|
[1]M. B. Park and N. H. Cho, "The effect of the sintering atmosphere on the electrical and chemical characteristics of grain boundaries in SrTiO3 ceramics prepared from semiconducting powders," Solid State Ionics, vol. 154-155, pp. 175-181, 2002, doi: https://doi.org/10.1016/S0167-2738(02)00425-3. [2]B. Zhong, Z. Long, C. Yang, Y. Li, and X. Wei, "Colossal dielectric permittivity in co-doping SrTiO3 ceramics by Nb and Mg," Ceramics International, vol. 46, no. 12, pp. 20565-20569, 2020, doi: https://doi.org/10.1016/j.ceramint.2020.05.174. [3]M. Qin et al., "Point defect structure of La-doped SrTiO3 ceramics with colossal permittivity," Acta Materialia, vol. 164, pp. 76-89, 2019, doi: https://doi.org/10.1016/j.actamat.2018.10.025. [4]C. Liu et al., "Colossal dielectric constant and relaxation behaviors in Pr:SrTiO3 ceramics," Journal of Applied Physics, vol. 107, pp. 094108-094108, 2010, doi: 10.1063/1.3359715. [5]Z. Wang et al., "Giant permittivity and low dielectric loss of SrTiO3 ceramics sintered in nitrogen atmosphere," Journal of the European Ceramic Society, vol. 34, no. 7, pp. 1755-1760, 2014, doi: https://doi.org/10.1016/j.jeurceramsoc.2014.01.015. [6]Z. J. Shen et al., "Hydrogen-induced degradation in SrTiO3-based grain boundary barrier layer ceramic capacitors," Ceramics International, vol. 35, no. 3, pp. 953-956, 2009, doi: https://doi.org/10.1016/j.ceramint.2008.04.005. [7]N. Wang et al., "Structural and dielectric behavior of giant permittivity SrNbxTi1−xO3 ceramics sintered in nitrogen atmosphere," Ceramics International, vol. 42, no. 12, pp. 13593-13600, 2016, doi: https://doi.org/10.1016/j.ceramint.2016.05.153. [8]Y. Tanaka, T. Iwasaki, M. Nakamura, A. Nagai, K. Katayama, and K. Yamashita, "Polarization and microstructural effects of ceramic hydroxyapatite electrets," Journal of Applied Physics, vol. 107, no. 1, p. 014107, 2010, doi: 10.1063/1.3265429. [9]S. S. A. Gillani, A. Jawad, I. Zeba, M. Shakil, M. B. Tahir, and R. Ahmad, "Effect of Li, K and Be doping on phase stability, band structure and optoelectronic response of SrTiO3 perovskite for semiconductor devices: A computational insight," Optik, vol. 227, p. 166044, 2021, doi: https://doi.org/10.1016/j.ijleo.2020.166044. [10]M.-V. Le et al., "Manipulating the Structure and Characterization of Sr1−xLaxTiO3 Nanocubes toward the Photodegradation of 2-Naphthol under Artificial Solar Light," Catalysts, vol. 11, no. 5, p. 564, 2021. [Online]. Available: https://www.mdpi.com/2073-4344/11/5/564. [11]J. Azadmanjiri, C. Berndt, J. Wang, A. Kapoor, V. Srivastava, and C. Wen, "A review on hybrid nanolaminate materials synthesized by deposition techniques for energy storage applications," Journal of Materials Chemistry A, vol. 2, 02/18 2014, doi: 10.1039/C3TA14034B. [12]E. Drożdż and A. Koleżyński, "The structure, electrical properties and chemical stability of porous Nb-doped SrTiO3 – experimental and theoretical studies," RSC Advances, vol. 7, no. 46, pp. 28898-28908, 2017, doi: 10.1039/c7ra04205a. [13]C. Wu et al., "The effect of reduced graphene oxide on microstructure and thermoelectric properties of Nb-doped A-site-deficient SrTiO3 ceramics," Journal of Alloys and Compounds, vol. 786, pp. 884-893, 2019, doi: 10.1016/j.jallcom.2019.01.376. [14]D. M. Smyth, "The Defect Chemistry of Donor-Doped BaTiO3: A Rebuttal," Journal of Electroceramics, vol. 9, no. 3, pp. 179-186, 2002, doi: 10.1023/A:1023213208904. [15]M. T. Buscaglia et al., "Effect of nanostructure on the thermal conductivity of La-doped SrTiO3 ceramics," Journal of the European Ceramic Society, vol. 34, no. 2, pp. 307-316, 2014, doi: https://doi.org/10.1016/j.jeurceramsoc.2013.08.009. [16]V. Dwij, B. K. De, S. Tyagi, G. Sharma, and V. Sathe, "Fano resonance and relaxor behavior in Pr doped SrTiO3: A Raman spectroscopic investigation," Physica B: Condensed Matter, vol. 620, p. 413265, 2021, doi: https://doi.org/10.1016/j.physb.2021.413265. [17]A. Bhogra et al., "Tuning the Electrical and Thermoelectric Properties of N Ion Implanted SrTiO3 Thin Films and Their Conduction Mechanisms," Sci Rep, vol. 9, no. 1, p. 14486, 2019, doi: 10.1038/s41598-019-51079-y. [18]Y. Ding, Y. Chen, K. C. Pradel, W. Zhang, M. Liu, and Z. L. Wang, "Domain structures and Prco antisite point defects in double-perovskite PrBaCo2O5+δ and PrBa0.8Ca0.2Co2O5+δ," Ultramicroscopy, vol. 193, pp. 64-70, 2018, doi: https://doi.org/10.1016/j.ultramic.2018.06.008.
|