跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/06 11:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳于庭
研究生(外文):Chen, Yu-Ting
論文名稱:社群媒體限時動態對使用者疫情因應行為的影響
論文名稱(外文):The Effects of Social Media Ephemeral Content on Users’ Coping Behavior
指導教授:韓義興韓義興引用關係
指導教授(外文):Han, Yi-Hsing
口試委員:施琮仁賴盈如
口試委員(外文):Shih, Tsung-JenLai, Ying-Ju
口試日期:2021-12-17
學位類別:碩士
校院名稱:國立政治大學
系所名稱:國際傳播英語碩士學位學程(IMICS)
學門:傳播學門
學類:一般大眾傳播學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:英文
論文頁數:122
中文關鍵詞:短暫性內容Instagram限時動態敘事說服效果風險感知第三人效應因應行為
外文關鍵詞:Ephemeral contentInstagram StoriesNarrative persuasion effectsRisk perceptionThird-person perceptionCoping behavior
相關次數:
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
研究的注意力一直集中在社群媒體和健康的交叉點上,但人們對社群媒體上的短暫性內容使用如何通過塑造公眾對社會問題的反應來影響使用者線上和線下的參與知之甚少。本研究的目的是利用Instagram限時動態功能,探討疫情流行期間年輕人的 Instagram限時動態使用、風險感知、第三人效應、敘事說服效果和因應行為之間的關係。
首先,透過線上問卷蒐集 819 份樣本,以調查用戶的 Instagram 限時動態使用情況以及它如何影響台灣 COVID-19 爆發期間 18 至 35 歲人群的用戶對防疫行為的態度。該調查包括人口統計細節、Instagram限時動態使用情況、敘事說服效果、風險感知、關於疫情期間的第三人效應和因應行為。
調查結果強調了政府和公共衛生部門透過“限時動態”功能有效傳播官方訊息來加強其社群媒體運營和政策實施的有益影響。研究更發現,Instagram限時動態參與度和因應行為之間的正向聯繫是由敘事說服效果和第三人效應所調節的。該研究針對往後研究不同平台以及組織如何將其用作疫情大流行中的健康溝通指南提供建議。
Research attention has been focused on the intersection of social media and health, but little is known about how ephemeral content usage on social media would impact users’ engagement both online and in the real world by shaping the public's response to social issues. The aim of this paper is to explore the relationship between Instagram Stories, risk perception, third-person perception, narrative persuasion effects, and coping behavior among young people by using Instagram Stories features in the time of the pandemic.
A sample of 819 participants was surveyed to investigate their Instagram Stories usage as well as how it influences users' attitudes of epidemic prevention behaviors during the COVID-19 outbreak in Taiwan with people aged from 18 to 35 years old. The survey included demographic details; Instagram Stories usage; risk perception; third-person perception, narrative persuasion effect, and coping behavior regarding the pandemic.
Findings highlight the useful implications for governments and public health sectors to enhance their social media operations and policy implementation by effectively disseminating official messages through the Stories feature. Moreover, it also shows that the positive link between Instagram Stories engagement and coping behavior is mediated by the narrative persuasion effect and third-person perception. The study provides suggestions for researchers to examine different platforms and on how organizations can use them as a guide to health communication in the pandemic.
INTRODUCTION 1
1.1 Research Background 1
1.2 Motivation 7
1.3 Problem Statement 8
1.4 Significance of Study 9
1.5 Research Questions 10
LITERATURE REVIEW 13
2.1 Definition of Key Terms 13
A. Health Belief Model 13
B. Social Media Use 15
C. Ephemeral Content on Social Media 16
D. The Usage of Instagram Stories on Social Issues 17
E. Instagram Stories Features 20
F. Attitude on Social Media 25
G. Coping Behavior Towards Social Issue on Instagram Stories 28
H. Risk Perception on Social Media Use 31
I. Third-Person Perception on Social Media Use 34
J. Subjective Norms on Social Media Usage 38
METHODOLOGY 41
3.1 Overview of the Research 41
3.2 Data Collection 42
3.3 Data Analysis 43
3.4 Pretest 44
3.5 Main Study 45
3.5.1 Participants and Procedure 45
3.5.2 Measure 45
3.5.2.1 The Usage of Instagram Stories Features 47
3.5.2.2 Instagram Stories Experience 49
3.5.2.3 After Watching Instagram Stories 52
RESULTS 54
4.1 Descriptive Analysis 54
4.2 Regression Analysis 56
4.3 Mediation Analysis 58
DISCUSSION AND CONCLUSION 66
5.1 The Typology Instagram Stories Features and Narrative Persuasion Effect 67
5.2 The Relationship between Instagram Stories, Risk Perception, and Coping Behavior 69
5.3 The Relationship between Instagram Stories, Third-Person Perception, Norms, and Coping Behavior 70
5.4 Research Contributions 71
5.5 Limitations and Future Research 73
REFERENCES 76
APPENDIX A 109
6.1 Participants 109
6.2 Procedures 109
6.3 Results of Reliability 110
APPENDIX B 114
Abd-alrazaq, A., Alhuwail, D., Househ, M., Hamdi, M., & Shah, Z. (2020). Top concerns of Tweeters during the COVID-19 pandemic: Infoveillance study. Journal of Medical
Internet Research, 22(4). doi:10.2196/19016
Agosto, L. E. (2013, April). Sección 3: Redes sociales [Section 3: Social networks]. Guía de periodismo en la era digital [A guide for journalism in the digital era] [Report].
International Center for Journalists. Retrieved from:
https://www.icfj.org/sites/default/files/201806/icfj_guia_de_periodismo_FINAL.pdf
Ali, S. H., Foreman, J., Tozan, Y., Capasso, A., Jones, A. M., & DiClemente, R. J. (2020). Trends and Predictors of COVID-19 Information Sources and Their Relationship With Knowledge and Beliefs Related to the Pandemic: Nationwide Cross-Sectional Study. JMIR Public Health Surveill, 6(4), e21071. doi:10.2196/21071
Alter, A. (2017). Irresistible: The rise of addictive technology and the business of keeping
us hooked. New York, NY: Penguin Books, pp. 38–39.
Althaus, S. L. (1998). Information Effects in Collective Preferences. The American political
science review, 92(3), 545-558. doi:10.2307/2585480
Alsulaiman, S. A., & Rentner, T. L. (2018). The health belief model and preventive measures: A Study of the ministry of health campaign on coronavirus in Saudi Arabia. Journal of International Crisis and Risk Communication Research, 1(1), 27-56. https://doi.org/10.30658/jicrcr.1.1.3
Amâncio, M. (2017). “Put it in your story”: Digital storytelling in Instagram and Snapchat Stories. (Master’s thesis, Uppsala University, Uppsala, Sweden). Retrieved from
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-324812
Anderson, K. E. (2015). Getting acquainted with social networks and apps: Snapchat and the rise of ephemeral communication. Library Hi Tech News, 32(10), 6–10.
doi:10.1108/LHTN-11-2015-0076
Andrews, K., & Caren, N. (2010). Making the news: Movement organizations, media attention, and the public agenda. American Sociological Review, 75(6), 841-866. doi:10.1177/0003122410386689
Anuar, F., & Ihsanuddin, R. (2016, October 10). The influence of Instagram communication attributes on Generation Y sharing travel photo behaviour. Paper presented at the
Third International Hospitality and Tourism Conference, Bandung, Indonesia. doi: 10.1201/9781315386980
Appelman, A., & Sundar, S. S. (2016). Measuring message credibility: Construction and validation of an exclusive scale. Journalism & Mass Communication Quarterly,
93(1), 59–79. doi: 10.1177/1077699015606057
​​Ashcroft, L., & Hoey, C. (2001). PR, marketing and the Internet: Implications for information professionals. Library Management, 22(1/2), 68-74. doi:10.1108/01435120110358952
Ashforth, B. E., Harrison, S. H., & Corley, K. G. (2008). Identification in organizations: An examination of four fundamental questions. Journal of Management, 34(3),
325-374. doi:10.1177/0149206308316059
Ahmadi, M., & Wohn, D. Y. (2018). The antecedents of incidental news exposure on social media. Social Media + Society, 4(2), 1-8. doi:10.1177/205630511877282
Alaggia, R., & Wang, S. (2020). “I never told anyone until the #metoo movement”: What can we learn from sexual abuse and sexual assault disclosures made through social media? Child Abuse & Neglect, 103, 104312. doi:10.1016/j.chiabu.2019.104312
Bainotti, L., Caliandro, A., & Gandini, A. (2020). From archive cultures to ephemeral content, and back: Studying Instagram Stories with digital methods. New Media & Society. doi: 10.1177/1461444820960071
Bandura, A., (1995) Self-efficacy In Changing Societies. Cambridge University Press. doi: https://doi.org/10.1017/CBO9780511527692
Bandura, A. (2004). Health promotion by social cognitive means. Health Educ Behav, 31(2), 143-164. doi:10.1177/1090198104263660
Bayer, J. B., Ellison, N. B., Schoenebeck, S. Y., & Falk, E. B. (2016). Sharing the small moments: Ephemeral social interaction on Snapchat. Information, Communication &
Society, 19(7), 956–977. doi:10.1080/1369118X.2015.1084349
Belanche, D., Cenjor, I., & Pérez-Rueda, A. (2019). Instagram Stories versus Facebook Wall: an advertising effectiveness analysis. Spanish Journal of Marketing-ESIC, 23(1),
69-94. doi:10.1108/SJME-09-2018-0042
Bennett, W. L., & Segerberg, A. (2012). The logic of connective action. Communication and Society, 15(5), 739-768. doi: 10.1080/1369118X.2012.670661
Baltar, F., Brunet, I. (2012). Social research 2.0: virtual snowball sampling method using Facebook. Internet Research, 22(1), 57–74. doi: https://doi.org/10.1108/10662241211199960.
Billings, A. C., Qiao, F., Conlin, L., & Nie, T. (2017). Permanently desiring the temporary? Snapchat, social media, and the shifting motivations of sports fans. Communication &
Sport, 5(1), 10-26. doi: 10.1177/2167479515588760
Bilandzic, H., & Busselle, R. (2011). Enjoyment of films as a function of narrative experience, perceived realism and transportability. Communications, 36.doi:10.1515/comm.2011.002
Boczkowski, P., Mitchelstein, E., & Matassi, M. (2017, January 1). Incidental news: How young people consume news on social media. Paper presented at the 50th Hawaii International Conference on System Sciences. 1785–1792. doi: 10.24251/HICSS.2017.217
Bolton, R. N., Parasuraman, A., Hoefnagels, A., Migchels, N., Kabadayi, S., Gruber, T., . . . Solnet, D. (2013). Understanding Generation Y and Their Use of Social Media: A
Review and Research Agenda. Journal of Service Management, 24(3), 245-267. doi:10.1108/09564231311326987
Bolger, R. (2020). How fake bushfire images and misleading maps of Australia are spreading on social media. Retrieved from https://www.sbs.com.au/news/how-fake-bushfire-images-and-misleading-maps-of-australia-are-spreading-on-social-media. (October 28, 2020)
Brown, J. D. (1986). Evaluations of self and others: Self-enhancement biases in social judgments. Social Cognition, 4(4), 353-376. doi:10.1521/soco.1986.4.4.353
Braverman, J. (2008). Testimonials versus informational persuasive messages: The moderating effect of delivery mode and personal involvement. Communication Research, 35(5), 1-57. doi:10.1177/0093650208321785
Bickerstaff, K. (2004). Risk perception research: socio-cultural perspectives on the public experience of air pollution. Environment International, 30(6), 827-840. doi:
10.1016/j.envint.2003.12.001
Cai, Z. J. (2017). A Study on User Adoption of" Stories" Based on Facebook and Instagram. (Master’s thesis, National Central University, Taiwan). Retrieved from http://ir.lib.ncu.edu.tw:88/thesis/view_etd.aspURN=104423048104423048
Cambra, U., Cuesta, V., & Martinez Martinez, L. (2017). Effectiveness of narrative persuasion on Facebook: Change of attitude and intention towards HPV. European
Journal of Social Sciences Education and Research, 11(2), 100-109. doi: 10.26417/ejser.v11i2.p100-109
Castells, M. (2012). Networks of outrage and hope - social movements in the Internet age. Cambridge, U.K: Polity.
Casero-Ripollés, A., Izquierdo-Castillo, J., Doménech-Fabregat, H. (2016). The journalists of the future meet entrepreneurial journalism: Perceptions in the classroom.
Journalism Practice, 10(2), 286–303. doi:10.1080/17512786.2015.1123108
Casaló, L. V., Flavián, C., & Ibáñez-Sánchez, S. (2018). Influencers on Instagram: Antecedents and consequences of opinion leadership. Journal of Business Research, 117, 510-519. doi: 10.1016/j.jbusres.2018.07.005
Cavalcanti, L. H. C. B., Pinto, A., Brubaker, J. R., & Dombrowski, L. S. (2017). Media, Meaning, and Context Loss in Ephemeral Communication Platforms: A Qualitative
Investigation on Snapchat. Paper presented at the Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing, Portland, Oregon, USA. doi: 10.1145/2998181.2998266
Carpenter, C. (2010). A Meta-Analysis of the Effectiveness of Health Belief Model Variables
in Predicting Behavior. Health Communication, 25, 661-669.
doi:10.1080/10410236.2010.521906
Chan-Olmsted, S., Rim, H., & Zerba, A. (2013). Mobile news adoption among young adults: Examining the roles of perceptions, news consumption, and media usage. Journalism
& Mass Communication Quarterly, 90(1), 126-147. doi:10.1177/1077699012468742
Champion, V. L., & Skinner, C. S. (2008). The Health Belief Model. In K. Glanz, B. Rimer, & K. Viswanath (Eds.), Health behavior and health education: Theory, research, and
practice. Jossey-Bass, 4th ed.
Chapin, J. R. (2000). Third-person perception and optimistic bias among urban minority At-Risk Youth. Communication Research, 27(1), 51-81.
doi:10.1177/009365000027001003
Chen, T. Y., & Wang, K. T. (2019). The influence of persuasion knowledge, third-person perception, and affect on coping behavior in the Instagram stories feature. Corporate
Management Review, 39(2), 69-116. doi: 10.3966/102873102019123902003
Chen, S.-C., Chen, H.-H., & Chen, M.-F. (2009). Determinants of satisfaction andcontinuance intention towards self-service technologies. Industrial Management & Data Systems, 109(9), 1248-1263. doi:10.1108/02635570911002306
Chen, K.J., & Cheung, H. L. (2019). Unlocking the power of ephemeral content: The roles of motivations, gratification, need for closure, and engagement. Computers in Human
Behavior, 97(7), 67-74. doi: 10.1016/j.chb.2019.03.007
Chen, H., & Huang, S. (2017). From Wild Lily, Wild Strawberry to Sunflower: Media Framing of Three Student Movements. (Master’s thesis, National Chiao Tung University, Taiwan). Retrieved from: http://etd.lib.nctu.edu.tw/cgi-bin/gs32/tugsweb.cgi?o=dnctucdr&s=id=%22GT070259
123%22.&searchmode=basic
Chu, D. S. C. (2018). Media Use and Protest Mobilization: A case study of Umbrella Movement within Hong Kong schools. Social Media + Society, 4(1), 1-11.
doi:10.1177/2056305118763350
Chen, W. C., Chang, H. H., & Huang, S. J. (2016). The coming of networked social movements? Social ties and social media in the Sunflower Movement. Journal of Social Sciences and Philosophy, 28(4), 467-501. Retrieved from
https://www.AiritiLibrary.com/Publication/Index/1018189X-201612-201612270046-201612270046-467-501
Chew, C., & Eysenbach, G. (2010). Pandemics in the age of Twitter: Content analysis of
Tweets during the 2009 H1N1 outbreak. PLoS ONE, 5(11): e14118, 1-13. doi: 10.1371/journal.pone.0014118
Chia, S. C. (2009). When the East Meets the West: An Examination of Third-Person Perceptions About Idealized Body Image in Singapore. Mass Communication and Society, 12(4), 423-445. doi:10.1080/15205430802567123
Chung, M., Munno, G. J., & Moritz, B. (2015). Triggering participation: Exploring the effects of third-person and hostile media perceptions on online participation. Computers in Human Behavior, 53, 452-461. doi: 10.1016/j.chb.2015.06.037
Chung, S., & Cho, H. (2017). Fostering parasocial relationships with celebrities on social media: Implications for celebrity endorsement. Psychology & Marketing, 34(4),
481-495. doi: 10.1002/mar.21001
Chung, M. (2018). The message influences me more than others: Social media metrics, third-person perception, and behavioral intentions. Computers in Human Behavior
91. doi: 10.1016/j.chb.2018.10.011
Chung, J. E. (2016). A smoking cessation campaign on Twitter: understanding the use of Twitter and identifying major players in a health campaign. Journal of Health Communication, 21(5), 1-10. doi:10.1080/10810730.2015.1103332
Chong, M., & Choy, M. (2018). The social amplification of haze-related risks on the internet. Health Communication, 33(1), 14–21. doi:10.1080/10410236.2016.1242031
Choi, J. (2016). Why do people use news differently on SNSs? An investigation of the role of motivations, media repertoires, and technology cluster on citizens' news-related
activities. Computers in Human Behavior, 54(3), 249-256. doi:
10.1016/j.chb.2015.08.006
Choi, D.-H., Yoo, W., Noh, G.-Y., & Park, K. (2017). The impact of social media on risk perceptions during the MERS outbreak in South Korea. Computers in Human
Behavior, 72, 422-431. doi: 10.1016/j.chb.2017.03.004
Davison, W. P. (1983). The third-person effect in communication. Public Opinion Quarterly,
47(1), 1-15. doi: 10.1086/268763
Davies, M. (2009). Swine flu as social media epidemic: CDC tweets calmly online. Retrieved from
http://www.nielsen.com/us/en/insights/news/2009/swine-flu-as-social-media-epidemic-cdc-tweets-calmly.html.
Deuze, M., & Witschge, T. (2017). Beyond journalism: Theorizing the transformation of journalism. Journalism, 19(2), 165-181. doi:10.1177/1464884916688550
Du, J., Cunningham, R. M., Xiang, Y., Li, F., Jia, Y., Boom, J. A., . . . Tao, C. (2019). Leveraging deep learning to understand health beliefs about the Human
Papillomavirus Vaccine from social media. npj Digital Medicine, 2(1), 27. doi:10.1038/s41746-019-0102-4
Duck, J. M., & Mullin, B. A. (1995). The perceived impact of the mass media: Reconsidering the third-person effect. European journal of social psychology, 25(1), 77-93.
doi:10.1002/ejsp.2420250107
Dunlop, S., Wakefield, M., & Kashima, Y. (2008). Can you feel it? Negative emotion, risk, and narrative in health communication. Media Psychology, 11(1), 52–75. doi:10.1080/15213260701853112
Dunlop, S. M., Wakefield, M., & Kashima, Y. (2008). The contribution of antismoking advertising to quitting: Intra-and interpersonal processes. Journal of Health
Communication, 13(3), 250–266. doi: 10. 1080/10810730801985301
Dunlop, S. M., Wakefield, M., & Kashima, Y. (2010). Pathways to persuasion: Cognitive and experiential responses to health-promoting mass media messages. Communication Research, 37(1), 133–164. doi: 10.1177/0093650209351912
Dunne, I. M. (2019). Feature this: understanding Instagram story’s role in museum marketing. (Master’s thesis, University of Washington). Retrieved from: http://hdl.handle.net/1773/43838
Everett, J. A. C., Colombatto, C., Chituc, V., Brady, W. J., & Crockett, M. (2020). The effectiveness of moral messages on public health behavioral intentions during the COVID-19 pandemic. doi: 10.31234/osf.io/9yqs8
Ellison, N. B. & Boyd, D. (2013). Sociality through Social Network Sites. In W. H Dutton (Ed.), The Oxford Handbook of Internet Studies (pp. 151-172). Oxford: Oxford
University Press. doi: 10.1093/oxfordhb/9780199589074.013.0008
El-Toukhy, S. (2015). Parsing susceptibility and severity dimensions of health risk perceptions. Journal of Health Communication, 20(5), 499-511. doi: 10.1080/10810730.2014.989342.
Fall, E., Izaute, M., & Chakroun-Baggioni, N. (2018). How can the health belief model and self-determination theory predict both influenza vaccination and vaccination intention? A longitudinal study among university students. Psychology & Health, 33(6), 746-764. doi:10.1080/08870446.2017.1401623
Finstad, K. A. (2010). Response interpolation and scale sensitivity: evidence against 5-point scales. Journal of Usability Studies archive, 5, 104-110. 
Freimuth, V. S., & Hovick, S. R. (2012). Cognitive and emotional health risk perceptions among people living in poverty. Journal of Health Communication, 17(3), 303-318.
doi:10.1080/10810730.2011.626505
France, L. R. (2018, October 9). Voter registration reportedly spikes after Taylor Swift post. CNN. Retrieved from https://www.cnn.com/2018/10/09/entertainment/taylor-swift- voter-registration/index.html
Fransen, M. L., Verlegh, P. W. J., Kirmani, A., & Smit, E. G. (2015). A typology of consumer strategies for resisting advertising, and a review of mechanisms for
countering them. International journal of advertising, 34(1), 6-16. doi:10.1080/02650487.2014.995284
Folkman, S. (2013). Stress: Appraisal and Coping. In M. D. Gellman & J. R. Turner (Eds.), Encyclopedia of Behavioral Medicine (pp. 1913-1915). New York, NY: Springer
New York.
Fox, S. (2011). The social life of health information. Pew Research Center. Retrieved from
http://www.pewinternet.org/2011/05/12/the-social-life-of-health-information-2011/.
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Reading, MA: Addison-Wesley. Retrieved from
https://www.researchgate.net/publication/233897090_Belief_attitude_intention_and_behaviour_An_introduction_to_theory_and_research
Fung, T. K., Namkoong, K., & Brossard, D. (2011). Media, social proximity, and risk: A comparative analysis of newspaper coverage of avian flu in Hong Kong and in the
United States. Journal of Health Communication, 16(8), 889–907. doi:10.1080/10810730.2011.561913
Fernbach, P. M., Light, N., Scott, S. E., Inbar, Y., Rozin, P. (2019). Extreme opponents of genetically modified foods know the least but think they know the most. National
Human Behavior, 3(3), 251-256. doi: 10.1038/s41562-018-0520-3
Fisher, C. (2018). News sources and journalist/source interaction. Oxford Research Encyclopedia of Communication. doi:10.1093/acrefore/9780190228613.013.849
Garthwaite, C., & Moore, T. J. (2013). Can celebrity endorsements affect political outcomes? Evidence from the 2008 US Democratic Presidential Primary. The Journal
of Law, Economics, and Organization, 29(2), 355-384. doi:10.1093/jleo/ewr031
Gerbaudo, P., & Treré, E. (2015). In search of the ‘we’ of social media activism: Introduction to the special issue on social media and protest identities. Information, Communication & Society, 18(8), 865-871.
doi:10.1080/1369118X.2015.1043319
Gerhold, L. (2020, March 25). COVID-19: Risk perception and Coping strategies. Results from a Survey in Germany. doi: 10.31234/osf.io/xmpk4
Gil de Zúñiga, H. (2009). Blogs, journalism and political participation. In Journalism and Citizenship: New Agendas in Communication (ed. by Z. Papacharissi), pp. 108–123.
Routledge, NY.
Gleason, B. (2013). #Occupy Wall Street: Exploring informal learning about a social movement on Twitter. American Behavioral Scientist, 57(7), 966-982. doi:10.1177/0002764213479372
Gonzalez-Bailon, S., Borge-Holthoefer, J., Rivero, A. & Moreno, Y. (2011). The dynamics of protest recruitment through an online network. Scientific Reports, 1(1), 1–7. doi:
10.1038/srep00197.
Grainge, P. (2011). Ephemeral Media: Transitory screen culture from television to YouTube. Palgrave Macmillan.
Green, M. C., & Brock, T. C. (2000). The role of transportation in the persuasiveness of public narratives. Journal of Personality and Social Psychology, 79(5), 701–721.
doi: 10.1037/0022-3514.79.5.701
Green, M. C., & Brock, T. C. (2002). In the mind's eye: Transportation-imagery model of narrative persuasion. In Narrative impact: Social and cognitive foundations. (pp.
315-341). Mahwah, NJ, US: Lawrence Erlbaum Associates Publishers.
Green, M. C., & Brock, T. C. (2005). Persuasiveness of narratives. In T. C. Brock & M. C.
Green (Eds.), Persuasion: Psychological insights and perspectives (2nd ed., pp. 117–142). Thousand Oaks, CA: Sage.
Guidry, J. P. D., Carlyle, K. E., LaRose, J. G., Perrin, P., Messner, M., & Ryan, M. (2019). Using the Health Belief Model to Analyze Instagram Posts about Zika for Public
Health Communications. Emerging infectious diseases, 25(1), 179-180. doi:10.3201/eid2501.180824
Gunther, A. C., & Thorson, E. (1992). Perceived persuasive effects of product commercials
and public service announcements: Third-person effects in new domains. Communication Research, 19(5), 574-596. doi:10.1177/009365092019005002
Gunther, A. C., & Mundy, P. (1993). Biased optimism and the third-person effect. Journalism Quarterly, 70(1), 58–67. doi:10.1177/ 107769909307000107
Gunther, A. C., & Storey, J. D. (2003). The Influence of Presumed Influence. Journal of communication, 53(2), 199-215. doi:10.1111/j.1460-2466.2003.tb02586.x
Gupta, H., Singh, S., & Sinha, P. (2017). Multimedia tool as a predictor for social media advertising- a YouTube way. Multimedia Tools and Applications, 76(18), 557-568. doi:10.1007/s11042-016-4249-6
Ha, A. (2015). An experiment: Instagram marketing techniques and their effectiveness.
Hackett, G., & Lent, R. (1992). Theoretical advances and current inquiry in career psychology. In (pp. 419-452). Wiley.
Ham, C. D., & Nelson, M. R. (2016). The role of persuasion knowledge, assessment of benefit and harm, and third-person perception in coping with online behavioral
advertising. Computers in Human Behavior, 62, 689-702.
doi: 10.1016/j.chb.2016.03.076
Hampton, K., & Wellman, B. (2003). Neighboring in Netville: How the Internet Supports Community and Social Capital in a Wired Suburb. City & Community, 2(4), 277-311. doi: 10.1046/j.1535-6841.2003.00057.x
Hansen, D., Shneiderman, B. & Smith, M.A. (2010). Analyzing Social Media Networks with NodeXL: Insights from a Connected World. Morgan Kaufmann, MA. doi: 10.1016/C2009-0-64028-9
Harrison, J. A., Mullen, P. D., & Green, L. W. (1992). A meta-analysis of studies of the Health Belief Model with adults. Health Educ Res, 7(1), 107-116. doi:10.1093/her/7.1.107
Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York: Guilford.
Hernández-García, I., & Giménez-Júlvez, T. (2020). Assessment of health information about the prevention of COVID-19 on the Internet. JMIR Public Health and Surveillance, 6(2). doi:10.2196/18717
Hermida, A. (2012). Social journalism: Exploring how social media is shaping journalism. In
E. Siapera & A. Veglis (Eds.), The handbook of global online journalism (pp. 309–327). Wiley Blackwell.
Hermida, A., Lewis, S. C., & Zamith, R. (2014). Sourcing the Arab Spring: A case study of Andy Carvin's sources on Twitter during the Tunisian and Egyptian Revolutions. Journal of Computer-Mediated Communication, 19(3), 479-499.
doi: 10.1111/jcc4.12074
Hu, Y., Manikonda, L., & Kambhampat, S. (2014). What we Instagram: A first analysis of Instagram photo content and user types. In Proceedings of the eighth
international AAAI conference on weblogs and social media (pp. 595–598). Association for the Advancement of Artificial Intelligence. Retrieved from
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/viewFile/8118/8087
Holton, A. E., Baek, K., Coddington, M., & Yaschur, C. (2014). Seeking and sharing: Motivations for linking on Twitter. Communication Research Reports, 31(1), 33-40.
doi:10.1080/08824096.2013.843165
Howard, P. N., & Hussain, M. M. (2011). The upheavals in Egypt and Tunisia: The role of digital media. Journal of Democracy 22(3), 35-48. doi:10.1353/jod.2011.0041.
Innes, J. M., & Zeitz, H. (1988). The public's view of the impact of the mass media: A test of the ‘third person’ effect. European journal of social psychology, 18(5), 457-463.
doi:10.1002/ejsp.2420180507
Islam, A. K. M. N., Laato, S., Talukder, M., & Sutinen, E. (2020). Misinformation sharing and social media fatigue during COVID-19: An affordance and cognitive load
perspective. Technological Forecasting and Social Change, 159, 120201. doi: 10.1016/j.techfore.2020.120201
Janz, N. K., Champion, V. L., Stretcher, V. J. (2002). The Health Belief Model, In: Glanz. K.,
Rimer, B.K., Lewis, F.M., (Eds.), Health Behavior and Health Education: Theory, Research and Practice. Jossey-Bass, San Francisco, pp. 45-66.
Järvinen, J., Ohtonen, R., & Karjaluoto, H. (2016). Consumer acceptance and use of Instagram. Paper presented at the System Sciences (HICSS), 2016 49th Hawaii International Conference.
Jenkins, H. (2006). Convergence culture: Where old and new media collide. New York University Press.
Jin, S. A. A., & Phua, J. (2014). Following celebrities’ Tweets about brands: The impact of Twitter-based electronic word-of-mouth on consumers’ source credibility
perception, buying intention, and social identification with celebrities. Journal of advertising, 43(2), 181-195. doi:10.1080/00913367.2013.827606
Jou, B., Bhattacharya, S., & Chang, S. F. (2014). Predicting viewer perceived emotions in animated GIFs. In Proceedings of the 22nd ACM international conference on Multimedia. pp. 213-216. ACM.
Jones-Jang, M., & Kim, J. (2018). Third-person effects of fake news: Fake news regulation
and media literacy interventions. Computers in Human Behavior, 80. doi: 10.1016/j.chb.2017.11.034
Johansson, B. (2005). The Third-Person Effect. Nordicom Review, 26(1). doi:10.1515/nor-2017-0248
Juris, J. (2004). Networked social movements: Global movements for global justice. In (pp. 341-362). doi: 10.4337/9781845421663.00029
Jung, E. H., Zhang, L., & Nekmat, E. (2020). SNS Usage and Third-person Effects in the Risk Perception of Zika Virus among Singaporean Women. Journal of Health
Communication, 25(9), 736-744. doi:10.1080/10810730.2020.1840676
Kaplan, A. M. & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of social media. Business Horizons, 53(1), 59–68. doi:
10.1016/j.bushor.2009.09.003
Kammer, A. (2013). Audience participation in the production of online news: Towards a typology. Nordicom Review, 34, 113–126. doi: 10.2478/NOR-2013-0108
Kantor, J. & Twohey, M. (2017, October 5). Harvey Weinstein Paid Off Sexual Harassment Accusers for Decades, The New York Times. Retrieved from: https://www.nytimes.com/2017/10/05/us/harvey-weinstein-harassment-allegations.html
Kasperson, R. E., Renn, O., Slovic, P., Brown, H. S., Emel, J., Goble, R., & Ratick, S. (1988). The Social Amplification of Risk: A Conceptual Framework. Risk Analysis,
8(2), 177-187. doi: 10.1111/j.1539-6924.1988.tb01168.x
Kim, H. S., Bigman, C., Leader, A., Lerman, C., & Cappella, J. (2012). Narrative health communication and behavior change: The influence of exemplars in the news on intention to quit smoking. The Journal of communication, 62(3), 473-492.
doi: 10.1111/j.1460-2466.2012.01644.x
Kim, Y., & Chen, H.-T. (2016). Social media and online political participation: The mediating role of exposure to cross-cutting and like-minded perspectives. Telematics
and Informatics, 33(2), 320-330. doi: 10.1016/j.tele.2015.08.008
Kim, B. (2016). Individual, Technological, Socio-Cultural Factors Affecting Facebook and Instagram Use (Master’s thesis, The University of Alabama). Retrieved from https://ir.ua.edu/handle/123456789/2673.
​​King, K. A., Vidourek, R. A., English, L., & Merianos, A. L. (2014). Vigorous physical activity among college students: using the health belief model to assess involvement
and social support. Arch Exerc Health Dis, 4, 267-79. doi: 10.5628/AEHD.V4I2.153
Ku, Y. C., Chu, T. H., & Tseng, C. H. (2013). Gratifications for using CMC technologies: A comparison among SNS, IM, and e-mail. Computers in Human Behavior, 29(1),
226-234. doi: 10.1016/j.chb.2012.08.009
Larson, H. J. (2018). Politics and public trust shape vaccine risk perceptions. National Human Behavior. 2(5), 316. doi: 10.1038/s41562-018-0331-6
Lazarus, R. S., & Folkman, S. (1984). Stress, appraisal, and coping. New York, NY: Springer.
Larsson, A. O. (2017). The news user on social media: A comparative study of interacting with media organizations on Facebook and Instagram. Journalism Studies, 19(2), 2225–2242. doi: 10.1080/1461670X.2017.1332957
Lee, J., Lee, J., & Park, Y. (2009). Research on the Advertisement Effect of Push Type Mobile Advertisement. Paper presented at the Cooperation and Promotion of Information Resources in Science and Technology, 2009. Fourth International Conference on. doi:10.1109/COINFO.2009.27
Lee, E., Lee, J. A., Moon, J. H., & Sung, Y. (2015). Pictures speak louder than words: Motivations for using Instagram. Cyberpsychology, Behavior, and Social Networking, 18(9), 552-556. doi:10.1089/cyber.2015.0157
Lee, C. S., & Ma, L. (2012). News sharing in social media: The effect of gratifications and prior experience. Computers in Human Behavior, 28(2), 331-339. doi: 10.1016/j.chb.2011.10.002
Lee, F. L. F., Chen, H.-T., & Chan, M. (2017). Social media use and university students’ participation in a large-scale protest campaign: The case of Hong Kong’s Umbrella
Movement. Telematics and Informatics, 34(2), 457-469. doi:
10.1016/j.tele.2016.08.005
Lee, F. L. F. (2015). Social movement as civic education: Communication activities and understanding of civil disobedience in the Umbrella Movement. Chinese Journal of
Communication. 8(4), 393–411. doi: 10.1080/17544750.2015.1057192
Lewandowsky, S., Cook, J., Fay, N., & Gignac, G. (2019). Science by social media: Attitudes towards climate change are mediated by perceived social consensus. Memory &
Cognition, 47(8). doi:10.3758/s13421-019-00948-y
Leiss, W., Beck, U., Ritter, M., Lash, S., & Wynne, B. (1995). Risk Society, Towards a new modernity. Canadian Journal of Sociology / Cahiers canadiens de sociologie, 19(4),
544. doi:10.2307/3341155
Lev-On, A. (2017). The third-person effect on Facebook: The significance of perceived proficiency. Telematics and Informatics, 34(4), 252-260. doi: 10.1016/j.tele.2016.07.002
Lewis, S. C. (2015). Reciprocity as a Key Concept for Social Media and Society. Social Media + Society, 1(1), 1-2. doi:10.1177/2056305115580339
Liang, T. P., & Yeh, Y. H. (2011). Effect of use contexts on the continuous use of mobile services: the case of mobile games. Personal and Ubiquitous Computing, 15(2), 187-196. doi: 10.1007/s00779-010-0300-1
Lim, C. (2008). Social networks and political participation: How do networks matter? Social Forces, 87(2), 961-982. doi:10.1353/sof.0.0143
Lin, X., Featherman, M., & Sarker, S. (2013). Information sharing in the context of social media: An application of the theory of reasoned action and social capital theory. SIGHCI 2013 Proceedings, 17. Retrieved from https://aisel.aisnet.org/sighci2013/17
Lin, W. Y., Zhang, X., Song, H., & Omori, K. (2016). Health information seeking in the Web 2.0 age: Trust in social media, uncertainty reduction, and self-disclosure. Computers
in Human Behavior, 56, 289-294. doi: 10.1016/ j.chb.2015.11.055.
Liu, X., & Lo, V. H. (2014). Media Exposure, Perceived Personal Impact, and Third-Person Effect. Media Psychology, 17(4), 378-396. doi:10.1080/15213269.2013.826587
Liu, M., Bi, J., Yang, J., Qu, S., & Wang, J. (2020). Social media never shake the role of trust building in relieving public risk perception. Journal of Cleaner Production, 282,
1-8. doi: 10.1016/j.jclepro.2020.124442
Lu, H. P., & Hsiao, K. L. (2007). Understanding intention to continuously share information on weblogs. Internet Research, 17(4), 345-361. doi: 10.1108/10662240710828030
Lu, J. D. (2020). Decoding the popularity of Instagram Stories: Examining the antecedents and consequences of engagement with Instagram Stories (Master’s thesis, National
Chengchi University, Taiwan). Retrieved from
http://nccur.lib.nccu.edu.tw/handle/140.119/128884
Lyons, M. D., Huebner, E. S., & Hills, K. J. (2016). Relations among personality characteristics, environmental events, coping behavior and adolescents' life satisfaction. Journal of Happiness Studies, 17(3), 1033-1050. doi:10.1007/s10902-015-9630-z
Macafee, T., & Simone, J. (2012). Killing the Bill Online? Pathways to Young People's Protest Engagement via Social Media. Cyberpsychology, Behavior, and Social
Networking, 15(11), 579-584. doi:10.1089/cyber.2012.0153
Mano, R. S. (2014). Social media and online health services: A health empowerment perspective to online health information. Computers in Human Behavior, 39, 404-412. doi: 10.1016/j.chb.2014.07.032.
Manzoor, S., & Safdar, A. (2020). Cultivation of fear through media: Analysis to reveal relationship between perception about COVID 19 and socio-economic background
of media consumers. Review of Economics and Development Studies, 6(2), 217-228. doi:10.47067/reads.v6i2.198
Marwick, A. E., & Boyd, d. (2014). Networked privacy: How teenagers negotiate context in social media. New Media & Society, 16(7), 1051-1067. doi:10.1177/1461444814543995
Marken, G. A. (2007). Social media… The hunted can become the hunter. Public Relations Quarterly, 52(4), 9–12. Retrieved from https://login.autorpa.lib.nccu.edu.tw/login?url=https://www-proquest-com.autorpa.lib.
nccu.edu.tw/scholarly-journals/social-media-hunted-can-become-hunter/docview/222
400425/se-2?accountid=10067
McDonald, A. M. & Cranor, L. F. (2010). Americans' attitudes about internet behavioral advertising practices. Paper presented at the Proceedings of the 9th annual ACM
workshop on Privacy in the electronic society, Chicago, IL.
McGowan, B., Wasko, M., Steven, B., Miller, R., Freiherr, D., & Abdolrasulnia, M. (2012). Understanding the Factors That Influence the Adoption and Meaningful Use of Social
Media by Physicians to Share Medical Information. Journal of Medical Internet Research, 14(5), e117. doi:10.2196/jmir.2138
McWhirter, J. E., & Hoffman-Goetz, L. (2016). Application of the health belief model to U.S. magazine text and image coverage of skin cancer and recreational tanning
(2000–2012). Journal of Health Communication, 21(4), 424-438.
doi:10.1080/10810730.2015.1095819
Menon, G., Raghubir, P., & Agrawal, N. (2006). Health risk perceptions and consumer psychology. SSRN Electronic Journal. doi:10.2139/ssrn.945673
Miller, H. J., Thebault-Spieker, J., Chang, S., Johnson, I., Terveen, L., & Hecht, B. (2016, March). “Blissfully Happy” or “Ready to Fight”: Varying Interpretations of Emoji.
259-268. Paper presented at the Tenth International AAAI Conference on Web and Social Media. Cologne, Germany.
Mou, Y., & Lin, C. A. (2014). Communicating food safety via the social media: The role of knowledge and emotions on risk perception and prevention. Science Communication, 36(5), 593-616. doi:10.1177/1075547014549480
Moyer-Gusé, E. (2008). Toward a theory of entertainment persuasion: Explaining the persuasive effects of entertainment-education messages. Communication Theory,
18(3), 407–425. doi: 10.1111/j.1468-2885.2008.00328.x
Mutz, D. C. (1989). The influence of perceptions of media influence: Third person effects and the public expression of opinions. International Journal of Public Opinion
Research, 1(1), 3–23. doi: https://doi.org/10.1093/ijpor/1.1.3
Muntinga, D., Moorman, M., & Smit, E. (2011). Introducing COBRAs: Exploring motivations for Brand-Related social media use. Contributions To Zoology, 30(1), 13-46. doi:10.2501/IJA-30-1-013-046
Murphy, S. T., Frank, L. B., Moran, M. B., & Patnoe-Woodley, P. (2011). Involved, transported, or emotional? Exploring the determinants of change in knowledge,
attitudes, and behavior in entertainment-education. Journal of Communication, 61(3), 407-431. doi: 10.1111/j.1460-2466.2011.01554.x
Nahon, K., & Hemsley, J. (2013). Going Viral. Cambridge, England: Polity Press.
Napoleoncat. (2020). Instagram users in Taiwan January 2020. Retrieved February 1, 2021, from https://napoleoncat.com/stats/instagram-users-in-taiwan/2020/01
NewScientist. (2020). Covid-19: the disease caused by a kind of coronavirus which first originated in Wuhan, China in late 2019. Retrieved from https://www.newscientist.com/term/covid-19/ (accessed 2020-10-06)
Nekmat, E. (2012). Message expression effects in online social communication. Journal of Broadcasting & Electronic Media 56(2), 203-224. doi:10.1080/08838151.2012.678513
Niederdeppe, J., Shapiro, M. A., & Porticella, N. (2011). Attributions of responsibility for obesity: Narrative communication reduces reactive counterarguing among
liberals. Human Communication Research, 37(3), 295-323.
doi: 10.1111/j.1468-2958.2011.01409.x
Nisbett, G. S., & DeWalt, C. C. (2016). Exploring the influence of celebrities in politics: A focus group study of young voters. Atlantic Journal of Communication, 24(3),
144-156. doi:10.1080/15456870.2016.1184664
Nisbett, G., & Schartel Dunn, S. (2019). Reputation matters: parasocial attachment, narrative engagement, and the 2018 Taylor Swift political endorsement. Atlantic Journal of Communication, 29(1), 1-13. doi:10.1080/15456870.2019.1704758
Nix, J., & Pickett, J. T. (2017). Third-person perceptions, hostile media effects, and policing:
Developing a theoretical framework for assessing the Ferguson effect. Journal of Criminal Justice, 51, 24-33. doi: 10.1016/j.jcrimjus.2017.05.016
Norman, D. A. (1988). The psychology of everyday things. Basic Books, New York, NY.
OECD (2007), Participative web and user-created content: Web 2.0, Wikis and social networking, OECD Publishing, Paris, France. doi: 10.1787/9789264037472-en.
Oh, S. H., Paek, H. J., & Hove, T. (2015). Cognitive and emotional dimensions of perceived risk characteristics, genre-specific media effects, and risk perceptions: The case of
H1N1 influenza in South Korea. Asian Journal of Communication, 25(1), 14–32. doi:10.1080/ 01292986.2014.989240
Okafor, E., Lucier-Greer, M., & Mancini, J. A. (2016). Social stressors, coping behaviors, and depressive symptoms: A latent profile analysis of adolescents in military families. Journal of Adolescence, 51(1), 133-143. doi: 10.1016/j.adolescence.2016.05.010
Oni, A. A., Oni, S., Mbarika, V., & Ayo, C. K. (2017). Empirical study of user acceptance of online political participation: Integrating Civic Voluntarism Model and Theory of Reasoned Action. Government Information Quarterly, 34(2), 317-328. doi: 10.1016/j.giq.2017.02.003
Ormrod, J. (2008). Human learning (5th ed.). Upper Saddle River, NJ: Pearson Education.
Petrescu, M., Gironda, J. T., & Korgaonkar, P. K. (2018). Online piracy in the context of routine activities and subjective norms. Journal of Marketing Management, 34(3-4),
314-346. doi: 10.1080/0267257X.2018.1452278
Papacharissi, Z., & Rubin, A. (2000). Predictors of Internet Use. Journal of Broadcasting & Electronic Media, 44(2), 175-196. doi: 10.1207/s15506878jobem4402_2
Park, T., Ju, I., Ohs, J. E., & Hinsley, A. (2021). Optimistic bias and preventive behavioral engagement in the context of COVID-19. Research in Social & Administrative
Pharmacy, 17(1), 1859-1866. doi: 10.1016/j.sapharm.2020.06.004
Pask, E. B., & Rawlins, S. T. (2016). Men's intentions to engage in behaviors to protect against human papillomavirus (HPV): Testing the risk perception attitude framework.
Health Communication, 31(2), 139-149. doi: 10.1080/10410236.2014.940670.
Porlezza, C. (2019). From Participatory Culture to Participatory Fatigue: The Problem With
the Public. Social Media + Society, 5(3), 1-4. doi:10.1177/2056305119856684
Piwek, L. & Joinson, A., (2016). “What do they Snapchat about?” Patterns of use in time-
limited instant messaging service. Computers in Human Behavior, 54, 358-367. doi: 10.1016/j.chb.2015.08.026
Pennsylvania State University, College of Information Sciences and Technology. (2015). Instagram behavior for teens different than adults. ScienceDaily. Retrieved May
17, 2021 from www.sciencedaily.com/releases/2015/06/150616155028.htm
Pfeffer, J., Zorbach, T., & Carley, K. M. (2014). Understanding online firestorms: Negative word-of-mouth dynamics in social media networks. Journal of Marketing
Communications, 20(1-2), 117-128. doi:10.1080/13527266.2013.797778
Pavlik, J. (2000). The impact of technology on journalism. Journalism Studies, 1(2), 229–237. doi: 10.1080/14616700050028226
Phillips, R. L. (2019). #MarchForOurLives: Mobilization of a gun violence prevention movement on Twitter (Unpublished master’s thesis) Texas State University, San
Marcos, Texas. Retrieved from https://digital.library.txstate.edu/handle/10877/8008
Raman, P. & Pashupati, T. K. (2004). Online privacy: The impact of self-perceived technological competence. Enhancing Knowledge Development in Marketing, 5(1),
26-27. Retrieved from https://scholar.google.com/citations?view_op=view_citation&hl=en&user=KKxPsP8
AAAAJ&citation_for_view=KKxPsP8AAAAJ:W7OEmFMy1HYC
Reuter, O. J., Szakonyi, D. (2015). Online social media and political awareness in authoritarian regimes. British Journal of Political Science, 45(1), 29–51. doi: 10.2139/ssrn.2148690
Rho, E., & Mazmanian, M. (2019, September). Hashtag burnout? A control experiment investigating how political hashtags shape reactions to news content. Proceedings of the ACM on Human-Computer Interaction 3(CSCW). doi: 10.1145/3359299
Rimal, R. N., & Real, K. (2003). Perceived risk and efficacy beliefs as motivators of change: Use of the risk perception attitude (RPA) framework to understand health behaviors.
Human Communication Research, 29(3), 370-399. doi: 10.1111/j.1468-2958.20 03.tb0 084 4.x.
Robin, B. R. (2008). Digital Storytelling: A powerful technology tool for the 21st century classroom. Theory Into Practice, 47(3), 220-228. doi:10.1080/00405840802153916
Romney, M., & Johnson, R. (2018). Show me a story: narrative, image, and audience engagement on sports network Instagram accounts. Information Communication and Society, 23(2), 1-16. doi:10.1080/1369118X.2018.1486868
Rosenstock, I. M. (1974). The health belief model and preventive health behavior. Health Education Monographs, 2(4), 354-386. doi:10.1177/109019817400200405
Ross, P. (2012). Were producers and audiences ever separate? Conceptualizing media production as social situation. Television and New Media, 15(2), 157–174.
Rucinski, D., & Salmon, C. T. (1990). The ‘other’ as the vulnerable voter: A study of the third-person effect in the 1988 U.S. presidential campaign. International Journal of
Public Opinion Research, 2(4), 345-368. doi:10.1093/ijpor/2.4.345
Savitri, S., & Irwansyah, I. (2021). The use of Instagram Stories at the age of COVID-19 pandemic. Jurnal ASPIKOM, 6(1), 182. doi: 10.24329/aspikom.v6i1.750
Scharrer, E., & Leone, R. (2008). First‐person shooters and the third‐person effect. Human Communication Research, 34(2), 210-233. doi: 10.1111/j.1468-2958.2008.00319.x
Schartel Dunn, S. G. (2018). Parasocial interaction and narrative involvement as predictors of attitude change. Western Journal of Communication, 82(1), 117-133. doi:10.1080/10570314.2017.1339230
Schmidt, C. (2018, August 9). The Cincinnati Enquirer wrote an audience-driven article using Instagram Stories (and it wasn’t even about a hippo). Nieman Lab. Retrieved from http://www.niemanlab.org
Schweinsberg, S., McManus, P., Darcy, S., & Wearing, S. (2020). ‘Drought tourism’ as compassion. Annals of Tourism Research, 83, 102843. doi: 10.1016/j.annals.2019.102843
Schweinsberg, S., Darcy, S., & Beirman, D. (2020). ‘Climate crisis’ and ‘bushfire disaster’: Implications for tourism from the involvement of social media in the 2019–2020
Australian bushfires. Journal of Hospitality and Tourism Management, 43, 294-297. doi: 10.1016/j.jhtm.2020.03.006
Seyfi, M. (2017). Instagram Stories from the perspective of narrative transportation theory. The Turkish Online Journal of Design, Art and Communication, 7. doi:10.7456/10701100/005
Stewart, A. (2020). What's trending during coronavirus pandemic? A definitive guide to the most used hashtags. The National. Retrieved from https://www.thenationalnews.com
Steinberg, L., & Morris, A. (2001). Adolescent Development. Annual Review of Psychology, 52, 83-110. doi: 10.1146/annurev.psych.52.1.83
Stieglitz, S., & Dang-Xuan, L. (2013). Emotions and information diffusion in social media—Sentiment of microblogs and sharing behavior. Journal of Management Information Systems 29(4), 217-248. doi: 10.2753/MIS0742-1222290408
Sheldon, P., & Bryant, K. (2016). Instagram: Motives for its use and relationship to narcissism and contextual age. Computers in Human Behavior, 58, 89-97. doi: 10.1016/j.chb.2015.12.059
Sharma, D. K., & Agrawal, H. (2020). Role of social media to awareness for pandemics: special context of COVID-19. UGC Care Group-1 Journal, 23(4),189-202. ISSN: 0975-4520.
Shanahan, L., Steinhoff, A., Bechtiger, L., Murray, A. L., Nivette, A., Hepp, U., . . . Eisner, M. (2020). Emotional distress in young adults during the COVID-19 pandemic:
evidence of risk and resilience from a longitudinal cohort study. Psychological Medicine, 1-10. doi:10.1017/S003329172000241X
Shang, L., Zhou, J., & Zuo, M. (2021). Understanding older adults' intention to share health information on social media: the role of health belief and information processing. Internet research, 31(1), 100-122. doi:10.1108/INTR-12-2019-0512
Shirky, C. (2011). The political power of social media: Technology, the public sphere, and political change. Foreign Affairs, 90(1), 28-41.
Signorini, A., Segre, A. M., & Polgreen, P. M. (2011). The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1
pandemic. PLoS ONE, 6(5), e19467. doi: 10.1371/journal.pone.0019467
Slater, M. D., & Rouner, D. (2002). Entertainment-education and elaboration likelihood: Understanding the processing of narrative persuasion. Communication Theory, 12(2), 173–191. doi: 10.1111/j.1468-2885.2002.tb00265.x
Slovic, P. (1987). Perception of risk. Science, 236, 280-285. doi: 10.1126/science.3563507.
Small, T. A. (2011). What the hashtag?: A content analysis of Canadian politics on Twitter. Information, Communication & Society, 14(6), 872-895. doi:10.1080/1369118X.2011.554572
Smit, E. G., Van Noort, G., & Voorveld, H. A. M. (2014). Understanding online behavioural advertising: User knowledge, privacy concerns and online coping behaviour in Europe. Computers in Human Behavior, 32, 15-22. doi: 10.1016/j.chb.2013.11.008
Smith, A. (2009, April 15). The Internet’s role in campaign 2008. Retrieved from: http://www.pewinternet.org/~/media//Files/Reports/2009/The_Internets_Role_in_Campaign_2008.pdf.
Snyder, L. B., & Rouse, R. A. (1995). The media can have more than an impersonal impact: The case of AIDS risk perceptions and behavior. Health Communication, 7(2), 125–145. doi:10.1207/s15327027hc0702_3
Snyder, C. R. (1999). Coping: The psychology of what works: Clarendon Press.
Soffer, O. (2016). The oral paradigm and Snapchat. Social Media + Society, 2(3), 1–4. doi: 10.1177/2056305116666306
Song, J., Song, T. M., Seo, D. C., Jin, D. L., & Kim, J. S. (2017). Social big data analysis of information spread and perceived infection risk during the 2015 Middle East
respiratory syndrome outbreak in South Korea. Cyberpsychology, Behavior, and Social Networking, 20(1), 22-29. doi:10.1089/cyber.2016.0126
Spyridou, L. P., Matsiola, M., Veglis, A., Kalliris, G., & Dimoulas, C. (2013). Journalism in a state of flux: Journalists as agents of technology innovation and emerging news practices. The International Communication Gazette, 75(1), 76–98. doi: 10.1177/1748048512461763
Stavrositu, C. D., & Kim, J. (2014). Social media metrics: Third-person perceptions of health information. Computers in Human Behavior, 35, 61-67. doi:https://doi.org/10.1016/j.chb.2014.02.025
Statista. (2018a). Number of monthly active Instagram users from January 2013 to June 2018 (in millions). Retrieved from
https://www.statista.com/statistics/253577/number-of-monthly-active-instagram-users/
Statista. (2018b). Number of daily active Instagram Stories users from October 2016 to June 2018 (in millions). Retrieved from https://www.statista.com/statistics/730315/instagram-stories-dau/
Statista. (2019a). Most famous social networks worldwide as of October 2019, ranked by number of active users (in millions). Retrieved from https://www.statista.com/
Statista. (2021). Social media use in Taiwan 2020, by platform. Retrieved February 1, 2021, from https://www.statista.com/statistics/966613/taiwan-social-media-use-by-platform/
Statistic Bureau. (2020). National Statistics, Republic of China (Taiwan). Retrieved February 1, 2021, from https://eng.stat.gov.tw/point.asp?index=9
Stefanou, E. (2017). Guardian’s Instagram serial strategy engages younger audience. INMA. Retrieve from
https://www.inma.org/blogs/ideas/post.cfm/guardian-s-instagram-serial-strategy-engages-younger-audience
Sun, Y., Pan, Z., & Shen, L. (2008). Understanding the third-person perception: Evidence from a meta-analysis. Journal of communication, 58(2), 280-300.
doi: 10.1111/j.1460-2466.2008.00385.x
Sun, H. Y. (2020). Research on the effect of Instagram stories advertising (Master’s thesis,
National Chengchi University, Taiwan). doi:10.6814/NCCU202000403
Sundet, V. S., & Ytreberg, E. (2009). Working notions of active audiences: Further research
on the active participant in convergent media industries. Convergence, 15(4),
383–390. doi: 10.1177/1354856509342339
Sussman, S., Dent, C., McAdams, L., Stacy, A., Burton, D., & Flay, B. (1994). Group
self-identification and adolescent cigarette smoking: a 1-year prospective study.
Journal of abnormal psychology, 103(3), 576-580. doi:10.1037/0021-843X.103.3.576
Švecová, M. (2017). Journalism on social media: How to tell stories and news to young
people. Ad Alta: Journal of Interdisciplinary Research, 7(2), 216–218.
Tamres, L. K., Janicki, D. L., & Helgeson, V. (2002). Sex differences in coping behavior A
meta-analytic review and an examination of relative coping. Personality and
Social Psychology Review, 6(1), 2-30. doi: 10.1207/S15327957PSPR0601_1
Taylor, M., Wells, G., Howell, G., & Raphael, B. (2012). The role of social media as
psychological first aid as a support to community resilience building. The Australian
Journal of Emergency Management, 27(1), 20–26.
Thornton, L. J. (2013). Shared views, social capital, community ties, and Instagram.
Grassroots Editor, 54(3-4), 19-26.
Ting, H., Cyril de Run, E., & Liew, S. L. (2016). Intention to use Instagram by generation
cohorts: The perspective of developing markets. Global Business and Management
Research: An International Journal, 8(1), 43-55.
Tourism Australia (2020). Australian bushfire safety Tips. Retrieved from
https://www.australia.com/en/facts-and-planning/useful-tips/bushfire-safety.html
Tourism Events Queensland (2020). New marketing campaigns to support bushfire hit regions. Retrieved from
https://teq.queensland.com/news-and-media/latest-news/new-marketing-campaigns-to-support-bushfire-hit-regions
Tsoy, D., Tirasawasdichai, T. & Kurpayanidi, K. I. (2021). Role of social media in shaping public risk perception during COVID-19 pandemic: A theoretical review.
International Journal of Management Science and Business Administration, 7(2),35-41. doi: 10.18775/ijmsba.1849-5664-5419.2014.72.1005
Tursunbayeva, A., Franco, M., & Pagliari, C. (2017). Use of social media for e-Government in the public health sector: A systematic review of published studies. Government
Information Quarterly, 34(2), 270-282. doi:https://doi.org/10.1016/j.giq.2017.04.001
Vázquez-Herrero, J., Direito-Rebollal, S., & López-García, X. (2019). Ephemeral journalism: News distribution through Instagram Stories. Social Media + Society, 5.
doi: 10.1177/2056305119888657
Van Doorn, B., Parkin, M., & Bos, A. (2003, January). Laughing, Learning and Liking: The Effects of Entertainment-based Media on American Politics. Paper presented at
Annual Meeting of the Midwest Political Science Association, Chicago, IL. Retrieved from
https://www.researchgate.net/publication/281444937_Laughing_Learning_and_Liking_The_Effects_of_Entertainmentbased_Media_on_American_Politics
Van, B., van der Haak, B., Parks, M., & Castells, M. (2012). The Future of Journalism: Networked Journalism Rethinking Journalism in the Networked Digital Age. International Journal of Communication, 6, 2923-2938. 
Van Dijck, J. (2013). The culture of connectivity: A critical history of social media. Oxford University Press, NY.
Valiant, V., & Setiawan, J. (2017). Analyzing factors influencing behavior intention to use Snapchat and Instagram Stories. International Journal of New Media Technology,
4(2), 75-81. doi: 10.31937/ijnmt.v4i2.783
Valeriani, A., & Vaccari, C. (2015). Accidental exposure to politics on social media as online participation equalizer in Germany, Italy, and the United Kingdom. New Media &
Society, 18(9), 1857-1874. doi:10.1177/1461444815616223
Velev, D., & Zlateva, P. (2012). Use of social media in natural disaster management. Paper presented at ICITE 2012, Hong Kong. Retrieved from
https://www.researchgate.net/publication/271585520_Use_of_Social_Media_in_Natural_Disaster_Management
Villaespesa, E., & Wowkowych, S. (2020). Ephemeral storytelling with social media: Snapchat and Instagram Stories at the Brooklyn Museum. Social Media + Society,
6(1), 2056305119898776. doi:10.1177/2056305119898776
Voorveld, H., Noort, G., Muntinga, D., & Bronner, F. (2018). Engagement with Social Media and Social Media Advertising: The Differentiating Role of Platform Type. Journal of
advertising, 47, 1-17. doi:10.1080/00913367.2017.1405754
Wachyudy, D., & Sumiyana. (2018). Could affectivity compete better than efficacy in describing and explaining individuals' coping behavior: An empirical investigation. The Journal of High Technology Management Research, 29(1), 57-70.
doi: 10.1016/j.hitech.2018.04.006
Wajahat, H. (2020). Role of social media in COVID-19 pandemic. The International Journal of Frontier Sciences, 4(2), 59-60. doi: 10.37978/tijfs.v4i2.144
Wahl-Jorgensen, K. (2009). News production, ethnography, and power: On the challenges of newsroom-centricity. In E. Bird (Ed.), The anthropology of news and journalism: Global perspectives (pp. 21–35). Indiana University Press.
Walden, K., Schwaab, H., Morris, D. W., & Weissmann, E. (2013). Reviews: Ephemeral media: Transitory screen culture from television to YouTube, literary lost: viewing
television through the lens of literature, Branding Television, TV critics and popular culture—A history of British Television criticism. Critical Studies in Television: The International Journal of Television Studies, 8(1), 131–139. doi: 10.7227/CST.8.1.10
Wang, R., Liu, W., & Gao, S. (2016). Hashtags and information virality in networked social movement: Examining hashtag co-occurrence patterns. Online Information Review, 40(7), 850-866. doi:10.1108/OIR-12-2015-0378
Wang, K. (2019). How the Stories Feature Based on Users’ Diverse Perspectives on Instagram Affects Coping Behavior and Consequent Effects (Master’s thesis, National Taipei University, Taiwan). Retrieved from http://hdl.handle.net/11536/136903
Wang, S. I. (2017). The political use of social media and civic engagement in Taiwan. Journal of Cyber Culture and Information Society, 32, 83-111.
doi:10.29843/JCCIS.201701_(32).0004
Weber, E. (2017). Breaking cognitive barriers to a sustainable future. Nature Human Behaviour, 1(1). doi: 10.1038/s41562-016-0013
Wei, R., Lo, V. H., & Lu, H. Y. (2008). Third-person effects of health news: Exploring the relationships among media exposure, presumed media influence, and behavioral
intentions. American Behavioral Scientist, 52(2), 261–277.
doi:10.1177/0002764208321355
Wolf, C., & Schnauber, A. (2015). News consumption in the mobile era. Digital Journalism, 3(5), 759-776. doi:10.1080/21670811.2014.942497
World Health Organization (2020). Coronavirus. Retrieved from
https://www.who.int/health-topics/coronavirus#tab=tab_2 (accessed 2020-10-09)
Wise, T., Zbozinek, T. D., Michelini, G., Hagan, C. C., & Mobbs, D. (2020). Changes in risk perception and self-reported protective behaviour during the first week of the
COVID-19 pandemic in the United States. Royal Society Open Science, 7(9), 1-13. doi:10.1098/rsos.200742
Witte, K. I. M. (1996). Predicting Risk Behaviors: Development and Validation of a Diagnostic Scale. Journal of Health Communication, 1(4), 317-342. doi:10.1080/108107396127988
Xia, L. C., & Shen, F. (2018). Political participation in Hong Kong: The roles of news media and online alternative media. International Journal of Communication, 12,1569–1590. Retrieved from https://scholars.cityu.edu.hk/en/publications/publication(a5ddd45b-f49e-4bc1-a961-a70565bed86a).html
Xu, B., Chang, P., Welker, C., Bazarova, N. and Cosley, D. (2016). Automaticarchiving versus default deletion: What Snapchat tells us about ephemerality in design. Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing.
Yau, J., & Reich, S. (2018). “It's just a lot of work”: Adolescents' self-presentation norms and practices on Facebook and Instagram. Journal of research on adolescence, 29(1). doi:10.1111/jora.12376
Yang, Z. J. (2015). Predicting Young Adults Intentions to Get the H1N1 Vaccine: AnIntegrated Model. Journal of Health Communication, 20, 69 - 79.doi: 10.1080/10810730.2014.904023
Zhang, C., Fan, C., Yao, W., Hu, X., & Mostafavi, A. (2019). Social media for intelligentpublic information and warning in disasters: An interdisciplinary review.International Journal of Information Management, 49, 190-207.
doi: 10.1016/j.ijinfomgt.2019.04.004
Zhao, S., Grasmuck, S., & Martin, J. (2008). Identity construction on Facebook: Digitalempowerment in anchored relationships. Computers in Human Behavior, 24(5),
1816-1836. doi: 10.1016/j.chb.2008.02.012
Zhong, Z. J. (2009). Third-person perceptions and online games: A comparison ofperceived antisocial and prosocial game effects. Journal of Computer-Mediated Communication, 14(2), 286-306. doi: 10.1111/j.1083-6101.2009.01441.x
Zwirz, E. (2018, February 14). Fox News. Retrieved from:
https://www.foxnews.com/us/parkland-high-school-shooting-at-least-17-killed-suspect-in-custody-florida-sheriff-says
電子全文 電子全文(網際網路公開日期:20240328)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊