|
1.Bjørk, M.; Riedel, B.; Spigset, O.; Veiby, G.; Kolstad, E.; Daltveit, A. K.; Gilhus, N. E., Association of folic acid supplementation during pregnancy with the risk of autistic traits in children exposed to antiepileptic drugs in utero. JAMA neurology 2018, 75 (2), 160-168. 2.Herbert, V., Folic acid. Annual review of medicine 1965, 16 (1), 359-370. 3.Li, Y.; Huang, T.; Zheng, Y.; Muka, T.; Troup, J.; Hu, F. B., Folic acid supplementation and the risk of cardiovascular diseases: a meta‐analysis of randomized controlled trials. Journal of the American Heart Association 2016, 5 (8), e003768. 4.Molloy, A. M.; Pangilinan, F.; Brody, L. C., Genetic risk factors for folate-responsive neural tube defects. Annual review of nutrition 2017, 37, 269-291. 5.Yang, Q.; Cogswell, M. E.; Hamner, H. C.; Carriquiry, A.; Bailey, L. B.; Pfeiffer, C. M.; Berry, R. J., Folic acid source, usual intake, and folate and vitamin B-12 status in US adults: National Health and Nutrition Examination Survey (NHANES) 2003–2006. The American journal of clinical nutrition 2010, 91 (1), 64-72. 6.Johnson, M. A., If high folic acid aggravates vitamin B12 deficiency what should be done about it? Nutrition reviews 2007, 65 (10), 451-458. 7.Funanage, V. L.; Myoda, T. T.; Moses, P. A.; Cowell, H. R., Assignment of the human dihydrofolate reductase gene to the q11----q22 region of chromosome 5. Molecular and cellular biology 1984, 4 (10), 2010-2016. 8.Chen, M.-J.; Shimada, T.; Moulton, A. D.; Harrison, M.; Nienhuis, A. W., Intronless human dihydrofolate reductase genes are derived from processed RNA molecules. Proceedings of the National Academy of Sciences 1982, 79 (23), 7435-7439. 9.Rajagopalan, P. R.; Zhang, Z.; McCourt, L.; Dwyer, M.; Benkovic, S. J.; Hammes, G. G., Interaction of dihydrofolate reductase with methotrexate: ensemble and single-molecule kinetics. Proceedings of the National Academy of Sciences 2002, 99 (21), 13481-13486. 10.Muhsin, A.; Rangel, R.; Vien, L.; Bover, L., Monoclonal Antibodies Generation: Updates and Protocols on Hybridoma Technology. In Cancer Immunoprevention, Springer: 2022; pp 73-93. 11.Zandi, Z.; Kashani, B.; Alishahi, Z.; Pourbagheri-Sigaroodi, A.; Esmaeili, F.; Ghaffari, S. H.; Bashash, D.; Momeny, M., Dual-specificity phosphatases: therapeutic targets in cancer therapy resistance. Journal of Cancer Research and Clinical Oncology 2022, 1-14. 12.Kim, Y.-I., Folate and cancer: a tale of Dr. Jekyll and Mr. Hyde? Oxford University Press: 2018; Vol. 107, pp 139-142. 13.Chan, E. S.; Cronstein, B. N., Methotrexate—how does it really work? Nature Reviews Rheumatology 2010, 6 (3), 175-178. 14.Lodhi, M. S.; Khalid, F.; Khan, M. T.; Samra, Z. Q.; Muhammad, S.; Zhang, Y.-J.; Mou, K., A Novel Method of Magnetic Nanoparticles Functionalized with Anti-Folate Receptor Antibody and Methotrexate for Antibody Mediated Targeted Drug Delivery. Molecules 2022, 27 (1), 261. 15.Burdett, S.; Fisher, D. J.; Vale, C. L.; Bono, A. V.; Clarke, N. W.; Cognetti, F.; Collette, L.; Cote, R. J.; Goebell, P. J.; Groshen, S., Adjuvant chemotherapy for muscle-invasive bladder cancer: a systematic review and meta-analysis of individual participant data from randomised controlled trials. European urology 2022, 81 (1), 50-61. 16.Lytvyn, Y.; Mufti, A.; Zaaroura, H.; Sachdeva, M.; Lu, J. D.; Rankin, B. D.; Prajapati, V. H.; Vender, R.; Yeung, J., Efficacy and safety of risankizumab for moderate-to-severe plaque psoriasis in clinical practice: A 16-week Canadian retrospective multicenter cohort study. JAAD international 2022, 6, 3-5. 17.Kunmongkolwut, S.; Amornkarnjanawat, C.; Phattarataratip, E., Multifocal Oral Epstein–Barr Virus-Positive Mucocutaneous Ulcers Associated with Dual Methotrexate and Leflunomide Therapy: A Case Report. European Journal of Dentistry 2022. 18.Mohammad, M.; Andrews, R. M.; Plowman, P. N.; Hay, G.; Arora, A. K.; Cohen, V. M.; Sagoo, M. S., Outcomes of intravitreal methotrexate to salvage eyes with relapsed primary intraocular lymphoma. British Journal of Ophthalmology 2022, 106 (1), 135-140. 19.Bedoui, Y.; Guillot, X.; Sélambarom, J.; Guiraud, P.; Giry, C.; Jaffar-Bandjee, M. C.; Ralandison, S.; Gasque, P., Methotrexate an old drug with new tricks. International journal of molecular sciences 2019, 20 (20), 5023. 20.Willighagen, E. L.; Waagmeester, A.; Spjuth, O.; Ansell, P.; Williams, A. J.; Tkachenko, V.; Hastings, J.; Chen, B.; Wild, D. J., The ChEMBL database as linked open data. Journal of cheminformatics 2013, 5 (1), 1-12. 21.Rogers, D.; Hahn, M., Extended-connectivity fingerprints. Journal of chemical information and modeling 2010, 50 (5), 742-754. 22.Perkins, H., Cltorch: a hardware-agnostic backend for the torch deep neural network library, based on opencl. arXiv preprint arXiv:1606.04884 2016. 23.Zhao, J.; Mathieu, M.; LeCun, Y., Energy-based generative adversarial network. arXiv preprint arXiv:1609.03126 2016. 24.Solis-Vasquez, L.; Tillack, A. F.; Santos-Martins, D.; Koch, A.; LeGrand, S.; Forli, S., Benchmarking the performance of irregular computations in AutoDock-GPU molecular docking. Parallel Computing 2022, 109, 102861. 25.Boyenle, I. D.; Adelusi, T. I.; Ogunlana, A. T.; Oluwabusola, R. A.; Ibrahim, N. O.; Tolulope, A.; Okikiola, O. S.; Adetunji, B. L.; Abioye, I. O.; Oyedele, A.-Q. K., Consensus scoring-based virtual screening and molecular dynamics simulation of some TNF-alpha inhibitors. Informatics in Medicine Unlocked 2022, 28, 100833. 26.Morgan, H. L., The generation of a unique machine description for chemical structures-a technique developed at chemical abstracts service. Journal of Chemical Documentation 1965, 5 (2), 107-113. 27.Ashraf, M.; Salal, Y. K.; Abdullaev, S.; Zaman, M.; Bhut, M. A. In Introduction of Feature Selection and Leading-Edge Technologies Viz. TENSORFLOW, PYTORCH, and KERAS: An Empirical Study to Improve Prediction Accuracy of Cardiovascular Disease, International Conference on Innovative Computing and Communications, Springer: 2022; pp 19-31. 28.Ignacz, G.; Szekely, G., Deep learning meets quantitative structure–activity relationship (QSAR) for leveraging structure-based prediction of solute rejection in organic solvent nanofiltration. Journal of Membrane Science 2022, 120268. 29.Patel, A.; Bhatt, H.; Patel, B., Structural insights on 2-phenylquinazolin-4-one derivatives as tankyrase inhibitors through CoMFA, CoMSIA, topomer CoMFA and HQSAR studies. Journal of Molecular Structure 2022, 1249, 131636. 30.Jiang, H.; Huang, Y., An effective drug-disease associations prediction model based on graphic representation learning over multi-biomolecular network. BMC bioinformatics 2022, 23 (1), 1-17. 31.Mirza, M.; Osindero, S., Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 2014. 32.Morris, G. M.; Goodsell, D. S.; Huey, R.; Hart, W. E.; Halliday, S.; Belew, R.; Olson, A. J., AutoDock. Automated docking of flexible ligands to receptor-User Guide 2001. 33.Trott, O.; Olson, A. J., AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry 2010, 31 (2), 455-461. 34.Hsu, K.-C.; Chen, Y.-F.; Lin, S.-R.; Yang, J.-M., iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC bioinformatics 2011, 12 (1), 1-11.
|