跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/16 18:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何承蔚
研究生(外文):Cheng-Wei He
論文名稱:製備CoV2O6/Co/TiO2-NWs複合型光觸媒及其光還原二氧化碳之研究
論文名稱(外文):Study on Preparation of CoV2O6/Co/TiO2-NWs Composited Photocatalyst for CO2 Photoreduction Reaction
指導教授:鄭紀民
指導教授(外文):Jih-Mirn Jehng
口試委員:陳志銘戴永銘
口試委員(外文):Chih-Ming ChenYong-Ming Dai
口試日期:2022-06-10
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:106
中文關鍵詞:釩酸鈷二氧化鈦奈米線光觸媒CO2光還原甲醇
外文關鍵詞:Cobalt vanadateTitanium dioxide nanowiresPhotocatalystsCO2 photoreductionMethanol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:73
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
二氧化碳在大氣中濃度不斷上升,導致溫室效應日益嚴重,為了有效降低二氧化碳濃度,人類開始找尋方法來解決問題。種樹是大家最耳熟能詳的辦法,但礙於台灣國土面積小且人口密度高,要在一些寸土寸金的地區種植樹木實在不易,因此使用化學反應的方式將二氧化碳轉為較高經濟價值的碳氫化合物便成了更好的解決方法。本研究主要調控光催化反應的控制變因,增強還原能力,主要目標是以CoV2O6/Co/TiO2-NWs之Z-scheme複合型光觸媒應用於二氧化碳還原生成甲醇,由於複合型態觸媒相對的能帶排列,Z-scheme奈米異質結構顯示出較高的電荷分離,因此具有較好的光催化氧化還原能力,可應用於甲醇的生成,並以HR-XRD、HR-TEM、UV-Vis DRS、PL、GC、UPS與XPS分析CoV2O6/Co/TiO2-NWs光觸媒的物理性質與表面特徵。本研究在波長254nm的紫外光照射下,將二氧化碳還原生成甲醇,並探討觸媒的光催化活性,得到0.1g的25wt% CoV2O6/Co/TiO2-NWs光觸媒在450mL的氫氧化鈉溶液中,具有最大的甲醇產生速率,其RMeOH = 38010 μmole g-cat-1h-1。
The major environmental issue of the Greenhouse Effect is due to the increase of carbon dioxide emissions from electric power and chemical plants. In order to effectively reducing the concentration of carbon dioxide, there are several ways to solve this issue. The simple and easy method is to plant trees and performs photosynthesis. Unfortunately, the limited lands and high population density in Taiwan have restricted to play this ideal. Therefore, developing a chemical reaction which converts carbon dioxide into higher economic valuable hydrocarbons turns into a better solution. This study focuses in the controlling factors of the photocatalytic reactivity and the enhancements of the photocatalytic CO2 reduction. The main goal is to systematically investigate the Z-scheme CoV2O6/Co/TiO2-nanowires (NWs) heterojunction photocatalysts for photocatalytic CO2 reduction to methanol. Because of the relative alignment of the constituents, Z-scheme heterojunction structures show highly effective charge separation and possess remarkable photocatalytic oxidizing and reducing reactivities, which can be exploited for applications in methanol generation. The physical properties and structural information of the CoV2O6/Co/TiO2-NWs photocatalysts were further analyzed by HR-XRD, HR-TEM, UV-Vis DRS, PL, GC, UPS and XPS techniques. The photocatalytic activities of all samples were evaluated based on the conversion of CO2 to methanol under UV radiations of 254 nm. For a 0.1 gram of 25wt% CoV2O6/Co/TiO2-NWs composite catalyst in a 450 mL of NaOH solution under the UV irradiation, the maximum methanol production rate was reached at about RMeOH=38010 μmole g-cat-1h-1.
摘要 i
Abstract ii
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 4
第二章 文獻回顧 6
2.1光觸媒 6
2.1.1 光觸媒介紹 6
2.1.2 光催化反應 9
2.2 光觸媒還原二氧化碳生成甲醇 11
2.2.1 二氧化碳介紹 11
2.2.2 甲醇介紹 12
2.2.3 二氧化碳的光催化還原反應 13
2.3 光觸媒異原子摻雜 16
2.3.1 金屬離子摻雜 16
2.3.2 非金屬離子摻雜 17
2.4 光觸媒異質結構 18
2.4.1 傳統異質結構 18
2.4.2 新型異質結構 20
2.5 光觸媒結構型態 26
第三章 研究方法 27
3.1實驗藥品 27
3.2實驗設備 27
3.3實驗儀器 28
3.4光觸媒製備 29
3.4.1 TiO2-NWs之製備 29
3.4.2 Co/CoV2O6之製備 31
3.4.3CoV2O6/Co/TiO2-NWs之製備 33
3.5儀器介紹 35
3.5.1 高解析X光繞射儀(HR-XRD) 35
3.5.2 穿透式電子顯微鏡(TEM) 36
3.5.3 傅立葉轉換紅外光譜儀(FTIR) 37
3.5.4 X射線光電子能譜儀(XPS) 38
3.5.5 紫外光-可見光漫反射光譜儀(UV-Vis DRS) 39
3.5.6 光激發螢光光譜儀(PL) 40
3.5.7 紫外光電子能譜儀(UPS) 41
3.5.8 氣相層析儀(GC-FID) 42
3.6 光催化還原二氧化碳生成甲醇反應 44
3.6.1 GC-FID反應參數設計 46
3.6.2 甲醇定性分析 47
3.6.3 甲醇定量分析 47
第四章 結果與討論 48
4.1 不同鈷/釩莫耳比製備CO/COV2O6之鑑定分析 48
4.1.1 高解析X光繞射儀(HR-XRD)分析 48
4.1.2 穿透式電子顯微鏡(TEM)分析 50
4.1.3 紫外光-可見光漫反射光譜儀(UV-Vis DRS)分析 52
4.1.4 光激發螢光光譜儀(PL)分析 54
4.1.5 二氧化碳還原生成甲醇之GC測定 55
4.2 不同水熱溫度製備TIO2-NWS之鑑定分析 57
4.2.1 高解析X光繞射儀(HR-XRD)分析 57
4.2.2 穿透式電子顯微鏡(TEM)分析 59
4.2.3 紫外光-可見光漫反射光譜儀(UV-Vis DRS)分析 62
4.2.4 光激發螢光光譜儀(PL)分析 64
4.2.5 二氧化碳還原生成甲醇之GC測定 65
4.3 不同重量比CO/COV2O6/TIO2-NWS之鑑定分析 67
4.3.1 高解析X光繞射儀(HR-XRD)分析 67
4.3.2 穿透式電子顯微鏡(TEM)分析 69
4.3.3 紫外光-可見光漫反射光譜儀(UV-Vis DRS)分析 72
4.3.4 光激發螢光光譜儀(PL)分析 74
4.3.5 二氧化碳還原生成甲醇之GC測定 75
4.4 不同水熱溫度CO/COV2O6/TIO2-NWS之鑑定分析 77
4.4.1 高解析X光繞射儀(HR-XRD)分析 77
4.4.2 穿透式電子顯微鏡(TEM)分析 79
4.4.3 紫外光-可見光漫反射光譜儀(UV-Vis DRS)分析 81
4.4.4 光激發螢光光譜儀(PL)分析 83
4.4.5 二氧化碳還原生成甲醇之GC測定 84
4.5 COV2O6/CO/TIO2-NWS複合型光觸媒 86
4.5.1 二氧化碳還原生成甲醇之GC測定 86
4.5.2 穿透式電子顯微鏡(TEM)分析 88
4.5.3 紫外光電子能譜儀(UPS)分析 93
4.5.4 X射線光電子能譜儀(XPS)分析 95
4.5.5 Z-scheme光催化反應機制 100
第五章 結論 101
參考文獻 104
[1]"國家溫室氣體減量法規資訊網." https://ghgrule.epa.gov.tw/qa/qa/3 (accessed.
[2]"NASA-CO2." https://climate.nasa.gov/vital-signs/carbon-dioxide/ (accessed.
[3]A. Kumar, P. Singh, A. A. P. Khan, Q. Van Le, S. Thaku, and P. Raizada, "CO2 photoreduction into solar fuels via vacancy engineered bismuth-based photocatalysts: Selectivity and mechanistic insights," Chemical Engineering Journal, p. 135563, 2022.
[4]"Green Earth Nano Science Inc." http://www.greenearthnanoscience.com/what-is-photocatalyst.php (accessed.
[5]C. R. Thurston, "Band Gap Engineering Of Titania Systems Purposed For Photocatalytic Activity," 2017.
[6]X. Li, J. Wen, J. Low, Y. Fang, and J. Yu, "Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel," Science China Materials, vol. 57, no. 1, pp. 70-100, 2014.
[7]R. Saravanan, J. Aviles, F. Gracia, E. Mosquera, and V. K. Gupta, "Crystallinity and lowering band gap induced visible light photocatalytic activity of TiO2/CS (Chitosan) nanocomposites," International journal of biological macromolecules, vol. 109, pp. 1239-1245, 2018.
[8]A. Goeppert and G. S. Prakash, Beyond Oil and Gas: The Methanol Economy. Wiley VCH, 2009.
[9]"Uses of Methanol and Ethanol." https://byjus.com/chemistry/uses-of-methanol-and-ethanol/ (accessed.
[10]K. Li, B. Peng, and T. Peng, "Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels," ACS Catalysis, vol. 6, no. 11, pp. 7485-7527, 2016.
[11]H. Shen, T. Peppel, J. Strunk, and Z. Sun, "Photocatalytic reduction of CO2 by metal‐free‐based materials: recent advances and future perspective," Solar RRL, vol. 4, no. 8, p. 1900546, 2020.
[12]J. Ge, Y. Zhang, Y.-J. Heo, and S.-J. Park, "Advanced design and synthesis of composite photocatalysts for the remediation of wastewater: A review," Catalysts, vol. 9, no. 2, p. 122, 2019.
[13]Y. Wang et al., "Synthesis of Mo-doped graphitic carbon nitride catalysts and their photocatalytic activity in the reduction of CO2 with H2O," Catalysis Communications, vol. 74, pp. 75-79, 2016.
[14]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, "Visible-light photocatalysis in nitrogen-doped titanium oxides," science, vol. 293, no. 5528, pp. 269-271, 2001.
[15]S. A. Ansari, M. M. Khan, M. O. Ansari, and M. H. Cho, "Nitrogen-doped titanium dioxide (N-doped TiO 2) for visible light photocatalysis," New Journal of Chemistry, vol. 40, no. 4, pp. 3000-3009, 2016.
[16]X. Li, R. Shen, S. Ma, X. Chen, and J. Xie, "Graphene-based heterojunction photocatalysts," Applied Surface Science, vol. 430, pp. 53-107, 2018.
[17]R. Ma et al., "Enhanced visible-light-induced photoactivity of type-II CeO2/g-C3N4 nanosheet toward organic pollutants degradation," ACS Sustainable Chemistry & Engineering, vol. 7, no. 10, pp. 9699-9708, 2019.
[18]J. Low, J. Yu, M. Jaroniec, S. Wageh, and A. A. Al‐Ghamdi, "Heterojunction photocatalysts," Advanced materials, vol. 29, no. 20, p. 1601694, 2017.
[19]H. Gong, Z. Li, Z. Chen, Q. Liu, M. Song, and C. Huang, "NiSe/Cd0. 5Zn0. 5S composite nanoparticles for use in p–n heterojunction-based photocatalysts for solar energy harvesting," ACS Applied Nano Materials, vol. 3, no. 4, pp. 3665-3674, 2020.
[20]A. J. Bard, "Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors," Journal of Photochemistry, vol. 10, no. 1, pp. 59-75, 1979.
[21]Z. Qiu and D. Tang, "Nanostructure-based photoelectrochemical sensing platforms for biomedical applications," Journal of Materials Chemistry B, vol. 8, no. 13, pp. 2541-2561, 2020.
[22]H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, and K. Tanaka, "All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system," Nature materials, vol. 5, no. 10, pp. 782-786, 2006.
[23]X. Huang et al., "Review on optofluidic microreactors for artificial photosynthesis," Beilstein journal of nanotechnology, vol. 9, no. 1, pp. 30-41, 2018.
[24]J. Yu, S. Wang, J. Low, and W. Xiao, "Enhanced photocatalytic performance of direct Z-scheme gC 3 N 4–TiO 2 photocatalysts for the decomposition of formaldehyde in air," Physical Chemistry Chemical Physics, vol. 15, no. 39, pp. 16883-16890, 2013.
[25]J. Low, S. Cao, J. Yu, and S. Wageh, "Two-dimensional layered composite photocatalysts," Chemical communications, vol. 50, no. 74, pp. 10768-10777, 2014.
[26]S. Baskaran, "Structure and regulation of yeast glycogen synthase," 2010.
[27]MA-tek閔康科技. "tem穿透式電子顯微鏡." https://www.ma-tek.com/zh-TW/services/index/TEM (accessed.
[28]R. Egerton, "TEM-EELS: a personal perspective," Ultramicroscopy, vol. 119, pp. 24-32, 2012.
[29]沈祐民博士. "Fourier-transform infrared spectroscopy." http://higem.ncku.edu.tw/index.php?option=module&lang=cht&task=showlist&id=335&index=5 (accessed.
[30]MA-tek閔康科技. "xps." https://www.ma-tek.com/zh-TW/services/index/XPS (accessed.
[31]W. C. M. C. C. Yale University. "xps principle." https://ywcmatsci.yale.edu/xps (accessed.
[32]G. O'Hanlon. "natural pigments." https://www.naturalpigments.com/artist-materials/gloss-matte-paint-surfaces/ (accessed.
[33]M. A. Reshchikov, "Measurement and analysis of photoluminescence in GaN," Journal of Applied Physics, vol. 129, no. 12, p. 121101, 2021.
[34]D. o. C. a. B. Grimmgroup, Worcester Polytechnic Institute. "XPS and UPS Background." https://grimmgroup.net/research/xps/background/ (accessed.
[35]J. F. Guayaquil-Sosa, B. Serrano-Rosales, P. J. Valadés-Pelayo, and H. de Lasa, "Photocatalytic hydrogen production using mesoporous TiO2 doped with Pt," Applied Catalysis B: Environmental, vol. 211, pp. 337-348, 2017.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊