跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/08 20:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃冠棋
研究生(外文):Huang, Kuan-Chi
論文名稱:應用深度雙Q網路於股票自動交易系統
論文名稱(外文):Double Deep Q-Network in Automated Stock Trading
指導教授:蔡炎龍蔡炎龍引用關係
口試委員:陳天進張宜武
口試日期:2021-12-24
學位類別:碩士
校院名稱:國立政治大學
系所名稱:應用數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:英文
論文頁數:32
中文關鍵詞:深度強化學習神經網路Q學習深度雙Q網路股票交易
外文關鍵詞:Deep reinforcement learningNeural networkQ-learningDDQNStocks trading
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇文章使用了強化學習結合深度學習的技術去訓練自動交易系統,我們分別建立了深度卷積網路和全連接網路去預測動作的Q值,並使用DDQN的模型去更新我們的動作價值。我們的交易系統每天採用10天前的股票資訊,去預測股票的趨勢,並最大化我們的利益。

DDQN是一種深度強化學習模型,透過建立目標網路和調整誤差函數使得他能夠避免DQN的過估計問題,並得到更好的效能,在我們的實驗中,我們得到了一個良好的效果,證明DDQN在自動交易系統上是有效的。
In this paper, we use the artificial neural network combined with reinforcement learning to train the automated trading system. We construct the CNN model and the fully-connected model to predict the Q-values of the actions and use the algorithm of DDQN to correct the TD error. According to past 10 days data, the system predicts the trend of the stocks and maximize our profit.

DDQN is a deep reinforcement model, which is an improvement of DQN, build the target network and modify loss function to avoid overestimation and get better performance. In our experiment, we get a good result that DDQN is feasible on automated trading systems.
致謝 i
中文摘要 ii
Abstract iii
Contents iv
List of Figures vi
1 Introduction 1
2 Deep Learning 2
2.1 NeuronsandNeuralNetworks .......................... 3
2.2 ActivationFunction................................ 4
2.3 LossFunction................................... 6
2.4 GradientDescentMethod............................. 7
3 Convolutional Neural Network (CNN) 9
4 Reinforcement Learning 12
4.1 Introduction.................................... 12
4.2 MarkovDecisionProcesses............................ 14
4.3 MonteCarloMethodandTemporalDifference .................16
4.4 Q-Learning .................................... 17
5 Deep Reinforcement Learning 18
5.1 DeepQ-LearningNetwork(DQN)........................ 18
5.2 PolicyGradient .................................. 21
6 Automated Trading System 24
6.1 DatasetPreparation................................ 24
6.2 TradingSystemSettlement............................ 25
6.3 InitialParameterSettlement ........................... 26
6.4 NeuralNetwork.................................. 27
6.4.1 CNNinDDQN.............................. 27
6.4.2 Fully-ConnectedNetworkinDDQN................... 28
6.5 Result....................................... 28
7 Conclusion 30
Bibliography 31
[1] Fei-Ting Chen. Convolutional deep q-learning for etf automated trading system, 2017.
[2] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Machine learning basics. Deep
learning, 1(7):98–164, 2016.
[3] RobertHecht-Nielsen.Theoryofthebackpropagationneuralnetwork.InNeuralnetworks
for perception, pages 65–93. Elsevier, 1992.
[4] Yu-Ping Huang. A comparison of deep reinforcement learning models: The case of stock
automated trading system, 2021.
[5] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
[6] Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural networks, 6(6):861–867, 1993.
[7] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.
[8] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.
[9] Jerome H Saltzer, David P Reed, and David D Clark. End-to-end arguments in system design. ACM Transactions on Computer Systems (TOCS), 2(4):277–288, 1984.
31
[10] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.
[11] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deterministic policy gradient algorithms. In International conference on machine learning, pages 387–395. PMLR, 2014.
[12] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient methods for reinforcement learning with function approximation. In Advances in neural information processing systems, pages 1057–1063, 2000.
[13] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.
[14] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. 1989.
[15] Bayya Yegnanarayana. Artificial neural networks. PHI Learning Pvt. Ltd., 2009.
電子全文 電子全文(網際網路公開日期:20270104)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊