (2003). Properties and performance of commercial TiCN coatings. Part 2: tribological performance. Surface and Coatings Technology, 163, 507-514.
[17] Souto, R. M., & Alanyali, H. (2000). Electrochemical characteristics of steel coated with TiN and TiAlN coatings. Corrosion Science, 42(12), 2201-2211.
[18] Chang, Y. Y., & Cai, M.C. (2019). Mechanical property and tribological performance of AlTiSiN and AlTiBN hard coatings using ternary alloy targets. Surface and Coatings Technology, 374, 1120-1127.
[19] Cheng, Y. H., Browne, T., Heckerman, B., & Meletis, E. I. (2010). Mechanical and tribological properties of nanocomposite TiSiN coatings. Surface and Coatings Technology, 204(14), 2123-2129.
[20] Chang, Y. Y., Yang, Y. J., & Weng, S. Y. (2020). Effect of interlayer design on the mechanical properties of AlTiCrN and multilayered AlTiCrN/TiSiN hard coatings. Surface and Coatings Technology, 389, 125637.
[21] Mo, J. L., & Zhu, M. H. (2009). Tribological oxidation behaviour of PVD hard coatings. Tribology International, 42(11-12), 1758-1764.
[22]da Silva Oliveira, C. I., Martinez-Martinez, D., Cunha, L., Rodrigues, M. S., Borges, J., Lopes, C., ... & Apreutesei, M. (2018). Zr-ON coatings for decorative purposes: Study of the system stability by exploration of the deposition parameter space. Surface and Coatings Technology, 343, 30-37.
[23] Vaz, F., Cerqueira, P., Rebouta, L., Nascimento, S. M. C., Alves, E., Goudeau, P., ... & De Rijk, J. (2004). Structural, optical and mechanical properties of coloured TiNxOy thin films. Thin Solid Films, 447, 449-454.
[24] Ariza, E., Rocha, L. A., Vaz, F., Cunha, L., Ferreira, S. C., Carvalho, P., ... & Rivière, J. P. (2004). Corrosion resistance of ZrNxOy thin films obtained by rf reactive magnetron sputtering. Thin Solid Films, 469, 274-281.
[25] Ariza, E., Rocha, L. A., Ferreira, S. C., Vaz, F., Cunha, L., Carvalho, P., ... & Rivière, J. P. (2004). Corrosion behaviour of single layered ZrNxOy thin films in artificial sweat solutions.
[26] Zega, B., Kornmann, M., & Amiguet, J. (1977). Hard decorative TiN coatings by ion plating. Thin Solid Films, 45(3), 577-582.
[27] Karlsson, B., Sundgren, J. E., & Johansson, B. O. (1982). Optical constants and spectral selectivity of titanium carbonitrides. Thin Solid Films, 87(2), 181-187.
[28] Perry, A. J., Georgson, M., & Sproul, W. D. (1988). Variations in the reflectance of TiN, ZrN and HfN. Thin Solid Films, 157(2), 255-265.
[29] Perry, A. J. (1986). The structure and colour of some nitride coatings. Thin Solid Films, 135(1), 73-85.
[30] Randhawa, H. (1988). Hard coatings for decorative applications. Surface and Coatings Technology, 36(3-4), 829-836.
[31] Mitterer, C., Komenda-Stallmaier, J., Losbichler, P., Schmölz, P., Werner, W. S. M., & Störi, H. (1995). Sputter deposition of decorative boride coatings. Vacuum, 46(11), 1281-1294.
[32] Chappé, J. M., Martin, N., Lintymer, J., Sthal, F., Terwagne, G., & Takadoum, J. (2007). Titanium oxynitride thin films sputter deposited by the reactive gas pulsing process. Applied Surface Science, 253(12), 5312-5316.
[33] Carvalho, P., Borges, J., Rodrigues, M. S., Barradas, N. P., Alves, E., Espinós, J. P., ... & Vaz, F. (2015). Optical properties of zirconium oxynitride films: The effect of composition, electronic and crystalline structures. Applied Surface Science, 358, 660-669.
[34] Schwetz, K. A., Reinmuth, K., & Lipp, A. (1981). Production and industrial application of refractory boron compounds. Radex Rundsch.;(Austria), 3.
[35] McKelvy, M. J., Eyring, L., & Storms, E. K. (1984). Analytical and structural analysis of the lanthanum-deficient lanthanum hexaboride. The Journal of Physical Chemistry, 88(9), 1785-1790.
[36]Wriedt, H. A., & Murray, J. L. (1987). The N-Ti (nitrogen-titanium) system. Bulletin of Alloy Phase Diagrams, 8(4), 378-388.
[37] Qin, Y., Zheng, G., Zhu, L., He, J., Zhang, F., Dong, Y., & Yin, F. (2018). Structure and wear characteristics of TiCN nanocomposite coatings fabricated by reactive plasma spraying. Surface and Coatings Technology, 342, 137-145.
[38] Matei, A. A., Pencea, I., Branzei, M., Trancă, D. E., Ţepeş, G., Sfăt, C. E., ... & Stanciu, G. A. (2015). Corrosion resistance appraisal of TiN, TiCN and TiAlN coatings deposited by CAE-PVD method on WC–Co cutting tools exposed to artificial sea water. Applied Surface Science, 358, 572-578.
[39]Window, B., & Savvides, N. (1986). Charged particle fluxes from planar magnetron sputtering sources. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 4(2), 196-202.
[40]Window, B., & Savvides, N. (1986). Unbalanced dc magnetrons as sources of high ion fluxes. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 4(3), 453-456.
[41]Kelly, P. J., & Arnell, R. D. (2000). Magnetron sputtering: a review of recent developments and applications. Vacuum, 56(3), 159-172.
[42] Kelly, P. J., & Arnell, R. D. (1998). The influence of magnetron configuration on ion current density and deposition rate in a dual unbalanced magnetron sputtering system. Surface and Coatings Technology, 108, 317-322.
[43] Bugaev, S. P., Koval, N. N., Sochugov, N. S., & Zakharov, A. N. (1996, July). Investigation of a high-current pulsed magnetron discharge initiated in the low-pressure diffuse arc plasma. In Proceedings of 17th International Symposium on Discharges and Electrical Insulation in Vacuum (Vol. 2, pp. 1074-1076). IEEE.
[44]Kouznetsov, V., Macak, K., Schneider, J. M., Helmersson, U., & Petrov, I. (1999). A novel pulsed magnetron sputter technique utilizing very high target power densities. Surface and coatings technology, 122(2-3), 290-293.
[45]Roth, J. R. (1995). Industrial plasma engineering. Institute of Physics Publishing, 1, 366-367.
[46]Anders, A. (2010). High power impulse magnetron sputtering and related discharges: Scalable plasma sources for plasma-based ion implantation and deposition. Surface and Coatings Technology, 204(18-19), 2864-2868.
[47]Ehiasarian, A. P., New, R., Münz, W. D., Hultman, L., Helmersson, U., & Kouznetsov, V. (2002). Influence of high power densities on the composition of pulsed magnetron plasmas. Vacuum, 65(2), 147-154.
[48]Sarakinos, K., Alami, J., & Konstantinidis, S. (2010). High power pulsed magnetron sputtering: A review on scientific and engineering state of the art. Surface and coatings technology, 204(11), 1661-1684.
[49]Alami, J., Sarakinos, K., Mark, G., & Wuttig, M. (2006). On the deposition rate in a high power pulsed magnetron sputtering discharge. Applied physics letters, 89(15), 154104.
[50]Thornton, J. A. (1978). Magnetron sputtering: basic physics and application to cylindrical magnetrons. Journal of Vacuum Science and Technology, 15(2), 171-177.
[51]Arnell, R. D., & Kelly, P. J. (1999). Recent advances in magnetron sputtering. Surface and Coatings Technology, 112(1-3), 170-176.
[52]Ganciu, M., Konstantinidis, S., Paint, Y., Dauchot, J. P., Hecq, M., De Poucques, L., ... & Touzeau, M. (2005). Preionised pulsed magnetron discharges for ionised physical vapour deposition. J. Optoelectron. Adv. Mater, 7(5), 2481-2484.
[53]Konstantinidis, S., Dauchot, J. P., Ganciu, M., Ricard, A., & Hecq, M. (2006). Influence of pulse duration on the plasma characteristics in high-power pulsed magnetron discharges. Journal of applied physics, 99(1), 013307.
[54]Christie, D. J. (2005). Target material pathways model for high power pulsed magnetron sputtering. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 23(2), 330-335.
[55]Ehiasarian, A. P., Wen, J. G., & Petrov, I. (2007). Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion. Journal of applied physics, 101(5), 054301.
[56]Schönjahn, C., Ehiasarian, A. P., Lewis, D. B., New, R., Münz, W. D., Twesten, R. D., & Petrov, I. (2001). Optimization of in situ substrate surface treatment in a cathodic arc plasma: A study by TEM and plasma diagnostics. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 19(4), 1415-1420.
[57]Håkansson, G., Hultman, L., Sundgren, J. E., Greene, J. E., & Münz, W. D. (1991). Microstructures of TiN films grown by various physical vapour deposition techniques. Surface and Coatings Technology, 48(1), 51-67.
[58]Helmersson, U., Lattemann, M., Bohlmark, J., Ehiasarian, A. P., & Gudmundsson, J. T. (2006). Ionized physical vapor deposition (IPVD): A review of technology and applications. Thin solid films, 513(1-2), 1-24.
[59]Schönjahn, C., Donohue, L. A., Lewis, D. B., Münz, W. D., Twesten, R. D., & Petrov, I. (2000). Enhanced adhesion through local epitaxy of transition-metal nitride coatings on ferritic steel promoted by metal ion etching in a combined cathodic arc/unbalanced magnetron deposition system. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 18(4), 1718-1723.
[60] Ehiasarian, A. P., Münz, W. D., Hultman, L., Helmersson, U., & Petrov, I. (2003). High power pulsed magnetron sputtered CrNx films. Surface and coatings technology, 163, 267-272.
[61]Vetter, J., Michler, T., & Steuernagel, H. (1999). Hard coatings on thermochemically pretreated soft steels: application potential for ball valves. Surface and Coatings Technology, 111(2-3), 210-219.
[62]Barna, P. B., & Adamik, M. J. T. S. F. (1998). Fundamental structure forming phenomena of polycrystalline films and the structure zone models. Thin solid films, 317(1-2), 27-33.
[63]Koehler, J. S. (1970). Attempt to design a strong solid. Physical review B, 2(2), 547.
[64]Tellier, C. R., & Tosser, A. J. (2016). Size effects in thin films (Vol. 2). Elsevier.
[65]Matacotta, F. C., & Ottaviani, G. (1995). Science and technology of thin films. World scientific.
[66]Ehiasarian, A. P., Hovsepian, P. E., Hultman, L., & Helmersson, U. (2004). Comparison of microstructure and mechanical properties of chromium nitride-based coatings deposited by high power impulse magnetron sputtering and by the combined steered cathodic arc/unbalanced magnetron technique. Thin solid films, 457(2), 270-277.
[67]Alami, J., Sarakinos, K., Uslu, F., & Wuttig, M. (2008). On the relationship between the peak target current and the morphology of chromium nitride thin films deposited by reactive high power pulsed magnetron sputtering. Journal of Physics D: Applied Physics, 42(1), 015304.
[68]Patsalas, P., Gravalidis, C., & Logothetidis, S. (2004). Surface kinetics and subplantation phenomena affecting the texture, morphology, stress, and growth evolution of titanium nitride films. Journal of applied physics, 96(11), 6234-6246.
[69]Hultman, L., Sundgren, J., Greene, J. E., Bergstrom, D. B., & Petrov, I. (1995). High-flux low-energy ({congruent} 20 eV) N {sup+}{sub 2} ion irradiation during TiN deposition by reactive magnetron sputtering: Effects on microstructure and preferred orientation. Journal of Applied Physics, 78(9).
[70]Alami, J., Persson, P. Å., Music, D., Gudmundsson, J. T., Bohlmark, J., & Helmersson, U. (2005). Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 23(2), 278-280.
[71]Bobzin, K., Bagcivan, N., Immich, P., Bolz, S., Alami, J., & Cremer, R. (2009). Advantages of nanocomposite coatings deposited by high power pulse magnetron sputtering technology. Journal of materials processing technology, 209(1), 165-170.
[72]Patscheider, J., Zehnder, T., & Diserens, M. (2001). Structure–performance relations in nanocomposite coatings. Surface and Coatings Technology, 146, 201-208.
[73]Jiang, X., Yang, F. C., Chen, W. C., Lee, J. W., & Chang, C. L. (2017). Effect of nitrogen-argon flow ratio on the microstructural and mechanical properties of AlSiN thin films prepared by high power impulse magnetron sputtering. Surface and Coatings Technology, 320, 138-145.
[74]Leyland, A., & Matthews, A. (2000). On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear, 246(1-2), 1-11.
[75]Pharr, G. M., & Oliver, W. C. (1992). Measurement of thin film mechanical properties using nanoindentation. Mrs Bulletin, 17(7), 28-33.
[76]Bull, S. J., & Berasetegui, E. G. (2006). An overview of the potential of quantitative coating adhesion measurement by scratch testing. Tribology International, 39(2), 99-114.
[77]Odén, M., Ericsson, C., Håkansson, G., & Ljungcrantz, H. (1999). Microstructure and mechanical behavior of arc-evaporated Cr–N coatings. Surface and Coatings Technology, 114(1), 39-51.
[78]N. Vidakis, A. Antoniadis, and N. Bilalis, The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds, Journal of Materials Processing Technology, 143 (2003) 481-485.
[79]Andrade, C., & Alonso, C. (2004). Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method. Materials and Structures, 37(9), 623-643.
[80]Poynton, C. (2012). Digital video and HD: Algorithms and Interfaces. Elsevier.

電子全文 電子全文(網際網路公開日期:20270901)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊