跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/19 18:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳俊孝
研究生(外文):Jyun-Siao Chen
論文名稱:1.利用一鍋化反應製備葡萄醣胺之建構單元並合成β-(1→4)雙葡萄醣胺醣胜肽2.開發磷鎢酸作為碳水化合物的新型催化劑3.(±)-Pelseneeriol-1和-2的全合成
論文名稱(外文):1.The One-pot Reaction Strategy for Preparation of Glucosamine Building Blocks to Synthesize β-(1→4) Diglucosamine Glycopeptide2. Develop Phosphotungstic Acid as a Noval Catalystfor Carbohydrates3. Total synthesis of (±)-Pelseneeriol-1 and -2
指導教授:羅順原
指導教授(外文):Shun-Yuan Luo
口試委員:謝興邦朱智謙陳建盛林正坤
口試委員(外文):Hsing-Pang HsiehChih-Chien ChuChien-Sheng ChenCheng-Kun Lin
口試日期:2022-01-13
學位類別:博士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:565
中文關鍵詞:葡萄糖胺醣胜肽一鍋化反應磷鎢酸碳水化合物掩飾鄰苯醌pelseneeriol
外文關鍵詞:glucosamine glycopeptideone-pot reactionphosphotungstic acidcarbohydratemasked o-benzoquinonespelseneeriol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
第壹部分:利用一鍋化反應製備葡萄醣胺之建構單元並合成β(1→4)雙葡萄醣胺醣胜肽
由於生活型態的改變、輻射和抽煙等導致腫瘤形成。若能在早期檢測出腫瘤或癌細胞能使其容易治療並治愈或延緩癌症。有一種含有放射性金屬的醣胜肽(68Ga-GP)具有高比例結合癌細胞的能力,這可能有助於使用PET來檢測異常細胞生長。此類型的GP的基本骨幹是殼聚醣,殼聚醣是由β(1→4)單元的葡萄醣胺所組成。其可以通過水解分成較小的單元,但是無法控制其醣體數量的多寡。因此,欲開發合成β(1→4)葡萄醣胺單位的醣鏈結方法。立體選擇性醣鏈結可以通過保護葡萄醣胺中的胺基來達成,並開發一鍋化方法合成長鏈的葡萄醣胺的建構單元。在醣鏈結合成後,將特定胺基酸在特定的C2位置偶聯以得到全保護的GP。脫保護後,即可得到所需的醣胜肽衍生物。
關鍵字:葡萄糖胺醣胜肽、一鍋化反應
第貳部分:開發磷鎢酸作為碳水化合物的新型催化劑
碳水化合物在許多生物作用中扮演至關重要的作用,例如細胞之間的相互作用及信號傳導等。在實驗室中要製備寡醣,保護或去保護醣分子上的特定羥基是不可少的。近年來,磷鎢酸在催化領域受到了廣泛的關注,並且由於其低毒性,低成本,生態友好和可回收利用等特性而受到了化學家的青睞。利用磷鎢酸作為非均相催化劑,可以解決腐蝕性強及分離困難的問題。有鑑於此,我們想利用磷鎢酸(PTA)作為碳水化合物反應的酸性催化劑,如乙醯化、亞芐基的形成、區域選擇性的O-4開環、矽烷基化、醣鏈結和O-乙醯化醣苷的微波輔助硫代醣苷。
關鍵字:磷鎢酸、碳水化合物
第參部分:(±)-Pelseneeriol-1和-2的全合成
描述(±)-Pelseneeriol-1和-2結構的海洋呋喃倍半萜類的化學合成。首先將2,3-二甲基-鄰甲氧基酚III-82通過氧化去芳香化形成掩飾鄰苯醌,接著與丙烯醛進行分子間的Diels–Alder反應後,可以順利得到雙環[2.2.2]辛烯酮化合物III-77,此外可以同時建立天然物所需的相對立體化學。接著經過多步後,將C7的氧利用SmI2進行去氧反應得到化合物III-76。並且其可以通過 Baeyer-Villiger 氧化反應轉化為內酯 III-112。經由數步的官能基轉換後便可以得到六員環骨架III-119。我們預期將呋喃取代一級羥基後就能夠獲得天然物(±)-Pelseneeriol-1 (III-1)。最後再利用Misunobu反應將羥基翻轉即可以得到天然物(±)-Pelseneeriol-2 (III-2)
關鍵字:掩飾鄰苯醌、pelseneeriol
Part I. The One-pot Reaction Strategy for Preparation of Glucosamine Building Blocks to Synthesize β-(1→4) Diglucosamine Glycopeptide
The changing of lifestyles, radiations, and addictions such as smoking cigarette may cause the tumor. The detection of tumors or cancer cells in early stages makes it easy to treat them and cure or delay the cancer. A type of glycoproteins (GP) with some radioactive metal have an ability to bind to cancer cells in high ratio which may help to detect the abnormal cell growths by using PET. The basic backbone of GP is chitosan which is made of β (1 → 4) units of glucosamine. It can be separated into smaller units by hydrolysis but we cannot control the chain length in specific numbers. Hence, we developed a method of glycosylation for the synthesis β-(1 → 4) units of chitoson. The stereoselective glycosylation could be achieved by protecting the amino groups in glucosamines. The strategy was to develop one-pot method to synthesize building blocks of the oligosaccharide. After glycosylation, the peptide could be coupled at specific position (C2) to afford the fully protected GP which can furnish the desired product after deprotection.
Keyword: glucosamine glycopeptide, one-pot reaction
Part II. Develop Phosphotungstic Acid as a Novel Catalyst for Carbohydrates
Carbohydrates play vital role in many biological actions, for instance, interactions between cells, signalling, etc. It is imperative to protect or de-O-protect at particular hydroxyl group on the sugar molecules to produce oligosaccharides in laboratories. The application of phosphotungstic acid, a low toxic, low-cost, eco-friendly and recyclable catalyst, in the past few decades has received considerable attention, and it has been favored by chemists. As a heterogeneous catalyst, the utilization of phosphotungstic acid can solve the problem of high corrosivity and difficulty of separation. In view of this, we described the application of phosphotungstic acid for carbohydrate transformation, including pre-O-acetylation, benzylidene formation, regio-selective O-4 ring-opening, silylation, glycosylation, and microwave-assisted thioglycoside formation of O-acetylated saccharides.
Keyword: phosphotungstic acid, carbohydrate
Part III. Total synthesis of (±)-Pelseneeriol-1 and -2
The chemical synthesis of the marine furanosesquiterpenes, (±)-Pelseneeriol-1 (III-1) and -2 (III-2), were described. Firstly, the 2,3-dimethyl-ortho-methoxyphenol (III-82) were then converted to masked ortho-benzoquinones through oxidation-dearomatization, followed by Diels-Alder reaction with acrolein to furnish bicyclo[2.2.2]octenone compound (III-77). Additionally, the relative stereochemistry required for natural products was established at the same time. Next, the carboxyl group of C7 was deoxygenated by SmI2 to obtain the compound III-76. Notably, it could be converted to lactone III-112 through Baeyer-Villiger oxidation reaction without epoxidation. After several functional group transformations, the six-membered ring skeleton III-119 could be successfully afforded. We expect that (±)-Pelseneeriol-1 (III-1) would be obtained after the installation of furan moiety. Finally, the hydroxyl group of (±)-Pelseneeriol-1 (III-1) would be reversed by Misunobu reaction and (±)-Pelseneeriol-2 (III-2) could be received.
Keyword: masked o-benzoquinones, pelseneeriol
謝誌 i
摘要 iii
Abstract vi
目錄 ix
圖目錄 xvii
表目錄 xix
流程目錄 xxi
縮寫對照表 xxv
第壹部分:利用一鍋化反應製備葡萄醣胺之建構單元並合成β(1→4)雙葡萄醣胺醣胜肽 1
第一章、緒論 2
1.1 前言 2
1.2癌症的形成及治療 3
1.3正電子發射計算機斷層掃描(Positron Emission Tomography,PET) 4
1.4醣胜肽(Glycopeptide,GP)的發現及活性探討 5
1.5 葡萄醣胺(Glucosamine) 10
1.6麩胺酸(Glutamic Acid,Glu.) 11
1.7醣類化學(Carbohydrate Chemistry) 13
1.7.1保護基化學(Protecting Groups Chemistry) 14
1.7.2醣苷鍵的立體位向選擇性(Stereoselectivity of Glycosidic Bond) 15
1.7.2.1變旋異構效應(Anomeric Effect) 17
1.7.2.2鄰基效應 (Neighboring Group Effect) 20
1.7.2.3溶劑效應 (Solvent Effect) 21
1.8合成雙葡萄醣胺的文獻回顧 22
1.9醣類一鍋化反應的文獻回顧 25
1.10醣胜肽(Glycopeptide,GP)的逆合成分析 31
第二章、結果與討論 32
2.1 葡萄醣胺之醣受體合成策略 32
2.2 葡萄醣胺之醣予體之合成策略 34
2.3 雙葡萄醣胺醣胜肽之合成策略 36
2.4 一鍋化反應葡萄醣胺建構單元之合成策略 40
2.5 一鍋化反應製備葡萄醣胺建構單元 43
2.5.1一鍋化合成3-O-羥基的葡萄醣胺 43
2.5.2一鍋化合成全保護的葡萄醣胺 45
2.5.3一鍋化製備4-O-羥基葡萄醣胺 48
2.5.4一鍋化製備6-O-羥基葡萄醣胺 50
2.6 一鍋化反應之反應機構探討 52
第三章、結論 54
第四章、實驗部分 56
4.1一般實驗敘述 56
4.2實驗步驟與物理數據 57
4.2.1 Synthesis of Acceptor of Glycopeptide 57
4.2.2. Synthesis of Donor of Glycopeptide 61
4.2.3 Synthesis of Glycopeptide 64
4.2.4 Synthesis of the 3-Alcohol Glucosamine 70
4.2.5 Synthesis of the Fully Protected Glucosamine 78
4.2.6 One-pot Regionselective O-4 Ring-opening Reactions 86
4.2.7 One-pot Regionselective O-6 Ring-opening Reactions 93
第貳部分:開發磷鎢酸作為碳水化合物的新型催化劑 101
第五章、緒論 102
5.1 前言 102
5.2雜多酸 (Heteropoly Acids,HPAs) 103
5.3磷鎢酸 (Phosphotungstic Acid) 104
5.4磷鎢酸的文獻回顧 106
5.4.1狄耳士-阿爾德反應(Diels–Alder Reaction) 107
5.4.2芳基二聚化(Aryl Dimerization) 107
5.4.3普林斯環化反應(Prins Cyclization) 107
5.4.4醣基化 (Glycosylation) 108
5.4.5醇類的去氧反應 (Deoxygenation of Alcohol) 108
5.4.6酯化反應(Esterfication) 108
5.4.7 Pinacol重排反應(Pinacol Rearrangement) 109
5.4.8烷烴的異構化(Isomerization of Alkanes) 109
5.4.9傅-克醯化反應(Friedel–Crafts Acylation) 109
5.4.10貝克曼重排反應(Beckmann Rearrangement) 110
5.5保護基 (Protecting Group) 111
5.5.1乙醯化 (Acetyl Protection) 112
5.5.2亞苄基乙縮醛保護(Benzylidene Acetalization) 114
5.5.3區域選擇性開環(Regioselective Ring Opening) 115
5.5.4矽烷基保護(Silyl Protection) 118
5.6醣基化反應文獻回顧 (Literature review of glycosylation) 121
5.6.1醣基鹵化物 (Glycosyl Halides) 123
5.6.2醣基三氯乙醯亞胺(Glycosyl Trichloroacetimidates) 124
5.6.3硫代醣苷(Thioglycosides) 126
5.7硫代醣苷鍵形成 (Thioglycosides Formation) 127
5.8微波反應 (Microwave Reaction) 128
5.9磷鎢酸的實驗規劃 129
第六章、結果與討論 131
6.1 磷鎢酸用於全乙醯化反應 131
6.2 磷鎢酸形成O-4,6-亞苄基保護反應 133
6.3 磷鎢酸進行區域選擇性開環 135
6.4磷鎢酸用於三甲基矽烷基化反應及回收 137
6.5磷鎢酸進行醣基化反應 144
6.6磷鎢酸進行硫代醣苷鍵的生成及回收 146
第七章、結論 152
第八章、未來展望 154
第九章、實驗部分 155
9.1一般實驗敘述 155
9.2實驗步驟與物理數據 156
9.2.1 General Procedure for Per-O-acetylation Reaction 156
9.2.2 General Procedure for Benzylidene Formation 160
9.2.3 General Procedure for Regioselective O-4 Ring Opening Reaction 164
9.2.4 General Procedure of Trimethylsilylation of Sugars for PTA-Catalyzed HMDS 169
9.2.5 Glycosylation Reaction 176
9.2.6 General Procedure for Thiolglycoside Formation 183
第參部分:(±)-Pelseneeriol-1和-2的全合成 191
第十章、緒論 192
10.1 前言 192
10.1.1天然物Pelseneeriol之簡介 193
10.1.2 Pelseneeriol類天然物 196
10.2文獻回顧 197
10.2.1 天然物Microcionin-2 (III-12)之全合成 197
10.2.2 天然物Pallescensin-1 (III-14)和-2 (III-15)之全合成 199
10.2.3 天然物Dihydropallescensin-2 (III-16)之全合成 200
10.2.4 天然物Isomicrocionin-3 (III-17)之全合成 202
10.3研究構思 203
10.3.1掩飾鄰苯醌 203
10.3.2掩飾鄰苯醌的Diels-Alder反應 205
10.3.3利用掩飾鄰苯醌合成天然物annuionone B與tanarifuranonol 207
10.3.4利用掩飾鄰苯醌合成天然物palhinine A、D與isopalhinine A 209
10.4 Pelseneeriol的逆合成分析 212
第十一章、結果與討論 214

11.1 掩飾鄰苯醌前驅物-2,3-二甲基-鄰甲氧基酚III-82的合成 214
11.2 掩飾鄰苯醌分子內Diels-Alder反應之合成路徑 215
11.3 掩飾鄰苯醌分子間Diels-Alder反應之合成路徑 217
11.3.1製備雙環[2.2.2]辛烯酮化合物產物III-77 217
11.3.2雙環[2.2.2]辛烯酮產物III-77進行去氧反應 219
11.3.3雙環[2.2.2]辛烯酮產物III-77還原成雙環[2.2.2]辛烯酮二醇產物III-97 221
11.3.4雙環[2.2.2]辛烯酮二醇產物III-97進行去氧反應 222
11.3.5雙環[2.2.2]辛烯酮二醇產物III-97進行水解反應獲得α-羥基酮III-102 224
11.3.6 α-羥基酮III-102進行去氧反應 225
11.3.7 雙環[2.2.2]辛烯III-76氧化開環之規劃 228
11.3.8 利用氧化開環建立Pelseneeriol環己烯醇骨架 229
11.3.9 合成(±)-Pelseneeriol-1 (III-1)和-2 (III-2) 233
第十二章、結論 234
第十三章、未來規劃 236
第十四章、實驗部分 237
14.1一般實驗敘述 237
14.2實驗步驟與物理數據 238
參考資料 250
附錄 285
附錄一、化合物之核磁共振光譜圖 286
附錄二、論文口試投影片 492
附錄三、已發表之國際期刊 523
1. Bray,F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A. Global Cancer Statistics 2018: Globocan Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. Ca. Cancer J. Clin. 2018, 68, 394–424.
2. 109年國人死因統計結果,衛生福利部新聞稿,2021。
3. Young, H.; Baum, R.; Cremerius, U.; Herholz, K.; Hoekstra, O.; Lammertsma, A. A.; Pruim, J.; Price, P. Measurement of Clinical and Subclinical Tumour Response Using [18F]-Fluorodeoxyglucose and Positron Emission Tomography: Review and 1999 Eortc Recommendations. Eur. J. Cancer 1999, 35, 1773–1782.
4. Gambhir, S. Molecular Imaging of Cancer with Positron Emission Tomography. Nat. Rev. Cancer 2002, 2, 683–693.
5. Anand, P.; Kunnumakara, A. B.; Sundaram, C.; Harikumar, K. B.; Tharakan, S. T.; Lai, O. S.; Sung B.; Aggarwal, B. B. Cancer is a Preventable Disease that Requires Major Lifestyle Changes. Pharm. Res. 2008, 25, 2097–2116.
6. Normann, S. J.; Schardt, M.; Sorkin, E. Cancer Progression and Monocyte Inflammatory Dysfunction: Relationship to Tumour Excision and Metastasis. Int. J. Cancer 1979, 23, 110–113.
7. Lind, M. J. Principles of Cytotoxic Chemotherapy. Medicine 2008, 36, 19–23.
8. Bomford, C. K.; Kunkler, I. H.; Walter, J. Walter and Miller's Textbook of Radiotherapy: Radiation Physics, Therapy and Oncology (7th Ed); Churchill Livingstone: Edinburgh, 2003
9. Waldmann, T. Immunotherapy: Past, Present and Future. Nat. Med. 2003, 9, 269–277.
10. Epstein, R. J. Maintenance Therapy to Suppress Micrometastasis: The New Challenge for Adjuvant Cancer Treatment. Clin. Cancer Res. 2005, 11, 5337–5341.
11. (a) Wei, I.-C.; Tsao, N.; Huang, Y.-H.; Ho, Y.-S.; Wu, C.-C.; Yu, D.-F.; Yang, D. J. 99mTc-glycopeptide: Synthesis, Biodistribution and Imaging in Breast Tumor-Bearing Rodents. Appl. Radiat. Isot. 2008, 66, 320–331; (b) Tsao, N.; Wang, C. H.; Her, L. J.; Tzen, K. Y.; Chen, J. Y.; Yu, D. F.; Yang, D. J.; Development of 68Ga-Glycopeptide as an Imaging Probe for Tumor Angiogenesis. J. Biomed. Biotechnol. 2011, 267206–267215.
12. Phillips, I. Withdrawal of Growth-Promoting Antibiotics in Europe and Its Effects in Relation to Human Health. Int. J. Antimicrob. Agents 2007, 30, 101.
13. McAlindon, T. Glusoamine for Osteoarthritis: Dawn of a New Era? Lancet 2001, 357, 247–248.
14. Huang, X.; Huang, L.; Wang, H.; Ye, X.‐S. Iterative One‐pot Synthesis of Oligosaccharides. Angew. Chem. Int. Ed. 2004, 43, 5221–5224.
15. Varki, A.; Cummings, R. D.; Esko, J. D.; Freeze, H. H.; Stanley, P.; Bertozzi, C. R.; Hart, G. W.; Etzler, M. E. Essentials of Glycobiology; Cold Spring Harbor: NY, 2009.
16. Plimmer, R. H. A. Part I. Analysis. In Monographs on Biochemistry: The Chemical Constitution of the Protein.; Plimmer, R. H. A.; Hopkins, F. G. Eds.; Longmans, Green & Company: London and NY, 1912.
17. Sano, C. History of Glutamate Production. Am. J. Clin. Nutr. 2009, 90, 728S–732S.
18. (a) Chenu, C.; Serre, C. M.; Raynal, C.; Burt-Pichat, B.; Delmas, P. D. Glutamate Receptors Are Expressed by Bone Cells and AreInvolved in Bone Resorption. Bone 1998, 22, 295–299; (b) Raynal, C.; Delmas, P. D.; Chenu, C. Bone Sialoprotein Stimulates in Vitro Bone Resorption. Endocrinology 1996, 137, 2347–2354.
19. Li, C. Poly(L-Glutamic Acid)–Anticancer Drug Conjugates. Adv. Drug Deliv. Rev. 2002, 54, 695–713.
20. Veronese, M. L.; Flaherty, K.; Kramer, A.; Konkle, B. A.; Morgan, M.; Stevenson, J. P.; O’Dwyer, P. J. Phase I Study of the Novel Taxane CT-2103 in Patients with Advanced Solid Tumors. Cancer Chemother. Pharmacol. 2005, 55, 497–501.
21. Šebestík, J.; Reiniš, M.; Ježek, J. Biomedical Applications of Peptide-, Glyco- and Glycopeptide Dendrimers, and Analogous Dendrimeric Structures; Springer-Verlag: Wien, 2012.
22. (a)Zulueta, M. M. L.; Lin, S.-Y.; Lin, Y.-T.; Huang, C.-J.; Wang, C.-C.; Ku, C.-C.; Shi, Z.; Chyan, C.-L.; Irene, D.; Lim, L.-H.; Tsai, T.-I.; Hu, Y.-P.; Arco, S. D.; Wong, C.-H.; Hung, S.-C. α-Glycosylation by D-Glucosamine-Derived Donors: Synthesis of Heparosan and Heparin Analogues That Interact with Mycobacterial Heparin-Binding Hemagglutinin. J. Am. Chem. Soc. 2012, 134, 8988–8995; (b) Shie, C.‐R.; Tzeng, Z.‐H.; Wang, C.‐C.; Hung, S.‐C. Metal Trifluoromethane-sulfonate‐Catalyzed Regioselective Reductive Ring Opening of Benzylidene Acetals. J. Chin. Chem. Soc. 2009, 56, 510–523.
23. Schelhas, M.; Waldmann, H. Protecting Group Strategies in Organic Synthesis. Angew. Chem. In. Ed. 1996, 35, 2056-2083.
24. Wuts, P. G. M.; Greene, T. W. Green’s Protective Group in Organic Synthesis. John Wiley & Sons: Hoboken, NJ, 2006.
25. (a) Demchenko, A. V. Handbook of Chemical Glycosylation. Wiley-VCH: Weinheim, 2008; (b) Nigudkar, S. S.; Demchenko, A. V. Stereocontrolled 1,2-cis Glycosylation as the Driving Force of Progress in Synthetic Carbohydrate Chemistry. Chem. Sci. 2015, 6, 2687–2704.
26. Hung, S.-C; Zulueta, M. M. L. Glycochemical Synthesis: Strategies and Applications; John Wiley & Sons: NY, 2016.
27. Juaristi, E.; Cuevas, G. Recent Studies of the Anomeric Effect. Tetrahedron 1992, 48, 5019–5087.
28. (a) Edward, J. T. Chem. Ind. 1955, 1102-1104; (b) Tvaroŝka, I.; Bleha, T. Anomeric and Exo-Anomeric Effects in Carbohydrate Chemistry. Adv. Carbohyd. Chem. Biochem. 1989, 47,45–123.
29. Lemieux, R. U. In, Molecular Rearrangements; de Mayo, P. Ed.; Interscience: NY, 1964, Vol 2, 709–769.
30. Lu, S. R.; Lai, Y. H.; Chen, J. H.; Liu, C. Y.; Mang, K. K. T. Dimethylformamide: An Unusual Glycosylation Modulator. Angew. Chem., Int. Ed. 2011, 50, 7315–7320.
31. Satoh, H.; Hansen, H. S.; Manabe S.; V. Gunsteren, W. F.; Hunenberger, P. H. Theoretical Investigation of Solvent Effects on Glycosylation Reactions: Stereoselectivity Controlled by Preferential Conformations of the Intermediate Oxacarbenium-Counterion Complex. J. Chem. Theory Comput. 2010, 6, 1783–1797.
32. Eby, R.; Schuerch, C. The use of 1-O-Tosyl-D-glucopyranose Derivatives in α-D-Glucoside Synthesis. Carbohydr. Res. 1974, 34, 78–90.
33. Johannesen, S. A.; Petersen, B. O.; Duus, J. Ø.; Skrydstrup, T. Studies Directed to Understanding the Structure of Chitosan−Metal Complexes:  Investigations of Mono- and Disaccharide Models with Platinum(II) Group Metals. Inorg. Chem. 2007, 46, 4326–4335.
34. Hansen, S. G.; Skrydstrup, T. Studies Directed to the Synthesis of Oligochitosans-Preparation of Building Blocks and Their Evaluation in Glycosylation Studies. Eur. J. Org. Chem. 2007, 3392–3401.
35. Barroca-Aubry, N.; Pernet-Poil-Chevrier, A.; Domard, A.; Trombotto, S. Towards a Modular Synthesis of Well-Defined Chito-oligosaccharides: Synthesis of the Four Chitodisaccharides. Carbohydr. Res. 2010, 345, 1685–1697.
36. Vohra, Y.; Vasan, M.; Venot, A.; Boons, G.-J. One-Pot Synthesis of Oligosaccharides by Combining Reductive Openings of Benzylidene Acetals and Glycosylations. Org. Lett. 2008, 10, 3247–3250.
37. Kulkarni, S. S.; Wang, C. C., Sabbavarapu, N. M., Podilapu, A. R., Liao, P. H.; Hung, S. C. “One-Pot” Protection, Glycosylation, and Protection-Glycosylation Strategies of Carbohydrates. Chem. Rev. 2018, 118, 8025–8104.
38. (a) Wang, C. C.; Lee, J. C.; Luo, S. Y.; Kulkarni, S. S.; Huang, Y. W.; Lee, C. C.; Chang, K. L.; Hung, S. C. Regioselective One-pot Protection of Carbohydrates. Nature 2007, 446, 896–899; (b) Wang, C.C., Kulkarni, S. S.; Lee, J. C.; Luo, S. Y.; Hung. S. C. Regioselective One-pot Protection of Glucose. Nat. Protoc. 2008, 3, 97–113.
39. Huang, T. Y.; Zulueta, M. M.; Hung, S C. Regioselective One-pot Protection, Protection–Glycosylation and Protection–Glycosylation–Glycosylation of Carbohydrates: A Case Study with D-Glucose. Org. Biomol. Chem. 2014, 12, 376–382.
40. Despras, G.; Urban, D.; Vauzeilles, B.; Beau, J. M. One-pot Synthesis of D-Glucosamine and Chitobiosyl Building Blocks Catalyzed by Triflic Acid on Molecular Sieves. Chem. Commun. 2014, 50, 1067–1069.
41. Français, A.; Urban, D.; Beau, J.‐M. Tandem Catalysis for a One‐pot Regioselective Protection of Carbohydrates: The Example of Glucose. Angew. Chem. Int. Ed. 2007, 46, 8662–8665.
42. Bourdreux, Y., Lemétais, A.; Urban, D.; Beau, J. M. Iron (III) Chloride-Tandem Catalysis for a One-pot Regioselective Protection of Glycopyranosides. Chem. Commun. 2011, 47, 2146−2148.
43. Huang, X.; Huang, L.; Wang, H.; Ye, X.‐S. Iterative One‐Pot Synthesis of Oligosaccharides. Angew. Chem. Int. Ed. 2004, 43, 5221–5224.
44. Chang, K.-L.; Zulueta, M. M. L.; Lu, X.-A.; Zhong, Y.-Q.; Hung S.-C. Regioselective One-Pot Protection of D-Glucosamine. J. Org. Chem. 2010, 75, 7424–7427.
45. Chen, C. W.; Wang, C. C.; Li, X. R.; Witek, H.; Mong, K.-K. T. Sub-stoichiometric Reductive Etherification of Carbohydrate Substrates and One-pot Protecting Group Manipulation. Org. Biomol. Chem. 2020, 18, 3135–3141.
46. (a) Enugala, R.; Carvalho, L. C. R.; Marques, M. M. B. Towards Glucosamine Building Blocks: Regioselective One-Pot Protection and Deallylation Procedures. Synlett 2010, 2010, 2711–2716; (b) Alper, P. B.; Hung, S. C.; Wong, C. H. Metal Catalyzed Diazo Transfer for the Synthesis of Azides from Amines. Tetrahedron Lett. 1996, 37, 6029–6032.
47. Hatakeyama, S.; Mori, H.; Kitano, K.; Yamada, H.; Nishizawa, M. Efficient reductive etherification of carbonyl compounds with alkoxytrimethylsilanes. Tetrahedron Lett. 1994, 35, 4367–4370.
48. Chen, J.-S.; Pantawane, A. R.; Huang, P.-H.; Liu, J.-W.; Sankar, A.; Lin, Y.-J.; Liu, Y. H.; Wu, H.-R.; Luo, S.-Y. One-Pot Protection Strategy of Glucosamine to Assemble Building Blocks of Chitosan and Lipid A. Eur. J. Org. Chem. 2020, 5580–5595.
49. Clark, J. H. Solid Acids for Green Chemistry. Acc. Chem. Res. 2002, 35, 791–797.
50. (a) Kim, P.; Kim, H.; Yi, J.; Song, I. K. Preparation, Characterization, and Catalytic Activity of H3PW12O40 Heteropolyacid Catalyst Supported on Mesoporous γ-Al2O3 Stud. Surf. Sci. Catal. 2006, 159, 265-268; (b) Ramos-Fernandez, E. V.; Pieters, C.; Van der Linden, B.; Juan-Alcaniz, J.; Serra-Crespo, P.; Verhoeven, M. W. G. M.; Niemantsverdriet, H.; Gascon, J.; Kapteijn, F. Highly Dispersed Platinum in Metal Organic Framework NH2-MIL-101(Al) Containing Phosphotungstic Acid – Characterization and Catalytic Performance. J. Catal. 2012, 289, 42–52.
51. (a) Dabiri, M.; Bashiribod, S. Phosphotungstic Acid: An Efficient, Cost-effective and Recyclable Catalyst for the Synthesis of Polysubstituted Quinolines. Molecules 2009, 14, 1126–1133; (b) Wilson, K.; Clark, J. H. Solid Acids and Their Use as Environmentally Friendly Catalysts in Organic Synthesis. Pure Appl. Chem. 2000, 72, 1313–1319.
52. Janik, M. J.; Davis, R. J.; Neurock, M. A Density Functional Theory Study of the Alkylation of Isobutane with Butene over Phosphotungstic Acid. J. Catal. 2006, 244, 65–77.
53. Sofia, L. T. A.; Krishnan, A.; Sankar, M.; Raj, N. K. K.; Manikandan, P.; Rajamohanan, P. R.; Ajithkumar, T. G. Immobilization of Phosphotungstic Acid (PTA) on Imidazole Functionalized Silica: Evidence for the Nature of PTA Binding by Solid State NMR and Reaction Studies. J. Phys. Chem. C 2009, 113, 21114–21122.
54. Okuhara, T.; Mizuno, N.; Misono, M. Catalytic Chemistry of Heteropoly Compounds. Adv. Catal. 1996, 41, 113–252.
55. Keggin, J. Structure of the Molecule of 12-Phosphotungstic Acid. Nature 1933, 131, 908–909.
56. Kozhevnikov, I. V. Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates in Liquid-Phase Reactions. Chem. Rev. 1998, 98, 171–198.
57. Jansen, R. J. J.; Veldhuizen, H. M. van; Schwegler, M. A.; van Bekkum, H. Recent (1987-1993) Developments in Heteropolyacid Catalysts in Acid Catalyzed Reactions and Oxidation Catalysis. Recl. Trav. Chim. Pays-Bas. 1994, 113, 115–135.
58. (a) Kozhevnikov, I. V. Advances in Catalysis by Heteropolyacids. Russ. Chem. Rev. 1987, 56, 811–825: (b) Timofeeva, M. N.; Matrosova, M. M.; Maksimov, G. M.; Likholobov, V. A. A Study of the Acid Properties of Structurally and Compositionally Different Heteropoly Acids in Acetic Acid. Kinet. Catal. 2001, 42, 785–790; (c) T. Okuhara, M. Mizuno, M. Misono, Catalytic Chemistry of Heteropoly Compounds. Adv. Catal. 1996, 41, 113–252; (d) Kozhevnikov, I. V. Heteropoly Acids as Catalysts for Organic Reactions. Stud. Surf. Sci. Catal. 1994, 90, 21–34; (e) Kozhevnikov, I. V. Fine organic synthesis with the aid of heteropolycompounds. Russ. Chem. Rev. 1993, 62, 473–491.
59. Zendehdel, M.; Mobinikhaledi, A.; Alikhani, H.; Jafari, N. Preparation of Heteropoly Acid/Porous Hybrid Materials and Investigation of their Catalytic Behavior in the Synthesis of Perimidine. J. Chin. Chem. Soc. 2010, 57, 683–689.
60. Okuhara, T.; Kamiya, Y. Oxide Catalysts in Solid-State Chemistry. In Encyclopedia of Inorganic Chemistry Scott, R. A.; Atwood, D.; Lukehart, C. M.; Lukehart, C. M. Eds.; John Wiley & Sons: NY, 2006.
61. Zhu, Z.; Tain, R.; Rhodes, C. A study of the Decomposition Behaviour of 12-Tungstophosphate Heteropolyacid in Solution. Can. J. Org. Chem. 2003, 81, 1044–1050.
62. Du, D.-Y.; Qin, J.-S.; Li, S.-L.; Su, Z.-M.; Lan, Y.-Q. Recent Advances in Porous Polyoxometalate-Based Metal–Organic Framework Materials. Chem. Soc. Rev. 2014, 43, 4615–4632.
63. Kozhevnikov, I. V.; Matveev, K. I. Homogeneous Catalysts Based on Heteropoly Acids (review). Appl. Catal. 1983, 5, 135–150
64. Okuhara, T.; Nishimura, T.; Watanabe, H.; Misono, M. Insoluble Heteropoly Compounds as Highly Active Catalysts for Liquid-Phase Reactions J. Mol. Catal. 1992, 74, 247–256.
65. Firouzabadi, H.; Jafari, A. A. Heteropoly Acids, Their Salts and Polyoxometalates as Heterogenous, Efficient and Eco-Friendly Catalysts in Organic Reactions: Some Recent Advances. J. Iran. Chem. Soc. 2005, 2, 85–114.
66. (a) Betihaa, M. A.; Hassanb, H. M. A.; El-Sharkawyb, E. A.; Al-Sabagha, A. M.; Menoufya, M. F.; Abdelmoniem, H-E. M. A New Approach to Polymer-Supported Phosphotungstic Acid: Application for Glycerol Acetylation Using Robust Sustainable Acidic Heterogeneous–Homogenous Catalyst. Appl. Catal. B: Environmental 2016, 182, 15–25; (b) Kulkarni, M. G.; Gopinath, R.; Meher, L. C.; Dalai, A. K. Solid Acid Catalyzed Biodiesel Production by Simultaneous Esterification and Transesterification. Green Chem. 2006, 8, 1056–1062.
67. Kouznetsov, V. V.; Méndez, L. Y. V.; Gómez, C. M. M. Recent Progress in the Synthesis of Quinolones. Curr. Org. Chem. 2005, 9, 141–161.
68. Janik, M. J.; Davis, R. J.; Neurock, M. A density functional theory study of the alkylation of isobutane with butene over phosphotungstic acid J. Catal. 2006, 244, 65–77.
69. (a) Ngu, Z. T. A.; Li, Z. Phosphotungstic Acid-Functionalized Magnetic Nanoparticles as an Efficient and Recyclable Catalyst for the One-pot Production of Biodiesel from Grease via Esterification and Transesterification. Green Chem. 2014, 16, 1202–1210; (b) Brahmkhatri, V.; Patel, A. 12-Tungstophosphoric Acid Anchored to SBA-15: An Efficient, Environmentally Benign Reusable Catalysts for Biodiesel Production by Esterification of Free Fatty Acids. Appl. Catal. A: Gen. 2011, 403, 161–172.
70. (a) Shen, L.; Yin, H.; Wang, A.; Feng, Y.; Shen, Y.; Wu, Z.; Jiang, T. Liquid Phase Dehydration of Glycerol to Acrolein Catalyzed by Silicotungstic, Phosphotungstic, and Phosphomolybdic Acids. Chem. Eng. J. 2012, 180, 277–283. (b) Ma, T.; Yun, Z.; Xu, W.; Chen, L.; Li, L.; Ding, J.; Shao, R. Pd-H3PW12O40/Zr-MCM-41: An Efficient Catalyst for the Sustainable Dehydration of Glycerol to Acrolein. Chem. Eng. J. 2016, 294, 343–352.
71. Shiju, N. R.; Alberts, A. H.; Khalid, S.; Brown, D. R.; Rothenberg, G. Mesoporous Silica with Site-Isolated Amine and Phosphotungstic Acid Groups: A Solid Catalyst with Tunable Antagonistic Functions for One-Pot Tandem Reactions. Angew. Chem. In. Ed. 2011, 50, 9615 –9619.
72. Noshi, M. N. Phosphotungstic Acid Hydrate. In Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons, 2013.
73. Meuzelaar, G. J.; Maat, L.; Sheldon, R. A. Heteropoly acid-catalyzed Diels-Alder reactions. Catal. Lett. 1997, 45, 249–251.
74. Kozhevnikov, I. V. The Mechanism of the Oxidative Coupling of Unsaturated Hydrocarbons Under the Influence of Palladium(II) Complexes. Russ. Chem. Rev. 1983, 52, 244.
75. Zhang, W.; Leng, Y.; Zhao, P.; Wang, J.; Zhu, D.; Huang, J. Heteropolyacid Salts of N-methyl-2-pyrrolidonium as Highly Efficient and Reusable Catalysts for Prins Reactions of Styrenes with Formalin. Green Chem. 2011, 13, 832–834.
76. (a) Misono, M.; Nojiri, N., Recent Progress in Catalytic Technology in Japan. Appl. Catal. 1990, 64, 1–30; (b) Kiromura, K.; Kitazawa, S.; Takata, Y.; Sakakibara, T. Glycosidation Catalust and Process for Preparing Glycoside Derivatives. U.S. Patent 4,874,852 (1988).
77. Egi, M.; Kawai, T.; Umemura, M.; Akai, S. Heteropolyacid-Catalyzed Direct Deoxygenation of Propargyl and Allyl Alcohols. J. Org. Chem. 2012, 77, 7092–7097.
78. Timofeeva, M. N.; Maksimovskaya, R. I.; Paukshtis, E. A.; Kozhevnikov, I. V. Esterification of 2,6-Pyridinedicarboxylic Acid with n-Butanol Catalyzed by Heteropoly Acid H3PW12O40 or its Ce(III) Salt J. Mol. Catal. A 1995, 102, 73–77.
79. Torok, B.; Bucsi, T.; Beregszaszi, T.; Kapocsi, I.; Molnar, A. Transformation of Diols in the Presence of Heteropoly Acids under Homogeneous and Heterogeneous Conditions. J. Mol. Catal. A 1996, 107, 305–311.
80. Schwegler, M. A.; Van Bekkum, H. Bull. Soc. Chim. Belg. 1990, 99, 113–120.
81. Izumi, Y.; Ogawa, M.; Nohara, W.; Urabe, K. Acidic Alkali Metal Salts and Ammonium Salts of Keggin-type Heteropolyacids as Efficient Solid Acid Catalysts for Liquid-phase Friedel-Crafts Reactions. Chem. Lett. 1992, 1987–1990.
82. (a) Izumi, Y.; Fujita, T., Iminium Salt-Catalyzed Liquid-Phase Beckmann Rearrangement of Cyclohexanone Oxime. J. Mol. Catal. 1996, 106, 43–49; (b) Maheswari, R.; Shanthi, K.; Sivakumar, T.; Narayanan, S. Beckmann Rearrangement Over Phosphotungstic Acid/SiMCM-41 Cyclohexanone Oxime to ε-Caprolactam. Appl. Catal. A: Gen. 2003, 248, 291–301.
83. Zhang, Y.; Degirmenci, V.; Li, C.; Hensen, E. J. M. Phosphotungstic Acid Encapsulated in Metal–Organic Framework as Catalysts for Carbohydrate Dehydration to 5-Hydroxymethylfurfural. ChemSusChem 2011, 4, 59–64.
84. Wang, S.; Zhang, Z.; Liu, B.; Li, J. Silica Coated Magnetic Fe3O4 Nanoparticles Supported Phosphotungstic Acid: A Novel Environmentally Friendly Catalyst for the Synthesis of 5-Ethoxymethylfurfural from 5-Hydroxymethylfurfural and Fructose Catal. Sci. Technol. 2013, 3, 2104–2112.
85. Nicolaou, K. C.; Sorensen, E. J. Classics in Total Synthesis: Targets, Strategies, Methods; VCH: Weinheim, 1996.
86. Corey, E. J. The Logic of Chemical Synthesis : Multistep Synthesis of Complex Carbogenic Molecules (Nobel Lecture). Angew. Chem. Int. Ed. 1991, 30, 455–465.
87. (a)Comprehensive Organic Synthesis, Vol. 1-8 (Eds.: B. M. Trost, I. Fleming,) 1991; Pergamon, Oxford.
88. Schelhaas, M.; Waldmann, H. Protecting Group Strategies in Organic Synthesis. Angew. Chem. Int. Ed. 1996, 35, 2056–2083.
89. Aaron, C.; Dull, D.; Schmiegel, J. L.; Jaeger, D.; Ohashi, Y.; Mosher, H. S. The Resolution and Configuration of α-Substituted Phenylacetic Acids. J. Org. Chem. 1967, 32, 2797–2803.
90. Zhang, J.; Zhang, B.; Zhou, J.; Li, J.; Shi, C.; Huang, T.; Wang, Z.; Tang, J. H2SO4-SiO2: Highly Efficient and Reusable Catalyst for per-O-Acetylation of Carbohydrates Under Solvent-Free Conditions. J. Carbohydr. Chem. 2011, 30, 165–177.
91. (a) Tiwari, P.; Kumar, R.; Maulik, P. R.; Misra, A. K. Efficient Acetylation of Carbohydrates Promoted by Imidazole. Eur. J. Org. Chem. 2005, 4265–4270; (b) Hofle, G.; Steglich, W.; Vorbruggen, H. 4-Dialkylaminopyridines as Highly Active Acylation Catalysts. Angew. Chem. Int. Ed. 1978, 17, 569–583; (b) Scriven, E. F. V. 4-Dialkylaminopyridines: Super Acylation and Alkylation Catalysts. Chem. Soc., Rev. 1983, 12, 129–161.
92. (a) Vogel, A. I. Vogel's Textbook of Practical Organic Chemistry, 5th ed.; Wiley: New York, 1989; pp 644–651; (b) Dasguta, F.; Singh, P. P.; Srivastava, H. C. Acetylation of Carbohydrates Using Ferric Chloride in Acetic Anhydride. Carbohydr. Res. 1980, 80, 346–349; (c) Chen, C.-T.; Kuo, J.-H.; Li, C.-H.; Barhate, N. B.; Hon, S.-W.; Li, T.-W.; Chao, S.-D.; Liu, C.-C.; Li, Y.-C.; Chang, I.-H.; Lin, J.-S.; Liu, C.-J.; Chou, Y-C. Catalytic Nucleophilic Acyl Substitution of Anhydrides by Amphoteric Vanadyl Triflate. Org. Lett. 2001, 3, 3729–3732; (d) Lee, J.-C.; Tai, C.-A.; Hung, S.-C. Sc(OTf)3-Catalyzed Acetolysis of 1,6-Anhydro-β-hexopyranoses and Solvent-Free Per-acetylation of Hexoses. Tetrahedron Lett. 2002, 43, 851–855; (e) Tai, C.-A.; Kulkarni, S. S.; Hung S.-C. Facile Cu(OTf)2-Catalyzed Preparation of Per-O-acetylated Hexopyranoses with Stoichiometric Acetic Anhydride and Sequential One-Pot Anomeric Substitution to Thioglycosides under Solvent-Free Conditions. J. Org. Chem. 2003, 68, 8719–8722; (f) Hyatt, J. A.; Tindall, G. W. The Intermediacy of Sulfate Esters in Sulfuric Acid Catalyzed Acetylation of Carbohydrates. Heterocycles 1993, 35, 227–234; (g) Yan, Y. L.; Guo, J. R.; Liang, C. F. Sequential Dy (OTf)3‐Catalyzed Solvent‐Free Per‐O‐Acetylation and Regioselective Anomeric De‐O‐Acetylation of Carbohydrates. Chem. Asian J. 2017, 12, 2471–2479.
93. (a) Bhaskar, P. M.; Loganathan, D. Per-O-acetylation of Sugars Catalysed by Montmorillonite K-10. Tetrahedron Lett. 1998, 39, 2215–2218; (b) Bhaskar, P. M.; Loganathan, D. H-Beta Zeolite as an Efficient Catalyst for Per-O-acetylation of Mono- and Disaccharides Synlett 1999, 129–131; (c) Curini, M.; Epifano, F.; Marcotullio, M. C.; Rosati, O.; Rossi, M. Heterogeneous Catalysis in Acetylation of Alcohols and Phenols Promoted by Zirconium Sulfophenyl Phosphonate. Synth. Commun. 2000, 30, 1319–1329; (d) Kartha, K. P. R.; Field, R. A. Iodine: A Versatile Reagent in Carbohydrate Chemistry IV. Per-O-acetylation, Regioselective Acylation and Acetolysis. Tetrahedron 1997, 53, 11753–11766; (e) Forsyth, S. A.; MacFarlane, D. R.; Thomson, R. J.; Von Itzstein, M. Rapid, Clean, and Mild O-Acetylation of Alcohols and Carbohydrates in an Ionic Liquid. Chem. Commun. 2002, 714–715.
94. (a) Clode, D. M. Carbohydrate Cyclic Acetal Formation and Migration. Chem. Rev. 1979, 79, 491–513; (b) Collins, P.; Ferrier, R. Monosaccharides – Their Chemistry and Their Roles in Natural Products, John Wiley: Chichester, UK, 1995; (c) Boons, G.-J. Carbohydrate Chemistry, Blackie Academic & Professional: London, 1998; (d) Demchenko, A. V.; Pornsuriyasak, P.; De Meo, C. Acetal Protecting Groups in the Organic Laboratory: Synthesis of Methyl 4,6-O-Benzylidene-α-D-Glucopyranoside. J. Chem. Educ. 2006, 83, 782–784.
95. Basu, N.; Maity, S. K.; Roy, S.; Singha, S.; Ghosh, R. FeCl3 Mediated Arylidenation of Carbohydrates. Carbohydr. Res. 2011, 346, 534–539.
96. Tatina, M.; Yousuf, S. K.; Mukherjee, D. 2,4,6-Trichloro-1,3,5-triazine (TCT) Mediated One-pot Sequential Functionalisation of Glycosides for the Generation of Orthogonally Protected Monosaccharide Building Blocks. Org. Biomol. Chem. 2012, 10, 5357–5360.
97. (a) Fletcher, H. G. 4, 6-Benzylidene Derivatives. In Methods in carbohydrate chemistry; Roy, L.; Wolfrom, M. L.; BeMiller, J. N., Eds.; Academic Press: NY, 1963; Vol 2, pp. 307–308; (b) Carman, R. M.; Kibby, J. J. Chiral Benzylidene Derivatives of Glycerol. Aust. J. Chem. 1976, 29, 1761-1767; (c) McGowan, D. A.; Berchtold, G. A. Total Synthesis of Racemic Chorismic Acid and (-)-5-Enolpyruvylshikimic Acid. J. Am. Chem. Soc. 1982, 104, 7036–7041.
98. Calinaud, P.; Gelas, J. Synthesis of Isopropylidene, Benzylidene, and Related Acetals. In Preparative Carbohydrate Chemistry; Hanessian, S., Ed.; Marcel Dekker, Inc.: NY, 1997; pp 3–33 and references therein.
99. (a) Yamanoi, T.; Akiyama, T.; Ishida, E.; Abe, H.; Amemiya, M.; Inazu, T. Horner-Wittig Reaction of Dimethyl 2,3-O-Isopropylidene-D-glyceroylmethylphosphonate and Its Application to the Formal Synthesis of D-Erythro-C18-Sphingosine. Chem. Lett. 1989, 335–337; (b) Tanabe, G.; Yoshikai, K.; Hatanaka, T.; Yamamoto, M.; Shao, Y.; Minematsu, T.; Muraoka, O.; Wang, T.; Matsuda, H.; Yoshikawa, M. Biological Evaluation of de-O-Sulfonated Analogs of Salacinol, the Role of Sulfate Anion in the Side Chain on the α-Glucosidase Inhibitory Activity. Bioorg. Med. Chem. 2007, 15, 3926–3937; (c) Boulineau, F. P.; Wei, A. Stereoselective Synthesis of [13C]methyl 2-[15N]amino-2-deoxy-β-d-glucopyranoside Derivatives. Carbohydr. Res. 2001, 334, 271–279; (d) Chen, C.-T.; Weng, S.-S.; Kao, J.-Q.; Lin, C.-C.; Jan, M.-D. Stripping off Water at Ambient Temperature:  Direct Atom-Efficient Acetal Formation between Aldehydes and Diols Catalyzed by Water-Tolerant and Recoverable Vanadyl Triflate. Org. Lett. 2005, 7, 3343–3346.
100. Bhattacharjee, S. S.; Gorin, P. A. J. Hydrogenolysis of Carbohydrate Acetals, Ketals, and Cyclic Orthoesters with Lithium Aluminium Hydride-Aluminium Trichloride. Can. J. Chem. 1969, 47, 1195–1206.
101. Ohlin, M.; Johnsson, R.; Ellervik, U. Regioselective Reductive Openings of 4,6-Benzylidene Acetals: Synthetic and Mechanistic Aspects. Carbohydr. Res. 2011, 346, 1358–1370.
102. (a) Ek, M.; Garegg, P. J.; Hultberg, H.; Oscarson, S. Reductive Ring Openings of Carbohydrate Benzylidene Acetals Using Borane-Trimethylamine and Aluminium Chloride. Regioselectivity and Solvent Dependance. J. Carbohydr. Chem. 1983, 2, 305–311; (b) Rao, K. V.; Patil, P. R.; Atmakuri, S.; Kartha, K. P. R. Iodine–sodium Cyanoborohydride-mediated Reductive Rng Opening of 4,6-O-Benzylidene Acetals of Hexopyranosides. Carbohydr. Res. 2010, 345, 2709–2713; (c) Shie, C.-R.; Tzeng, Z.-H.; Wang, C.-C.; Hung, S.-C. Metal Trifluoromethanesulfonate-Catalyzed Regioselective Reductive Ring Opening of Benzylidene Acetals. J. Chin. Chem. Soc. 2009, 56, 510–523; (d) Daragics, K.; Fügedi, P. Regio- and Chemoselective Reductive Cleavage of 4,6-O-benzylidene-type Acetals of Hexopyranosides Using BH3·THF–TMSOTf. Tetrahedron Lett. 2009, 50, 2914–2916; (e) Debenham, S. D.; Toone, E. J. Regioselective Reduction of 4,6-O-benzylidenes Using Triethylsilane and BF3·Et2O. Tetrahedron: Asymmetry 2000, 11, 385–387; (f) DeNinno, M. P.; Etienne, J. B.; Duplantier, K. C. A Method for the Selective Reduction of Carbohydrate 4,6-O-benzylidene Acetals. Tetrahedron Lett. 1995, 36, 669–672; (g) Shie, C.-R.; Tzeng, Z.-H.; Kulkarni, S. S.; Uang, B.-J.; Hsu, C.-Y.; Hung, S.-C. Cu(OTf)2 as an Efficient and Dual-Purpose Catalyst in the Regioselective Reductive Ring Opening of Benzylidene Acetals. Angew. Chem., Int. Ed. 2005, 44, 1665–1668; (h) Oikawa, M.; Liu, W.-C.; Nakai, Y.; Koshida, S.; Fukase, K.; Kusumoto, S. Regioselective Reductive Opening of 4,6-O-Benzylidene Acetals of Glucose or Glucosamine Derivatives by BH3⋅Me2NH - BF3⋅OEt2. Synlett 1996, 1179–1180; (i) Ishikawa, T.; Shimizu, Y.; Kudoh, T.; Saito, S. Conversion of d-Glucose to Cyclitol with Hydroxymethyl Substituent via Intramolecular Silyl Nitronate Cycloaddition Reaction:  Application to Total Synthesis of (+)-Cyclophellitol. Org. Lett. 2003, 21, 3879–3882.
103. Lv, J.; Luo, T.; Zou, D.; Dong, H. Using DMF as Both a Catalyst and Cosolvent for the Regioselective Silylation of Polyols and Diols Eur. J. Org. Chem. 2019, 6383–6395.
104. (a) Corey, E. J.; Snider, B. B. Total Synthesis of (+-)-Fumagillin. J. Am. Chem. Soc. 1972, 94, 2549–2550; (b) Hart, T. W.; Metcalfe, D. A.; Scheinmann, F. Total Synthesis of (±)-Prostagladin D1: Use of Triethylsilyl Protecting Groups. J. Chem. Soc. Chem. Commun. 1979, 156–157; (c) Corey, E. J.; Venkateswarlu, A. Protection of Hydroxyl Groups as tert-Butyldimethylsilyl Derivatives. J. Am. Chem. Soc. 1972, 94, 6190–6191.
105. (a) Zhang, Z. H.; Li, T. S.; Yang, F.; Fu, C. G. Montmorillonite Clay Catalysis XI1: Protection and Deprotection of Hydroxyl Group by Formation and Cleavage of Trimethylsilyl Ethers Catalysed by Montmorillonite K-10. Synth. Commun. 1998, 28, 3105–3114; (b) Kadam, S. T.; Kim, S. S. Catalyst-free Silylation of Alcohols and Phenols by Promoting HMDS in CH3NO2 as Solvent. Green Chem. 2010, 12, 94-98.
106. (a) Gevorgyan, V.; Rubin, M.; Benson, S.; Liu, J.-X.; Yamamoto, Y. A Novel B(C6F5)3-Catalyzed Reduction of Alcohols and Cleavage of Aryl and Alkyl Ethers with Hydrosilanes. J. Org. Chem. 2000, 65, 6179-6186; (b) Horner, L.; Mathias, J. Fluoreszierende Silane als OH-Selektive Schutzgruppen. J. Organomet. Chem. 1985, 282, 175–189; (c) Keiji, Y.; Makoto, T. The Utility of t-Butyldimethylsilane as an Effective Silylation Reagent for the Protection of Functional Groups. Bull. Chem. Soc. Jpn. 1989, 62, 2111–2113.
107. (a) Shimizu, N.; Takesue, N.; Yamamoto, A.; Tsutsumi, T.; Yasuhara S.; Tsuno, Y. A Quantitative Scale for the Structural Effect on Reactivity Toward Nucleophilic Displacement at Silicon. Chem. Lett. 1992, 21, 1263–1266; (b) Shimizu N.; Takesue, N.; Yasuhara, S.; Inazu T. Prediction of Structural Effects of Trialkylsilyl Groups on Reactivity Toward Nucleophilic Displacement at Silicon. Chem. Lett. 1993, 22, 1870–1810.
108. (a) Nelson, T. D.; Crouch, R. D. Selective Deprotection of Silyl Ethers. Synthesis 1996, 1031-1069; (b) Crouch, R. D. Selective Monodeprotection of Bis-Silyl Ethers. Tetrahedron 2004, 28, 5833–5871.
109. Khaligh, N. G. Preparation, Characterization and use of 3-Methyl-1-sulfonic Acid Imidazolium Hydrogen Sulfate as an Eco-benign, Efficient and Reusable Ionic Liquid Catalyst for the Chemoselective Trimethylsilyl Protection of Hydroxyl Groups. J. Mol. Catal. A Chem. 2011, 349, 63–70.
110. Yoshikawa, M.; Tamura, Y.; Wakabayashi, R.; Tamai, M.; Shimojima, A.; Kuroda, K. Protecting and Leaving Functions of Trimethylsilyl Groups in Trimethylsilylated Silicates for the Synthesis of Alkoxysiloxane Oligomers. Angew. Chem. Int. Ed. 2017, 56, 13990–13994.
111. (a) Corey, E. J.; Venkateswarlu, A. Protection of Hydroxyl Groups as tert-Butyldimethylsilyl Derivatives. J. Am. Chem. Soc. 1972, 94, 6190–6191; (b) Chaudhary, S. K.; Hernandez, O. 4-Dimethylaminopyridine: An Efficient and Selective Catalyst for the Silylation of Alcohols. Tetrahedron Lett. 1979, 20, 99–102; (c) Lombardo, L. Diisopropylethylamine: An Effective Catalyst for the Introduction of the t-Butyldimethylsilyl Group. Tetrahedron Lett. 1984, 25, 227–228; (d) Olah, G. A.; Gupta, B. G. B.; Narang, S. C.; Malhorta, R. Synthesis Methods and Reactions. 71. Chlorotrimethylsilane and tert-Butyl Dimethylsilyl Chloride/Lithium Sulfide, Mild and Efficient Silylating Reagents. J. Org. Chem. 1979, 44, 4272–4275; (e) D'Sa, B. A.; McLeod, D.; Verkade, J. G. Nonionic Superbase-Catalyzed Silylation of Alcohols. J. Org. Chem. 1997, 62, 5057–5061.
112. (a) Khazaei, A.; Zolfigol, M. A.; Rostami, A.; Ghobani, A. Choghamarani, Trichloroisocyanuric Acid (TCCA) as a Mild and Efficient Catalyst for the Trimethylsilylation of Alcohols and Phenols with Hexamethyldisilazane (HMDS) under Heterogonous Conditions Catal. Commun. 2007, 8, 543–547; (b) Curini, M.; Epifano, F.; Marcotullio, M. C.; Rosati, O.; Costantino, U. Heterogeneous Catalysis in Trimethylsilylation of Alcohols and Phenols by Zirconium Sulfophenyl Phosphonate. Synth. Commun. 1999, 29, 541–546; (c) Firouzabadi, H.; Karimi, B. Zinc Chloride Catalyzed Silylation of Alcohols and Phenols by Hexamethyldisilazane. A Highly Chemoselective Reaction. Synth. Commun. 1993, 23, 1633–1641; (d) Zhang, Z. H.; Li, T. S.; Yang, F.; Fu, C.G. Montmorillonite Clay Catalysis XI1: Protection and Deprotection of Hydroxyl Group by Formation and Cleavage of Trimethylsilyl Ethers Catalysed by Montmorillonite K-10. Synth. Commun. 1998, 28, 3105–3114; (e) Karimi, B.; Golshani, B. Mild and Highly Efficient Method for the Silylation of Alcohols Using Hexamethyldisilazane Catalyzed by Iodine under Nearly Neutral Reaction Conditions. J. Org. Chem. 2000, 65, 7228–7230; (f) Akhlaghinia, B.; Tavakoli, S. An Efficient Method for the Protection of Alcohols and Phenols by Using Hexamethyldisilazane in the Presence of Cupric Sulfate Pentahydrate under Neutral Reaction Conditions. Synthesis 2005, 1775–1778; (g) Mojtahedi, M. M.; Abbasi, H.; Abaee, M. S. MgBr2·OEt2 Mediated Protection of Alcohols with Hexamethyldisilazane: An Efficient Catalytic Route for the Preparation of Silyl Ethers under Solvent-free Conditions. J. Mol. Catal. A: Chem. 2006, 250, 6–8; (h) Firouzabadi, H.; Iranpoor, N.; Sobhani, S.; Gassamipour, S. Magnesium Triflate [Mg(OTf)2] a Highly Stable, Non-hygroscopic and a Recyclable Catalyst for the High Yielding Preparation of Diethyl α-Trimethylsilyloxyphosphonates from Diethyl α-Hydroxy-phosphonates by HMDS under Solventless Conditions J. Organomet. Chem. 2004, 689, 3197–3202; (i) Yadav, J. S.; Reddy, B. V. S.; Basak, A. K.; Baishya, G.; Venkat Narsaiah, A. Indium Tribromide: An Efficient Catalyst for the Silylation of Hydroxy Groups by the Activation of Hexamethyldisilazane. Synthesis 2006, 3831–3834; (j) Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Baltork, I. M.; Chahardahcheric, S.; Tavakoli, Z. Rapid and Highly Efficient Trimethylsilylation of Alcohols and Phenols with Hexamethyl-disilazane (HMDS) Catalyzed by Reusable Zirconyl Triflate, [ZrO(OTf)2]. J. Organomet. Chem. 2008, 693, 2041–2046; (k) Shirini, F.; Mollarazi, E. Efficient Trimethylsilylation of Alcohols and Phenols in the Presence of ZrCl4 as a Reusable Catalyst. Catal. Commun. 2007 8, 1393–1396; (l) Shaterian, H. R.; Doostmohammadi, R.; Ghashang, M. Preparation of Silyl Ethers Using Hexamethyldisilazane in the Presence of N-Bromosuccinimide under Mild and Solvent-Free Conditions. Chin. J. Chem. 2008, 26, 1709–1714; (m) Firouzabadi, H.; Iranpoor, N.; Jafari, A. A.; Jafari, M. R. Iron(III) trifluoroacetate [Fe(F3CCO2)3] as an Easily Available, Non-hygroscopic, Non-corrosive, Highly Stable and a Reusable Lewis Acid Catalyst: Efficient O-silylation of α-Hydroxyphosphonates, Alcohols and Phenols by Hexamethyldisilazane (HMDS) under Solvent-free Conditions. J. Organomet. Chem. 2008, 693, 2711–2714; (n) Mojtahedi, M. M.; Abasee, M. S.; Eghtedari, M. Superparamagnetic Iron Oxide as an Efficient and Recoverable Catalyst for Rapid and Selective Trimethylsilyl Protection of Hydroxyl Groups. Appl. Organomet. Chem. 2008, 22, 529–532.
113. Zhu, X.; Schmidt, R. R. New Principles for Glycoside-Bond Formation. Angew. Chem. Int. Ed. 2009, 48, 1900–1934
114. Koenigs, W.; Knorr, E. Ueber einige Derivate des Traubenzuckers und der Galactose. Ber. Dtsch. Chem. Ges. 1901, 34, 957–981.
115. Gervay, J.; Nguyen, T. N.; Hadd, M. J. Mechanistic Studies on the Stereoselective Formation of Glycosyl Iodides: First characterization of β-D-Glycosyl Iodides. Carbohydr. Res. 1997, 300, 119–125.
116. Reynolds, D. D.; Evans, W. L. The Preparationof α-and β-Gentiobiose Octaacetates. J. Am. Chem. Soc. 1938, 60, 2559–2561.
117. Helferich, B.; Zirner, J. Zur Synthese von Tetraacetyl-hexosen mit freiem 2-Hydroxyl. Synthese einiger Disaccharide. Chem. Ber. 1962, 95, 2604–2611.
118. Shoda, S.-I.; Kulkarni, S. S.; Gervay-Hague, J. Glycoside Synthesis from Anomeric Halides. In Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance; Demchenko, A. V., Ed.; Wiley-VCH: Weinheim, Germany, 2008; pp 29–93.
119. Schmidt, R. R.; Michel, J. Facile Synthesis of α- and β-O-Glycosyl Imidates; Preparation of Glycosides and Disaccharides. Angew. Chem., Int. Ed. 1980, 19, 731–732.
120. Schmidt, R. R.; Michel, J. Direct O-Glycosyl Trichloroacetimidate Formation, Nucleophilicity of the Anomeric Oxygen Atom. Tetrahedron Lett. 1984, 25, 821–824.
121. Hartigan, R. H.; Cloke, J. B. The Thermal and Hydrolytic Behavior of Imido and Thioimido Ester Salts. J. Am. Chem. Soc. 1945, 67, 709– 715.
122. Nielsen, M. M.; Pedersen, C. M. Catalytic Glycosylations in Oligosaccharide Synthesis. Chem. Rev. 2018, 118, 8285–8358.
123. McKay, M. J.; Park, N. H.; Nguyen, H. M. Investigations of Scope and Mechanism of Nickel-Catalyzed Transformations of Glycosyl Trichloroacetimidates to Glycosyl Trichloroacetamides and Subsequent, Atom-Economical, One-Step Conversion to α-Urea-Glycosides. Chem. Eur. J. 2014, 20, 1–12.
124. Ferrier, R. J.; Hay, R. W.; Vethaviyasar, N. A Potentially Versatile Synthesis of Glycosides. Carbohydr. Res. 1973, 27, 55–61.
125. (a)Oscarson, S. In Carbohydrates in Chemistry and Biology, Ernst, B.; Hart, G. W.; Sinay, P. Eds.; Wiley-VCH: Weinheim, 2000; Vol. 1, pp. 93–116; (b) Veeneman, G. H.; van Leeuwen, S. H.; van Boom, J. H. Iodonium Ion Promoted reactions at the Anomeric centre. II An Efficient Thioglycoside Mediated Approach Toward the Formation of 1,2-trans Linked Glycosides and Glycosidic Esters. Tetrahedron Lett. 1990, 31, 1331–1334; (c) Konradsson, P.; Udodong, U. E.; Fraser-Reid, B. Iodonium Promoted Reactions of Disarmed Thioglycosides. Tetrahedron Lett. 1990, 31, 4313–4316; (d) Perion, R.; Lemee, L.; Ferrieres, V.; Duval, R.; Plusquellec, D. A New Synthesis of the Oligosaccharide Domain of Acarbose. Carbohydr. Res. 2003, 338, 2779–2792; (e) Takeuchi, K.; Tamura, T.; Mukaiyama, T.; Stereoselective Glycosylation of Thioglycosides Promoted by Respective Combinations of N-Iodo- or N-Bromosuccinimide and Trityl Tetrakis(pentafluorophenyl)borate. Application to One-Pot Sequential Synthesis of Trisaccharide. Chem. Lett. 2000, 124–125; (f) Valerio, S.; Iadonisi, A.; Adinolfi, M.; Ravida, A. Novel Approaches for the Synthesis and Activation of Thio- and Selenoglycoside Donors. J. Org. Chem. 2007, 72, 6097–6106.
126. Codee, J. D. C.; Litjens, R. E. J. N.; van den Bos, L. J.; Overkleeft, H. S.; van der Marel, G. A. Thioglycosides in Sequential Glycosylation Strategies. Chem. Soc. Rev. 2005, 34, 769–782.
127. (a) Mong, K.-K. T.; Wong, C.-H. Reactivity-Based One-Pot Synthesis of a Lewis Y Carbohydrate Hapten: A Colon–Rectal Cancer Antigen Determinant. Angew. Chem. Int. Ed. 2002, 41, 4087–4090; (b) Burkhart, F.; Zhang, Z.; Wacowich-Sgarbi, S.; Wong, C.-H. Synthesis of the Globo H Hexasaccharide Using the Programmable Reactivity-Based One-Pot Strategy This research was supported by the National Institutes of Health. F.B. thanks the Deutsche Forschungsgemeinschaft for a fellowship. Angew. Chem. Int. Ed. 2001, 40, 1274–1277; (c) Mong, T. K.-K.; Lee, H.-K.; Duron, S. G.; Wong, C.-H. Reactivity-based One-Pot Total Synthesis of Fucose GM1 Oligosaccharide: A Sialylated Antigenic Epitope of Small-Cell Lung Cancer. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 797–802; (d) Ye, X.-S.; Wong, C.-H. Anomeric Reactivity-Based One-Pot Oligosaccharide Synthesis:  A Rapid Route to Oligosaccharide Libraries. J. Org. Chem. 2000, 65, 2410–2431; (e) Mong, T. K.-K.; Huang, C.-Y.; Wong, C.-H. A New Reactivity-Based One-Pot Synthesis of N-Acetyllactosamine Oligomers. J. Org. Chem. 2003, 68, 2135–2142.
128. Morais, G. R.; Falconer, R. A. Glycosyl Disulfides: Importance, Synthesis and Application to Chemical and Biological Systems Org. Biomol. Chem. 2021, 19, 82–100.
129. (a) Mu¨ller, D.; Vic, G., Critchley, P.; Crout, D. H. G.; Lea, N.; Roberts, L.; Lord, J. M. Chemical Synthesis of Globotriose and Galabiose: Relative Stabilities of Their Complexes with Escherichia Coli Shiga-Like Toxin-1 as Determined by Denaturation-Titration with Guanidinium Chloride. J. Chem. Soc., Perkin Trans. 1 1998, 2287–2294; (b) Balavoine, G.; Gref, A.; Fischer, J.-C.; Lubineau, A. Anodic Glycosylation from Aryl Thioglycosides. Tetrahedron Lett. 1990, 31, 5761–5764.
130. Blom, P.; Ruttens, B.; Van Hoof, S.; Hubrecht, I.; Van Der Eycken, J.; Sas, B.; Van Hemel, J.; Vandenkerckhove, J. A Convergent Ring-Closing Metathesis Approach to Carbohydrate-Based Macrolides with Potential Antibiotic Activity. J. Org. Chem. 2005, 24, 10109–10112.
131. Griffin, G. W.; Bandara, N. C.; Clarke, M. A.; Tsang, W.-S.; Garegg, P. J. Photoinduced Generation of Glycosyl Cations from Thioglycosides. Heterocycles 1990, 30, 939–947.
132. Das, S. K.; Roy, J.; Reddy, K. A.; Abbineni, C. A Mild and Convenient Indium(III) Chloride-catalyzed Synthesis of Thioglycosides. Carbohydr. Res. 2003, 338, 2237–2240.
133. (a) Tai, C.-A.; Kulkarni, S. S.; Hung, S.-C. Facile Cu(OTf)2-Catalyzed Preparation of Per-O-acetylated Hexopyranoses with Stoichiometric Acetic Anhydride and Sequential One-Pot Anomeric Substitution to Thioglycosides under Solvent-Free Conditions. J. Org. Chem. 2003, 68, 8718–8722; (b) Boulineau, F. P.; Wei, A. Mirror-Image Carbohydrates:  Synthesis of the Unnatural Enantiomer of a Blood Group Trisaccharide. J. Org. Chem. 2004, 10, 3391–3399.
134. (a) Denekamp, C.; Sandlers, Y. Formation and Stability of Oxocarbenium Ions from Glycosides. J. Mass. Spectrom. 2005, 40, 1055–1063; (b) Pozsgay, V.; Jennings, H. J. Synthetic oligosaccharides related to group B streptococcal polysaccharides. 3. Synthesis of oligosaccharides corresponding to the common polysaccharide antigen of group B streptococci. J. Org. Chem. 1988, 53, 4042–4052; (c) Ogawa, T.; Beppu, K.; Nakabayashi, S. Trimethylsilyl trifluoromethanesulfonate as an effective catalyst for glycoside synthesis. Carbohydr. Res. 1981, 93, C6–C9.
135. de la Hoz, A.; Díaz-Ortiz, Á.; Moreno, A. Microwaves in Organic Synthesis. Thermal and Non-thermal Microwave Effects. Chem. Soc. Rev. 2005, 34, 164–178.
136. Kappe, C. O. Controlled Microwave Heating in Modern Organic Synthesis. Angew. Chem. Int. Ed. 2004, 43, 6250–6284.
137. Conner, W. C.; Tompsett, G. A. How Could and Do Microwaves Influence Chemistry at Interfaces? J. Phys. Chem. B 2008, 112, 2110–2118.
138. Dı´az-Ortiz, A.; Langa, F.; de la Hoz, A.; Moreno, A. Cycloadditions under Microwave Irradiation Conditions: Methods and Applications. Eur. J. Org. Chem. 2000, 4, 3659–3673.
139. Elander, N.; Jones, J. R.; Lu, S. Y.; Stone-Elander, S. Microwave-enhanced Radiochemistry. Chem. Soc. Rev. 2000, 29, 239–249.
140. Zong, L.; Zhou, S.; Sgriccia, N.; Hawley, M. C.; Kempel, L. C. A Review of Microwave-Assist Polymer Chemistry (MAPC). J. Microwave Power Electromagn. Energy 2003, 38, 49–74.
141. (a) Xu, Y.; Guo, Q.-X. Syntheses of Heterocyclic Compounds under Microwave Irradiation. Heterocycles 2004, 63, 903–974; (b) Romanova, N. N.; Kudan, P. V.; Gravis, A. G.; Bundel, Y. G. The Use of Microwave Activation in the Chemistry of Heterocyclic Compounds. (Review). Chem. Heterocycl. Compd. 2000, 36, 1130–1140.
142. (a) Das, S. K. Application of Microwave Irradiation in the Synthesis of Carbohydrates. Synlett 2004, 6, 915–932; (b) Corsaro, A.; Chiacchio, U.; Pistara, V.; Romeo, G. Microwave-assisted Chemistry of Carbohydrates. Curr. Org. Chem. 2004, 8, 511–538.
143. Firouzabadi, H.; Iranpoor, N.;Amani, K.; Nowrouzi, F. Tungstophosphoric Acid (H3PW12O40) as a Heterogeneous Inorganic Catalyst. Activation of Hexamethyldisilazane (HMDS) by Tungstophosphoric Acid for Efficient and Selective Solvent-free O-Silylation Reactions. J. Chem. Soc., Perkin Trans. 1 2002, 2601–2604.
144. Kildahl, N. K. Bond Energy Data Summarized. J. Chem. Educ. 1995, 72, 423–424.
145. (a) Forrester, J. V.; Lackie, J. M. Effect of Hyaluronic Acid on Neutrophil Adhesion. J. Cell. Sci. 1981, 50, 329–344; (b) Dinkelaar, J.; Gold, H.; Overkleeft, H. S.; Code´e, J. D. C.; van der Marel, G. A. Synthesis of Hyaluronic Acid Oligomers using Chemoselective and One-Pot Strategies. J. Org. Chem. 2009, 74, 4208–4216.
146. Santhanam, B.; Boons, G. J. Preparation of a Lipid A Derivative That Contains a 27-Hydroxyoctacosanoic Acid Moiety. Org. Lett. 2004, 6, 3333–3336.
147. Chen, J.-S.; Arumugam, S.; Lin, Y.-J.; Huang, P.-H.; Liao, C.-H.; Wu, S.-S.; Wu, H.-R.; Luo, S.-Y. Phosphotungstic Acid as a Novel Acidic Catalyst for Carbohydrate Protection and Glycosylation. RSC Adv. 2019, 9, 33853-33862.
148. Chen, J.-S.; Ke, Y.-F.; Lin, H.-Y.; Lin, W.; Yen, W.-C.; Wu, H.-R.; Luo, S.-Y. Development of a Novel Method for Trimethylsilylation of Saccharides. Synthesis 2021, 53, 2000-2006.
149. (a) Bourguet-Kondracki, M. -L.; Kornprobst, J. M. Marine Pharmacology: Potentialities in the Treatment of Infectious Diseases, Osteoporosis and Alzheimer's Disease. Adv. Biochem. Eng. Biotechnol. 2005, 97, 105–131; (b) Alonso, D.; Castro, A.; Martinez, A. Marine Compounds for the Therapeutic Treatment of Neurological Disorders Expert Opin. Ther. Pat. 2005, 15, 1377–1386.
150. (a) Gomez-Paloma, L.; Monti, M. C.; Terracciano, S.; Casapullo, A.; Riccio, R. Chemistry and Biology of Anti-Inflammatory Marine Natural Products. Phospholipase A2 Inhibitors. Curr. Org. Chem. 2005, 9, 1419–1427; (b) Keyzers, R. A.; Davies-Coleman, M. T. Anti-inflammatory Metabolites from Marine Sponges. Chem. Soc. Rev. 2005, 34, 355–365.
151. Singh, I. P.; Bharate, S. B.; Bhutani, K. K. Anti-HIV Natural Products Curr. Sci. 2005, 89, 269–290
152. Dias, N.; Vezin, H.; Lansiaux, A.; Bailly, C. Topoisomerase Inhibitors of Marine Origin and Their Potential Use as Anticancer Agents. Top. Curr. Chem. 2005, 253, 89–108
153. Avila, C. Terpenoids in Marine Heterobranch Molluscs. Mar. Drugs 2020, 18, 162.
154. Jiang, M.; Wu, Z.; Guo, H.; Liu, L.; Chen, S. A Review of Terpenes from Marine-Derived Fungi: 2015–2019 Mar. Drugs 2020, 18, 321.
155. Hu, Y.; Chen, J.; Hu, G.; Yu, J.; Zhu, X.; Lin, Y. Chen, S.; Yuan, J. Statistical Research on the Bioactivity of New Marine Natural Products Discovered during the 28 Years from 1985 to 2012. Mar. Drugs 2015, 13, 202–221.
156. Gaspar, H.; Gavagnin, M.; Calado, G.; Castelluccio, F.; Mollo, E.; Cimino, G. Pelseneeriol-1 and -2: New Furanosesquiterpene Alcohols from Porostome Nudibranch Doriopsilla pelseneeri. Tetrahedron 2005, 61, 11032–11037
157. Gaspar, H.; Cutignano, A.; Ferreira, T.; Calado, G.; Cimino, G.; Fontana, A. Biosynthetic Evidence Supporting the Generation of Terpene Chemodiversity in Marine Mollusks of the Genus Doriopsilla. J. Nat. Prod. 2008, 71, 2053–2056.
158. Fontana, A.; Tramice, A.; Cutignano, A.; d'Ippolito, G.; Gavagnin, M.; Cimino, G. Terpene Biosynthesis in the Nudibranch Doriopsilla areolate. J. Org. Chem. 2003, 68, 2405–2409.
159. (a) Cimino, G.; De Stefano, S.; Guerriero, A.; Minale, L. Furanosesquiterpenoids in Sponges- IV: Microcionins from Microciona toxystila. Tetrahedron Lett. 1975, 43, 3723–3726; (b) Cimino, G.; De Rosa, S.; De Stefano, S.; Morrone, R.; Sodano, G. The Chemical Defense of Nudibranch Molluscs: Structure, Biosynthetic Origin and Defensive Properties of Terpenoids from the Dorid Nudibranch Dendrodoris Grandiflora. Tetrahedron 1985, 41, 1093–1100.
160. Cimino, G.; De Stefano, S.; Guerriero, A.; Minale, L. Furanosesquiterpenoids in Sponges-I: Pallescensin-1, -2 and -3 from Disidea Pallescens. Tetrahedron Lett. 1975, 16, 1417–1420.
161. (a) Thompson, J. E.; Walker, R. P.; Wratten, S. J.; Faulkner, D. J. A Chemical Defense Mechanism for the Nudibranch Cadlina luteomarginata. Tetrahedron 1982, 38, 1865–1873; (b) Guella, G.; Guerriero, A.; Pietra, F. Sesquiterpenoids of the Sponge Dysidea Fragilis of the North-Brittany Sea. Helv. Chim. Acta 1985, 68, 39–48.
162. Potvin, S.; Canonne, P. The First Enantioselective Synthesis of (−)-Microcionin 2. Tetrahedron: Asymmetry 1996, 7, 2821–2824.
163. Matsumoto, T.; Usui, S. Furanosesquiterpenoids Absolute Configuration of Pallescensin-1, -2, and -A. Chem. Lett. 1978, 7, 105–108.
164. Kurth, M. J.; Soares, C. J. Asymmetric Aza-Claisen Rearrangement: Synthesis of (+)-Dihydropallescensin-2 [(+)-penlanpallescensin]. Tetrahedron Lett. 1987, 28, 1031–1034.
165. Kawanobe, T.; Kogami, K, Hayashi, K.; Matsui, M. New Synthesis of γ-Homocyclogeranial, γ-Dihydroionone and Their Derivatives. Agric. Biol. Chem. 1984, 48, 461–464.
166. Serra, S. A General Strategy for the Stereoselective Synthesis of the Furanosesquiterpenes Structurally Related to Pallescensins 1–2. Mar. Drugs 2019, 17, 245.
167. Liao, C.-C.; Peddinti, R. K. Masked o-Benzoquinones in Organic Synthesis. Acc. Chem. Res. 2002, 35, 856–866.
168. (a) Tamura, Y.; Yakura, T.; Harnata, J. I.; Kita, Y. Hypervalent Iodine Oxidation of p-Alkoxyphenols and Related Compounds: A General Route to p-Benzoquinone Monoacetals and Spiro Lactones. J. Org. Chem. 1987, 52, 3927–3930; (b) Yahura, T.; Tohma, H.; Kikchi, K.; Kita, Y. Hypervalent Iodine Oxidation of p-Alkoxy- and Related Phenols: A Facile and Efficient Synthesis of p-Quinones. Synthesis 1989, 126–127.
169. Harry, N. A.; Saranya, S.; Krishnan, K.; Gopinathan, A. Recent Advances in the Chemistry of Masked Ortho-Benzoquinones and Their Applications in Organic Synthesis. Asian J. Org. Chem. 2017, 6, 945– 966.
170. (a) Liu, W.-C.; Liao, C.-C. The First Total Synthesis of (±)-Pallescensin B. Chem. Commun., 1999, 117–118; (b) Chu, C.-S.; Liao, C.-C.; Rao, P. D. A Formal Synthesis of (±)-Reserpine from Methyl Vanillate. Chem. Commun., 1996, 1537–1538; (c) Liao, C.-C. Masked o-Benzoquinone Strategy in Organic Synthesis: Short and Efficient Construction of cis-Decalins and Linear Triquinanes from 2-Methoxyphenols Pure Appl. Chem. 2005, 77, 1221–1234; (d) Yen, C.-F.; Liao, C.-C. Concise and Efficient Total Synthesis of Lycopodium Alkaloid Magellanine. Angew. Chem. Int. Ed. 2002, 41, 4264–4267; (e) Hsu, D.-S.; Hsu, P.-Y.; Liao, C.-C. The First Total Synthesis of (±)-Eremopetasidione. Org. Lett. 2001, 3, 263–265; (f) Hsu, D.-S.; Liao, C.-C. Total Syntheses of Sesterpenic Acids:  Refuted (±)-Bilosespenes A and B. Org. Lett. 2003, 5, 4741–4743; (g) Shiao, H.-Y.; Hsieh, H.-P.; Liao, C.-C. First Total Syntheses of (±)-Annuionone B and (±)-Tanarifuranonol. Org. Lett. 2008, 10, 449–452; (h) Chen, C.-M.; Shiao, H.-Y.; Uang, B.-J.; Hsieh, H.-P. Biomimetic Syntheses of (±)-Isopalhinine A, (±)-Palhinine A, and (±)-Palhinine D. Angew.Chem. Int. Ed. 2018, 57, 15572–15576.
171. Shizuo, F.; Hisao, E.; Atsushi, O.; Atsushi, O.; Akiko, N. Halogenation Using N-Halogenocompounds. I. Effect of Amines on ortho-Bromination of Phenols with NBS. Bull. Chem. Soc. Jpn. 1993, 66, 1576–7579.
172. (a) Rao, D. V.; Stuber, F. A. An Efficient Synthesis of 3,4,5-Trimethoxybenzaldehyde from Vanillin. Synthesis 1983, 4, 308; (b) Michel, F.; Thomas, F.; Hamman, S.; Saint-Aman, E.; Bucher, C.; Pierre, J.-L. Galactose Oxidase Models: Solution Chemistry, and Phenoxyl Radical Generation Mediated by the Copper Status. Chem. Eur. J. 2004, 10, 4115–4125.
173. 林振瑋,博士論文,以呋喃化合物為極光基酶抑制劑之研究,國立清華大學,2009年。
174. Chatterjee, I.; Porwal, D.; Oestreich, M. B(C6F5)3-Catalyzed Chemoselective Defunctionalization of Ether-Containing Primary Alkyl Tosylates with Hydrosilanes. Angew. Chem. Int. Ed. 2017, 56, 3389–3391.
175. Bach, P.; Albright, A.; Laali, K. K. Influence of Lewis Acid and Solvent in the Hydrosilylation of Aldehydes and Ketones with Et3SiH; Tris(pentafluorophenyl)borane B(C6F5)3 versus Metal Triflates [M(OTf)3; M = Sc, Bi, Ga, and Al] – Mechanistic Implications. Eur. J. Org. Chem. 2009, 1961–1966.
176. Sun, J.; Dong, Y.; Cao, L.; Wang, X.; Wang, S.; Hu, Y. Highly Efficient Chemoselective Deprotection of O,O-Acetals and O,O-Ketals Catalyzed by Molecular Iodine in Acetone. J. Org. Chem. 2004, 69, 8932–8934.
177. Sacher, J. R.; Weinreb, S. M. Construction of the Azocane (Azacyclooctane) Moiety of the Lycopodium Alkaloid Lycopladine H via an Intramolecular Hydroaminomethylation Strategy. Org. Lett. 2012, 14, 2172–2175.
178. Yamauchi, N.; Tanoue, R. Deuterium Incorporation Experiments from (3R)- and (3S)-[3-2H]leucine into Characteristic Isoprenoidal Lipid-core of Halophilic Archaea Suggests the Involvement of Isovaleryl-CoA Dehydrogenase. Biosci. Biotechnol. Biochem. 2017, 92, 2062–2070.
179. (a) Walborsky, H. M.; Topolski, M. Reaction of Chiral Cyclopropyl Halides with Samarium Diiodide. J. Org. Chem. 1992, 57, 370–373; (b) Kagan, H. B.; Namy, L.; Girad. P. Divalent Lanthanide Derivatives in Organic Synthesis—II: Mechanism of SmI2 Reactions in Presence of Ketones and Organic Halides. Tetrahedron, 1981, 37, 175–180.
180. Hutchins, R. O.; Masilamani, D.; Maryanoff, C. A. Convenient Synthesis of Labile Optically Active Secondary Alkyl Bromides from Chiral Alcohols. J. Org. Chem. 1976, 41, 1071–1073.
181. Batwal, R. U.; Argade, N. P. Chemoenzymatic Collective Synthesis of Optically Active Hydroxyl(methyl)tetrahydronaphthalenebased Bioactive Terpenoids. Org. Biomol. Chem., 2015, 13, 11331–11340.
182. Mukherjee, S.; Scopton, A. P.; Corey, E. J. Enantioselective Pathway for the Synthesis of Laurenditerpenol. Org. Lett. 2010, 12, 1836–1838.
183. Kim, S. J.; Lough, A. J.; Batey, R. A. An Approach to the 9-Oxo-10-oxabicyclo[5.3.0]dec-2-ene Core of the Guaianolide and Pseudo-guaianolide Sesquiterpenes via a Domino Electrocyclic Ring-Opening/Carboxylic Acid Trapping of a gem-Dibromocyclopropane. J. Org. Chem. 2018, 83, 13799–13810.
184. Jung, M. E.; Im, G-Y. J. Total Synthesis of Racemic Laurenditerpenol, an HIF-1 Inhibitor. J. Org. Chem. 2009, 74, 8739–8753.
電子全文 電子全文(網際網路公開日期:20250401)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊