跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/15 04:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳濬然
研究生(外文):Jyun-Ran Chen
論文名稱:開發溶液發泡功能化3D列印具孔洞整體式固相萃取管柱進行環境及生物樣品中微量元素及物種的分析研究
論文名稱(外文):Development of Solution Foaming-Functionalized 3D-Printed Porous Monoliths for Determination and Speciation of Multiple Trace Elements in Environmental and Biological Samples
指導教授:蘇正寬
指導教授(外文):Cheng-Kuan Su
口試委員:黃友利許邦弘
口試日期:2022-07-19
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:93
中文關鍵詞:感應耦合電漿質譜法微量元素樣品前處理固相萃取技術物種分析整體式吸附材、奈米材料3D列印技術列印後功能化
外文關鍵詞:Inductively coupled plasma mass spectrometrytrace elementssample preparationsolid phase extractionspeciationmonolithnanomaterialsthree-dimensional printingpost-printing treatment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:73
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
3D列印(Three-dimensional printing)技術已被廣泛用於改善固相萃取裝置的效能,然而在無額外功能化的條件下,型態設計與列印材料仍然限制萃取裝置的效率及化學功能性,為了提升3D列印固相萃取裝置的效能,本研究開發列印後功能化程序,提升熱熔融沉積成型(Fused deposition modeling)3D列印固相萃取裝置的表面積與化學功能性;在第一部分的工作中,本研究以聚醯胺(Polyamide)列印整體式吸附材(Monolith),開發以甲酸與碳酸氫鈉溶液處理的溶液發泡(Solution foaming)程序,製作具孔洞結構的整體式固相萃取管柱,提升錳、鈷、鎳、銅、鋅、鎘與鉛離子的萃取效率,在最佳化之後,此裝置對於上述金屬離子的萃取效率皆可達94.3%以上,方法偵測極限亦可介於0.2至7.7 ng L–1之間,且根據分析參考樣品(CASS-4、SLEW-3、1643f與2670a)與真實樣品(沿岸海水、河水、地下水與人類尿液)所獲得的結果,說明本研究所開發的3D列印具孔洞結構整體式固相萃取管柱及其分析方法,確實具有準確分析高鹽基質樣品中錳、鈷、鎳、銅、鋅、鎘與鉛離子的能力;在第二部分的工作中,本研究進一步在上述溶液發泡過程中,添加二氧化鈦(Titanium dioxide)奈米粒子,製作塗佈二氧化鈦奈米粒子具孔洞結構的整體式固相萃取管柱,提升無機鉻、砷與硒物種的萃取效率,並在最佳化之後,此裝置對於上述物種的萃取效率皆可達74.8%以上,方法偵測極限亦可介於0.7至32.3 ng L–1之間,並根據分析參考樣品(CASS-4、SLRS-5、1643f與Seronorm™ Trace Elements Urine L-2)與真實樣品(沿岸海水、河水、農業廢水與人類尿液)所獲得的結果,說明本研究所開發的3D列印塗佈二氧化鈦奈米粒子具孔洞整體式固相萃取管柱及其分析方法,確實具有準確分析高鹽基質樣品中無機鉻、砷與硒物種的能力,充分展現3D列印技術製作功能化樣品前處理裝置的應用性,與提升分析效能的應用潛力。
To enhance the performance of devices manufactured using conventional three-dimensional printing (3DP) technologies through the post-printing treatments, in the first part of the study, we developed a solution foaming process—involving respective treatment with formic acid and sodium bicarbonate solutions to generate CO2 as a foaming agent—to increase the surface roughness and porosity of the polyamide monolith in a fused deposition modeling 3D-printed solid phase extraction (SPE) column, thereby enhancing the extraction of Mn, Co, Ni, Cu, Zn, Cd, and Pb ions from complicated real samples prior to their determination using inductively coupled plasma mass spectrometry (ICPMS). After method’s optimization, the 3D-printed SPE column incorporating the solution foaming–treated polyamide monolith extracted these metal ions with up to 42.0-fold enhancements, relative to those of the as-printed column, with absolute extraction efficiencies all greater than 94.3% and method detection limits ranging from 0.2 to 7.7 ng L−1. We verified the reliability and applicability of this method through analyses of the tested metal ions in several reference materials (CASS-4, SLEW-3, 1643f, and 2670a) and spike analyses of seawater, river water, ground water, and human urine samples. In the second part of the study, we developed a solution foaming-assisted functionalization process—through adding the titanium dioxide nanoparticles (TiO2 NP) into the foaming process—to fabricate the TiO2 NP-coated porous polyamide monolith, thereby enhancing the selective extraction of Cr(III), Cr(VI), As(III), As(V), Se(IV), and Se(VI) from complicated real samples prior to their determination through ICPMS. After method’s optimization, the 3D-printed SPE column incorporating the solution foaming–treated, TiO2 NP–coated polyamide monolith extracted these species with up to 21.9-fold enhancements, with absolute extraction efficiencies all greater than 74.8% and method detection limits ranging from 0.7 to 32.3 ng L−1. We also verified the reliability and applicability of this method through analyses of the tested metal ions in several reference materials (CASS-4, SLRS-5, 1643f, and Seronorm™ Trace Elements Urine L-2) and spike analyses of seawater, river water, agriculture wastewate, and human urine samples and concluded that the post-printing treatments can practically improve the analytical performance of 3D-printed SPE devices.
摘要 i
Abstract ii
目次 iv
表目錄 viii
圖目錄 ix
第一章 前言 1
1.1 微量元素及物種分析的重要性 1
1.2 微量元素及物種的分析方法及限制 3
1.3 微量元素及物種的樣品前處理技術 4
1.4 3D列印技術發展及分析裝置開發 7
1.5 實驗目的 12
第二章 實驗儀器與原理 13
2.1 感應耦合電漿質譜法 13
2.1.1 樣品導入系統 14
2.1.2 游離源 16
2.1.3 真空緩衝介面與離子聚焦透鏡 18
2.1.4 四極柱質量分析器 20
2.1.5 離子偵測器 21
2.2 3D列印技術 22
第三章 實驗材料與方法 25
3.1 3D列印具孔洞整體式固相萃取管柱 25
3.1.1 3D列印具孔洞整體式固相萃取管柱串聯感應耦合電漿質譜儀分析系統 25
3.1.1.1 儀器裝置 25
3.1.1.2 實驗藥品與試劑 26
3.1.1.3 實驗用水與實驗用容器之清洗 27
3.1.1.4 3D列印具孔洞整體式固相萃取管柱的清洗及保存 27
3.1.2 3D列印具孔洞整體式固相萃取管柱串聯感應耦合電漿質譜儀分析系統之建立與最佳化探討 27
3.1.2.1 3D列印具孔洞整體式固相萃取管柱設計與列印 27
3.1.2.2 3D列印具孔洞整體式吸附材鑑定 29
3.1.2.3 3D列印具孔洞整體式固相萃取管柱分析方法建立 29
3.1.2.4 3D列印具孔洞整體式固相萃取管柱串聯感應耦合電漿質譜儀分析系統條件最佳化探討 31
3.1.2.5 3D列印具孔洞整體式固相萃取管柱流動注入分析之系統比較 33
3.1.2.6 真實樣品取得與配置 34
3.2 3D列印塗佈二氧化鈦奈米粒子具孔洞整體式固相萃取管柱 34
3.2.1 3D列印塗佈二氧化鈦奈米粒子具孔洞整體式固相萃取管柱串聯感應耦合電漿質譜儀分析系統 35
3.2.1.1 儀器裝置 35
3.2.1.2 實驗藥品與試劑 36
3.2.1.3 實驗用水與實驗用容器之清洗 36
3.2.1.4 3D列印塗佈二氧化鈦奈米粒子具孔洞整體式固相萃取管柱的清洗及保存 37
3.2.2 3D列印塗佈二氧化鈦奈米粒子具孔洞整體式固相萃取管柱串聯感應耦合電漿質譜儀分析系統之建立與最佳化探討 37
3.2.2.1 3D列印塗佈二氧化鈦奈米粒子具孔洞整體式固相萃取管柱設計與列印 37
3.2.2.2 3D列印塗佈二氧化鈦奈米粒子具孔洞整體式吸附材表面鑑定 39
3.2.2.3 3D列印塗佈二氧化鈦奈米粒子具孔洞整體式固相萃取管柱分析方法建立 39
3.2.2.4 3D列印塗佈二氧化鈦奈米粒子具孔洞整體式固相萃取管柱串聯感應耦合電漿質譜儀分析系統條件最佳化探討 43
3.2.2.5 3D列印塗佈二氧化鈦奈米粒子具孔洞整體式固相萃取管柱流動注入分析之系統比較 45
3.2.2.6 真實樣品取得與配置 46
第四章 實驗結果與討論 47
4.1 3D列印具孔洞整體式固相萃取管柱 47
4.1.1 3D列印具孔洞整體式固相萃取管柱之最佳化條件探討 47
4.1.1.1 3D列印具孔洞整體式固相萃取管柱之溶液發泡最佳化條件探討 48
4.1.1.2 溶液發泡程序的影響 49
4.1.1.3 固相萃取管柱層數最佳化條件探討 50
4.1.1.4 樣品pH值對於固相萃取管柱萃取效率的影響 51
4.1.1.5 樣品流速對於萃取效率之影響 52
4.1.1.6 流洗液濃度與體積對於萃取效率之影響 53
4.1.1.7 整體式固相萃取管柱裝置間差異 54
4.1.1.8 分析系統對鹽類基質耐受能力之探討 54
4.1.1.9 錳、鈷、鎳、銅、鋅、鎘與鉛離子的飽和吸附量 55
4.1.2 3D列印具孔洞整體式固相萃取管柱串聯感應耦合電漿質譜儀分析系統效能評估 55
4.1.2.1 線性關係與偵測極限 57
4.1.2.2 系統準確度及精密度 59
4.1.2.3 利用3D列印具孔洞整體式固相萃取管柱串聯感應耦合電漿質譜儀分析系統進行自然水體及人類尿液中錳、鈷、鎳、銅、鋅、鎘與鉛離子之分析 60
4.2 3D列印塗佈二氧化鈦奈米粒子具孔洞整體式固相萃取管柱 61
4.2.1 3D列印塗佈二氧化鈦奈米粒子具孔洞整體式固相萃取管柱之最佳化條件探討 62
4.2.1.1 3D列印塗佈二氧化鈦奈米粒子具孔洞整體式固相萃取管柱之溶液發泡最佳化條件探討 63
4.2.1.2 二氧化鈦奈米粒子添加方法探討 64
4.2.1.3 3D列印塗佈二氧化鈦奈米粒子具孔洞整體式固相萃取管柱之穩定度探討 65
4.2.1.4 溶液發泡程序之影響 66
4.2.1.5 固相萃取管柱層數最佳化條件探討 68
4.2.1.6 樣品pH值對於固相萃取管柱萃取效率之影響 68
4.2.1.7 樣品流速對於萃取效率之影響 70
4.2.1.8 流洗液濃度與體積對於萃取效率之影響 71
4.2.1.9 整體式固相萃取管柱裝置間差異 72
4.2.1.10 分析系統對鹽類基質耐受能力之探討 72
4.2.1.11 無機鉻、砷與硒物種的飽和吸附量 73
4.2.2 3D列印塗佈二氧化鈦奈米粒子具孔洞整體式固相萃取管柱串聯感應耦合電漿質譜儀分析系統效能評估 73
4.2.2.1 線性關係與偵測極限 74
4.2.2.2 系統準確度及精密度 77
4.2.2.3 利用3D列印塗佈二氧化鈦奈米粒子具孔洞整體式固相萃取管柱串聯感應耦合電漿質譜儀分析系統進行自然水體及人類尿液中無機鉻、砷與硒物種之分析 79
第五章 結論 81
第六章 參考文獻 82
附錄 93
1.He, Z. L.; Yang, X. E.; Stoffella, P. J. Trace Elements in Agroecosystems and Impacts on the Environment, J. Trace Elem. Med. Biol. 2005, 19, 125–140.
2.Swaine, D. J. Why Trace Elements Are Important, Fuel Process. Technol 2000, 65-66, 21–33.
3.Kumaresan, M.; Riyazuddin, P. Overview of Speciation Chemistry of Arsenic, Curr. Sci. 2001, 80, 837–846.
4.Lobinski, R.; Moulin, C.; Ortega, R. Imaging and Speciation of Trace Elements in Biological Environment, Biochimie 2006, 88, 1591–1604.
5.Briffa, J.; Sinagra, E.; Blundell, R. Heavy Metal Pollution in the Environment and their Toxicological Effects on Humans, Heliyon 2020, 6, e04691.
6.Marcinkowska, M.; Barałkiewicz, D. Multielemental Speciation Analysis by Advanced Hyphenated Technique – HPLC/ICP-MS: A Review, Talanta 2016, 161, 177–204.
7.Zoroddu, M. A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V. M. The Essential Metals for Humans: A Brief Overview, J. Inorg. Biochem. 2019, 195, 120‒129.
8.WHO. Manganese in Drinking-Water. World Health Organization Guidelines for Drinking-water Quality, 2011. https://apps.who.int/iris/bitstream/handle/10665/75376/WHO_SDE_WSH_03.04_104_eng.pdf?sequence=1&isAllowed=y
9.Trumbo, P.; Yates, A.; Schlicker, S.; Poos, M. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc, J. Am. Diet. Assoc. 2001, 101, 294–301.
10.Lison, D. Chapter 34 - Cobalt. Handbook on the Toxicology of Metals (Fourth Edition) 2015, 743–763.
11.European Food Safety Authority. Scientific Opinion on Safety and Efficacy of Cobalt Compounds (E3) as Feed Additives for All Animal Species: Cobaltous Acetate Tetrahydrate, Basic Cobaltous Carbonate Monohydrate and Cobaltous Sulphate Heptahydrate, EFSA Journal 2012, 10, 2971.
12.Anke, M.; Angelow, L.; Glei, M.; Müller, M.; Illing, H. The Biological Importance of Nickel in the Food Chain, Fresenius J. Anal. Chem. 1995, 352, 92–66.
13.Copper in drinking water: Guideline technical document for consultation, Health Canada, 2018. https://www.canada.ca/en/health-canada/programs/consultation-copper-drinking-water/document.html
14.WHO, Zinc in Drinking-Water, World Health Organization Guidelines for Drinking-water Quality, 2003. https://cdn.who.int/media/docs/default-source/wash-documents/wash-chemicals/zinc.pdf?sfvrsn=9529d066_4
15.Pollak, N. M.; Hoffman, M.; Goldberg, I. J.; Drosatos, K. Kruppel-like Factors Crippling and Uncrippling Metabolic Pathways, JACC-Basic Transl. Sci. 2018, 3, 132–156.
16.Satarug, S.; Vesey, D. A.; Gobe, G. C. Health Risk Assessment of Dietary Cadmium Intake: Do Current Guidelines Indicate How Much is Safe, Environmental health perspectives 2017, 125, 284–288.
17.Dolan, L.; Flannery, B. M.; Hoffman-Pennesi, D.; Gavelek, A.; Jones, O. E.; Kanwal, R.; Wolpert, B.; Gensheimer, K.; Dennis, S.; Fitzpatrick, S. A Review of the Evidence to Support Interim Reference Level for Dietary Lead Exposure in Adults, Regul. Toxicol. Pharmacol. 2020, 111, 104579.
18.Garcia-Rico, L.; Leyva-Perez, J.; Jara-Marini, M. Content and Daily Intake of Copper, Zinc, Lead, Cadmium, and Mercury from Dietary Supplements in Mexico, Food Chem. Toxicol. 2007, 45, 1599–1605.
19.Filippini, T.; CilIoni, S.; Malavolti, M.; Violi, F.; Malagoli, C.; Tesauro, M.; Bottecchi, I.; Ferrari, A.; Vescovi, L.; Vinceti, M. Dietary Intake of Cadmium, Chromium, Copper, Manganese, Selenium and Zinc in a Northern Italy Community, J. Trace Elem. Med. Biol. 2018, 50, 508–517.
20.Morvaridzadeh, M.; Estevao, M. D.; Qorbani, M.; Heydari, H.; Hosseini, A. S.; Fazelian, S.; Belanc, A.; Persad, E.; Rezamand, G.; Heshmati, J . The Effect of Chromium Intake on Oxidative Stress Parameters: A Systematic Review and Meta-analysis, J. Trace Elem. Med. Biol. 2022, 69, 126879.
21.European Food Safety Authority, Scientific Opinion on Arsenic in Food, EFSA Journal 2009, 7, 1351.
22.World Health Organization. Evaluation of Certain Contaminants in Food, World Health Organ Tech Rep Ser. 2011, 959, 1–105.
23.Krinsky, N. I.; Beecher, G.; Burk, R.; Chan, A.; Erdman, j. J.; Jacob, R.; Jialal, I.; Kolonel, L.; Marshall, J.; Taylor Mayne, P. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids, Institute of Medicine 2000, 19, 95–185.
24.Monsen, E. R. Dietary Reference Intakes for the Antioxidant Nutrients: Vitamin C, Vitamin E, Selenium, and Carotenoids, J. Am. Diet. Assoc. 2000, 100, 637–640.
25.Kuryl, T.; Debski, B.; Martinik, K. The Effect of Microelements Supplementation on Beta-oxidation Activity in Healthy and Type 1 Diabetic Rats, Cent. Eur. J. Public Health. 2008. 16, 205–208.
26.Schwarzenbach, R. P.; Egli, T.; Hofstetter, T. B. Global Water Pollution and Human Health, Annu. Rev. Environ. Resour. 2010, 35, 109–136.
27.Lichtenberg, J.; de Rooij, N. F.; Verpoorte, E. Sample Pretreatment on Microfabricated Devices, Talanta 2002, 56, 233–266.
28.Fleming, L. E.; Broad, K.; Clement, A.; Dewailly, E.; Elmir, S.; Knap, A.; Pomponi, S. A.; Smith, S.; Gabriele, H. Solo.; Walsh, P. Oceans and Human Health: Emerging Public Health Risks in the Marine Environment, Mar. Coast. Fish. 2006, 53, 545–560.
29.Sohrin, Y.; Bruland, K. W. Global Status of Trace Elements in the Ocean, TrAC-Trends Anal. Chem. 2011, 30, 1291–1307.
30.Brown, R. J. C.; Milton, M. J. T. Analytical Techniques for Trace Element Analysis: an Overview, TrAC-Trends Anal. Chem. 2005, 24, 266–274.
31.Hossain, M.; Karmakar, D.; Begum, S. N.; Ali, S. Y.; Patra, P. K. Recent Trends in the Analysis of Trace Elements in the Field of Environmental Research: A Review, Microchem. J. 2021, 165, 106086.
32.Djingova, R.; Mihaylova, V.; Lyubomirova, V.; Tsalev, D. L. Multielement Analytical Spectroscopy in Plant Ionomics Research, Appl. Spectrosc. Rev. 2013, 48, 384–424.
33.Sawatari, H.; Fujimori, E.; Haraguchi, H., Multi-element Determination of Trace Elements in Seawater by Gallium Coprecipitation and Inductively Coupled Plasma Mass Spectrometry, Science 1995, 11, 369–374.
34.Arslan, Y.; Yildirim, E.; Gholami, M.; Bakirdere, S. Lower Limits of Detection in Speciation Analysis by Coupling High-performance Liquid Chromatography and Chemical-vapor Generation, TrAC-Trends Anal. Chem. 2011, 30, 569–585.
35.Gonzalvez, A.; Cervera, M. L.; Armenta, S.; de la Guardia, M. A Review of Non-chromatographic Methods for Speciation Analysis, Anal. Chim. Acta 2009, 636, 129–157.
36.Wang, J. H.; Hansen, E. H.; Miro, M. Sequential Injection-bead Injection-lab-on-valve Schemes for On-line Solid Phase Extraction and Preconcentration of Ultra-trace Levels of Heavy Metals with Determination by Electrothermal Atomic Absorption Spectrometry and Inductively Coupled Plasma Mass Spectrometry, Anal. Chim. Acta. 2003, 499, 139–147.
37.Dams, R. F. J.; Goossens, J.; Moens, L. Spectral and Non-spectral Interferences in Inductively Coupled Plasma Mass-spectrometry, Microchim. Acta 1995, 119, 277–286.
38.Tsoi, Y. K. Simultaneous Determination of Seven Elemental Species in Estuarine Waters by LC-ICP-DRC-MS, J. Anal. At. Spectrom. 2010, 25, 880–885.
39.May, T. W.; Wiedmeyer, R. H. A Table of Polyatomic Interferences in ICP-MS, Atom. Spectrosc. 1998, 19, 150–155.
40.Zhou, T.; Che, G.; Ding, T.; Sun, D.; Li, Y. Recent Progress of Selective Adsorbents: from Preparation to Complex Sample Pretreatment, TrAC-Trends Anal. Chem. 2019, 121, 115678.
41.Gonzalvez, A.; Armenta, S.; Cervera, M. L.; de la Guardia, M. Non-chromatographic Speciation, TrAC-Trends Anal. Chem. 2010, 29, 260–268.
42.Wang, J. H.; Hansen, E. H. On-line Sample-pre-treatment Schemes for Trace-level Determinations of Metals by Coupling Flow Injection or Sequential Injection with ICP-MS, TrAC-Trends Anal. Chem. 2003, 22, 836‒846.
43.Camel, V. Solid Phase Extraction of Trace Elements, Spectroc. Acta Pt. B-Atom. Spectr. 2003, 58, 1177–1233.
44.He, M.; Huang, L.; Zhao, B.; Chen, B. Hu, B. Advanced Functional Materials in Solid Phase Extraction for ICP-MS Determination of Trace Elements and Their Species - A Review, Anal. Chim. Acta. 2017, 73, 1–24.
45.Fei, J. J.; Wu, X. H.; Sun, Y. L.; Zhao, L. Y.; Min, H.; Cui, X. B.; Chen, Y. J.; Liu, S.; Lian, H. Z.; Li, C. Preparation of A Novel Amino Functionalized Ion-imprinted Hybrid Monolithic Column for the Selective Extraction of Trace Copper Followed by ICP-MS Detection, Anal. Chim. Acta. 2021, 1162, 338477.
46.Ou, X. X.; Wang, C.; He, M.; Chen, B. B.; Hu, B. Online Simultaneous Speciation of Ultra-trace Inorganic Antimony and Tellurium in Environmental Water by Polymer Monolithic Capillary Microextraction Combined with Inductively Coupled Plasma Mass Spectrometry, Spectroc. Acta Pt. B-Atom. Spectr. 2020, 168, 105854.
47.Zhao, L. Y.; Zhu, Q. Y.; Mao, L.; Chen, Y. J.; Lian, H. Z.; Hu, X. Preparation of Thiol- and Amine-bifunctionalized Hybrid Monolithic Column Via “One-pot” and Applications in Speciation of Inorganic Arsenic, Talanta 2019, 192, 339–346.
48.Buyuktiryaki, S.; Kecili, R.; Hussain, C. M. Functionalized Nanomaterials in Dispersive Solid Phase Extraction: Advances & Prospects, TrAC-Trends Anal. Chem. 2020, 127, 115893.
49.Pyrzynska, K. Nanomaterials in Speciation Analysis of Metals and Metalloids, Talanta 2020, 212. 120784.
50.Peng, H.; Zhang, N.; He, M.; Chen, B. B.; Hu, B. Simultaneous Speciation Analysis of Inorganic Arsenic, Chromium, and Selenium in Environmental Waters by 3− (2−Aminoethylamino) Propyltrimethoxysilane Modified Multi-Wall Carbon Nanotubes Packed Microcolumn Solid Phase Extraction and ICP-MS, Talanta, 2015, 131, 266−272.
51.López-García, I.; Vicente-Martínez, Y.; Hernández-Córdoba, M. Non-chromatographic Speciation of Chromium at Sub-ppb Levels Using Cloud Point Extraction in the Presence of Unmodified Silver Nanoparticles, Talanta 2015, 132, 23–28.
52.Llaver, M.; Coronado, E. A.; Wuilloud, R. G. High Performance Preconcentration of Inorganic Se Species by Dispersive Micro-solid Phase Extraction with a Nanosilica-Ionic Liquid Hybrid Material, Spectroc. Acta Pt. B-Atom. Spectr. 2017, 138, 23–30.
53.Khan, W. A.; Arain, M. B.; Soylak, M. Nanomaterials-based Solid Phase Extraction and Solid Phase Microextraction for Heavy Metals Food Toxicity, Food Chem. Toxicol. 2014, 145, 111704.
54.Nema, T.; Chan, E. C. Y.; Ho, P. C. Applications of Monolithic Materials for Sample Preparation, J. Pharm. Biomed. Anal. 2014, 87, 130–141.
55.Plotka-Wasylka, J.; Szczepanska, N.; de la Guardia, M.; Namiesnik, J. Modern Trends in Solid Phase Extraction: New Sorbent Media, TrAC-Trends Anal. Chem. 2016, 77, 23–43.
56.Masini, J. C.; Svec, F. Porous Monoliths for On-line Sample Preparation: A Review, Anal. Chim. Acta. 2017, 964, 24–44.
57.Cocovi-Solberg, D. J.; Worsfold, P. J.; Miró, M. Opportunities for 3D Printed Millifluidic Platforms Incorporating On-line Sample Handling and Separation, TrAC Trends Anal. Chem. 2018, 108, 13‒22.
58.Kodama, H. Automatic Method for Fabricating a Three‐dimensional Plastic Model with Photo‐hardening Polymer, Rev. Sci. Instrum. 1981, 52, 1770–1773.
59.Low, Z. X.; Chua, Y. T.; Ray, B. M.; Mattia, D.; Metcalfe, I. S.; Patterson, D. A. Perspective on 3D Printing of Separation Membranes and Comparison to Related Unconventional Fabrication Techniques, J. Membr. Sci. 2017, 523, 596–613.
60.Pinargote, N. W. S.; Smirnov, A.; Peretyagin, N.; Seleznev, A.; Peretyagin, P. Direct Ink Writing Technology (3D Printing) of Graphene-based Ceramic Nanocomposites: A Review, Nanomaterials 2020, 10, 1300.
61.Gul, J. Z.; Sajid, M.; Rehman, M. M.; Siddiqui, G. U.; Shah, I.; Kim, K. H,: Lee, J. W.; Choi, K. H. 3D Printing for Soft Robotics - A Review, Sci. Technol. Adv. Mater. 2018, 19, 243–262.
62.Quan, H. Y.; Zhang, T.; Xu, H.; Luo, S.; Nie, J.; Zhu, X. Q. Photo-curing 3D Printing Technique and Its Challenges, Bioact. Mater. 2020, 5, 110–115.
63.Simoneti, D. M.; Pereira-Cenci, T.; dos Santos, M. B. F. Comparison of Material Properties and Biofilm Formation in Interim Single Crowns Obtained by 3D Printing and Conventional Methods, J. Prosthet. Dent. 2020,
https://doi.org/10.1016/j.prosdent.2020.06.026.
64.Macdonald, N. P.; Cabot, J. M.; Smejkal, P.; Guijt, R. M.; Paull, B.; Breadmore, M. C. Comparing Microfluidic Performance of Three-dimensional (3D) Printing Platforms, Anal. Chem. 2017, 89, 3858–3866.
65.Ngo, T. D.; Kashani, A.; Imbalzano, G.; Nguyen, K. T. Q.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges, Compos. Pt. B-Eng. 2018, 143, 172–196.
66.Berman, B. 3-D printing: The New Industrial Revolution, Bus. Horiz. 2012, 55, 155‒162.
67.Bhattacharjee, N.; Urrios, A,; Kanga, S.; Folch, A. The Upcoming 3D-printing Revolution in Microfluidics, Lab Chip. 2016, 16, 1720–1742.
68.Su, C. K. Review of 3D-Printed Functionalized Devices for Chemical and Biochemical Analysis, Anal. Chim. Acta 2021, 1158, 338348.
69.Wang, L.; Pumera, M. Recent Advances of 3D printing in Analytical Chemistry: Focus on Microfluidic, Separation, and Extraction Devices, TrAC-Trends Anal. Chem. 2021, 135, 116151.
70.Kulomaki, S.; Lahtinen, E.; Peramaki, S.; Vaisanen, A. Preconcentration and Speciation Analysis of Mercury: 3D Printed Metal Scavenger-based Solid-phase Extraction Followed by Analysis with Inductively Coupled Plasma Mass Spectrometry, Talanta, 2022, 240, 123163.
71.Su, C.-K.; Lin, J.-Y. 3D-printed Column with Porous Monolithic Packing for Online Solid-phase Extraction of Multiple Trace Metals in Environmental Water Samples, Anal. Chem. 2020, 92, 9640‒9648.
72.Su, C.-K.; Peng, P.-J.; Sun, Y.-C. Fully 3D-printed Preconcentrator for Selective Extraction of Trace Elements in Seawater, Anal. Chem. 2015, 87, 6945‒6950.
73.Wu, C.-Y.; Chen, J.-J.; Su, C.-K.; 4D-printed Temperature-controlled Flow-actuated Solid-phase Extraction Devices, Anal. Chem. 2021, 93, 11497‒11505.
74.Su, C.-K.; Hsieh, M.-H.; Sun, Y.-C. Three-dimensional Printed Knotted Reactors Enabling Highly Sensitive Differentiation of Silver Nanoparticles and Ions in Aqueous Environmental Samples, Anal. Chim. Acta 2016, 914, 110‒116.
75.Su, C.-K.; Chen, Y.-T.; Sun, Y.-C. Speciation of Trace Iron in Environmental Water Using 3D-printed Minicolumns Coupled with Inductively Coupled Plasma Mass Spectrometry, Microchem. J. 2019, 146, 835‒841.
76.Su, C.-K.; Chen, W.-C. 3D-printed, TiO2 NP–incorporated Minicolumn Coupled with ICP-MS for Speciation of Inorganic Arsenic and Selenium in High-salt-content Samples, Microchim. Acta 2018, 185, 268.
77.Calderilla, C.; Maya, F.; Cerdà, V.; Leal, L. O. 3D Printed Device Including Disk-based Solid-phase Extraction for the Automated Speciation of Iron Using the Multisyringe Flow Injection Analysis Technique, Talanta 2017, 175, 463‒469.
78.Calderilla, C.; Maya, F.; Cerdà, V.; Leal, L. O. 3D Printed Device for the Automated Preconcentration and Determination of Chromium (VI), Talanta 2018, 184, 15‒22.
79.Ceballos, M. R.; Estela, J. M.; Cerda, V.; Ferrer, L. Flow-through Magnetic-stirring Assisted System for Uranium(VI) Extraction: First 3D Printed Device Application, Talanta 2019, 202, 267–273.
80.Carrasco-Correa, E.; Cocovi-Solberg, D. J.; Herrero-Martinez, J. M.; Simo-Alfonso, E. F.; Miro, M. 3D Printed Fluidic Platform with In-situ Covalently Immobilized Polymer Monolithic Column for Automatic Solid-phase Extraction, Anal. Chim. Acta 2020, 1111, 40‒48.
81.Jarvis, K. E.; Gray, A. L.; Houk, R. S. Handbook of Inductively Coupled Plasma Mass Spectrometry, Blackie; Chapman and Hall: Glasgow New York, 1992; p xi, 380 p.
82.Taylor, H. E. Inductively Coupled Plasma–Mass Spectrometry: Practices and Techniques, Academic Press: San. Diego. 2001; p xi, 294 p.
83.Todoli, J. L.; Mermet, J. M. Elemental Analysis of Liquid Microsamples through Inductively Coupled Plasma Spectrochemistry, Trac–Trend. Anal. Chem. 2005, 24, 107–116.
84.Guo, X. M.; Sturgeon, R. E.; Mester, Z.; Gardner, G. J. Vapor Generation by UV Irradiation for Sample Introduction with Atomic Spectrometry, Anal. Chem. 2004, 76, 2401–2405.
85.Sharp, B. L. Pneumatic Nebulisers and Spray Chambers for Inductively Coupled Plasma Spectrometry. A review. Part 1. Nebulisers, J. Anal. At. Spectrom. 1988, 3, 613–653.
86.Douglas, D. J.; Quan E. S. K.; Smith R. G. Elemental Analysis with an Atmospheric Pressure Plasma (MIP, ICP)/Quadrupole Mass Spectrometer System, Spectroc. Acta Pt. B-Atom. Spectr. 1983, 38, 39–48.
87.Sachs E. M.; Haggerty, J. S.; Cima, M. J.; Williams, P. A. Three-Dimensional Printing Techniques. U.S. Patent 5,204,055, April 20, 1993.
88.Gross, B. C.; Erkal, J. L.; Lockwood, S. Y.; Chen, C. P.; Spence, D. M. Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences, Anal. Chem. 2014, 86, 3240–3253.
89.Au, A. K.; Lee, W.; Folch, A. Mail-order Microfluidics: Evaluation of Stereolithography for the Production of Microfluidic Devices, Lab Chip 2014, 14, 1294‒1301.
90.Punyaratabandhu, T.; Lohwongwatana, B.; Puncreobutr, C.; Kosiyatraku, A.; Veerapan, P.; Luenam, S. A Patient-Matched Entire First Metacarpal Prosthesis in Treatment of Giant Cell Tumor of Bone. Case Reports in Orthopedics, 2017, 2017, 4101346.
91.Mirdamadi, E.; Tashman, J. W.; Shiwarski, D. J.; Palchesko, R. N.; Feinberg, A. W. FRESH 3D Bioprinting a Full-Size Model of the Human Heart, ACS Biomater. Sci. Eng. 2020, 6, 6453‒6459.
92.Gross, B. C.; Erkal, J. L.; Lockwood, S. Y.; Chen, C. P.; Spence, D. M. Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences, Anal. Chem. 2014, 86, 3240‒3253.
93.http://www.custompartnet.com/wu/fused-deposition-modeling
94.Liu, K.; Li, Y, Y.; Tao, L.; Xiao, R. Preparation and Characterization of Polyamide 6 Fibre Based on A Phosphorus-containing Flame Retardant, RSC Adv. 2018, 8, 9261–9271.
95.McCafferty, E. Relationship between the Isoelectric Point (pHpzc) and the Potential of Zero Charge (Epzc) for Passive Metals, Electrochim. Acta 2010, 55, 1630‒1637.
96.Kosmulski, M. Isoelectric Points and Points of Zero Charge of Metal (hydr)oxides: 50 Years after Parks' Review, Adv. Colloid Interface Sci. 2016, 238, 1‒61.
97.Gustafsson, J. P.; Visual MINTEQ, version 3.1; department of land and water Resources engineering, KTH (royal Institute of Technology): Stockholm.
98.Parks, G. A.; The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems, Chem. Rev., 1965, 65, 177–198.
99.Tušek, L.; Nitschke, M.; Werner, C.; Stana-Kleinschek, K.; Ribitsch, V. Surface Characterisation of NH3 Plasma Treated Polyamide 6 Foils, Colloid Surf. A-Physicochem. Eng. Asp. 2001, 195, 81–95.
100.Rahmi, D.; Takasaki, Y.; Zhu, Y.; Kobayashi, H.; Konagaya, S.; Haraguchi, H.; Umemura, T. Preparation of Monolithic Chelating Adsorbent inside a Syringe Filter Tip for Solid Phase Microextraction of Trace Elements in Natural Water Prior to Their Determination by ICP-MS, Talanta 2010, 81, 1438–1445.
101.Zhang, L.; Chen, B.; Peng, H. Y.; He, M.; Hu, B. Aminopropyltriethoxysilane-Silica Hybrid Monolithic Capillary Microextraction Combined with Inductively Coupled Plasma Mass Spectrometry for the Determination of Trace Elements in Biological Samples, J Sep Sci. 2011, 34, 16–17.
102.Suo, F.; Chen, B.; He, M.; Hu, B. Monolithic Capillary Microextraction on-line Combined with ICP-MS for Determining Ni, Cu and Cd in Biological Samples, Anal. Methods, 2016, 8, 4680–4688.
103.Liu, J. M.; Wang, X. Z.; Zhao, C. Y.; Hao, J. L.; Fang, G. Z.; Wang, S. Fabrication of Porous Covalent Organic Frameworks as Selective and Advanced Adsorbents for the on-line Preconcentration of Trace Elements Against the Complex Sample Matrix, J. Hazard. Mater. 2018, 344, 220–229.
104.Liu, X.; Chen, B.; Zhang, L.; Song, S.; Cai, Y.; He, M.; Hu, B. TiO2 Nanoparticles Functionalized Monolithic Capillary Microextraction Online Coupled with Inductively Coupled Plasma Mass Spectrometry for the Analysis of Gd Ion and Gd-Based Contrast Agents in Human Urine, Anal. Chem. 2015, 87, 8949−8956.
105.Chen, Z.; Chen, B.; He, M.; Hu, B.; Magnetic Metal-Organic Framework Composites for Dual-Column Solid-Phase Microextraction Combined with ICP-MS for Speciation of Trace Levels of Arsenic, Microchim. Acta 2018, 187, 48.
106.Zhang, J.; Chen, B.; Wang, H.; He, M.; Hu, B. Facile Chip-Based Array Monolithic Microextraction System Online Coupled with ICPMS for Fast Analysis of Trace Heavy Metals in Biological Samples, Anal. Chem. 2017, 89. 6878−6885.
107.Kosmulski, M. The Significance of the Difference in the Point of Zero Charge between Rutile and Anatase, Adv. Colloid Interface Sci. 2002, 99, 255−264.
108.Yang, Y. N.; Zhang, H. X.; Wang, P.; Zheng, Q. Z.; Li, J. The Influence of Nano-sized Tio2 Fillers on the Morphologies and Properties of PSFUF Membrane, J. Membr. Sci. 2007, 288, 231−238.
109.Hayes, K. F.; Roe, A. L.; Brown, G. E.; Hodgson, K. O.; Leckie, J. O.; Parks, G. A. In Situ X-ray Absorption Study of Surface Complexes: Selenium Oxyanions on α-FeOOH, Science 1987, 238, 783−786.
110.Zhang, Y.; Chen, B. B.; Wu, S. W.; He, M.; Hu, B. Graphene Oxide TiO2 Composite Solid Phase Extraction Combined with Graphite Furnace Atomic Absorption Spectrometry for the Speciation of Inorganic Selenium in Water Samples, Talanta 2016, 154, 474−480.
111.Milacic, R.; Scancar, J. Cr Speciation in Foodstuffs, Biological and Environmental Samples: Methodological Approaches and Analytical Challenges - A Critical Review, Trac–Trend. Anal. Chem. 2020, 127, 115888.
112.Pena, M. E.; Korfiatis, G. P.; Patel, M.; Lippincott, L.; Meng, X. G. Adsorption of As(V) and As(III) by Nanocrystalline Titanium Dioxide, Water Res. 2005, 39, 2327−2337.
113.Wang, C.; He, M.; Chen, B. B.; Hu, B. Polymer Monolithic Capillary Microextraction On-line Coupled with ICP-MS for Determination of Inorganic Selenium Species in Natural Waters, Talanta 2018, 188, 736−743.
114.Zhang, Y.; Chen, B. B.; Wu, S. W.; He, M.; Hu, B. Graphene Oxide–TiO2 Composite Solid Phase Extraction Combined with Graphite Furnace Atomic Absorption Spectrometry for the Speciation of Inorganic Selenium in Water Samples, Talanta 2016, 154, 474−480.
115.Huang, C. Z.; Hu, B.; He, M.; Duan, J. K. Organic and Inorganic Selenium Speciation in Environmental and Biological Samples by Nanometer-sized Materials Packed Dual-column Separation/Preconcentration On-line Coupled with ICP-MS, J. Mass Spectrom. 2008, 43, 336−345.
116.Liang, P.; Shi, T. Q.; Lu, H. B.; Jiang, Z. C.; Hu, B. Speciation of Cr(III) and Cr(VI) by Nanometer Titanium Dioxide Micro-column and Inductively Coupled Plasma Atomic Emission Spectrometry, Spectroc. Acta Pt. B-Atom. Spectr. 2003, 9, 1709−1714.
117.Li, P.; Chen, Y. J.; Lian, H. Z.; Hu, X. A Centrifugal Microfluidic Platform Integrating Monolithic Capillary Columns for High-throughput Speciation of Chromium, J. Anal. At. Spectrom. 2014, 29, 1785−1790.
電子全文 電子全文(網際網路公開日期:20270719)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊