跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/17 18:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林靖原
研究生(外文):Ching-Yuan Lin
論文名稱:結合水熱及熱氨法製備鈣鈦礦結構鑭鎢氮氧化物及其光電化學性質研究
論文名稱(外文):Hydrothermal and Ammonia Thermolysisof Perovskite-Structured LaWO0.6N2.4for Photoelectrochemistry
指導教授:曾文甲
指導教授(外文):Wenjea J. Tseng
口試委員:向性一陳良益
口試日期:2022-07-19
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:50
中文關鍵詞:水熱法鈣鈦礦鑭鎢氮氧化物氮摻雜
外文關鍵詞:hydrothermalperovskitelanthanum tungsten oxynitridenitrogen doping
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在以水熱法搭配熱氨法合成具有鈣鈦礦結構的鑭鎢氮氧化物LaWO0.6N2.4 (LWON),藉由控制水熱溫度在100~180度間且pH值維持在8左右,再於氨氣氣氛熱處理900 ℃獲得LWON粉體。X光繞射儀結果顯示在使用的水熱溫度皆獲得LWON純相。在電化學量測方面,由循環伏安分析可得知,LWON的氧化還原峰特徵,其氧化峰電位為0.282V,還原峰電位為0.141V;以紫外光作為光源,激發LWON後的光電流約為0.105μA/cm2並不顯著,推測為LWON內部電子電洞再結合速率過快,導致紫外光激發之電子電洞對無法到達材料表面。將LWON電極摻雜不同導電顆粒(包含Au、Ag、Pt、graphene等),從光電流測試中可得到,在表面摻雜Pt、Au後的光電流分別為4.31μA/cm2及4.85μA/cm2,表示摻雜Pt及Au有助於提升光電流;交流阻抗分析結果顯示,表面摻雜Au的LWON電極之電子轉移電阻值約為16.03 ohm,而表面摻雜Pt的LWON電極之約為15.61 ohm,比未添加前的20.21 ohm有更小的電子轉移電阻值。
為了增加鑭鎢氮氧化物中氮原子的比例,吾人藉由兩種不同的方法進行氮摻雜,方法一為取0.1g在180度下以水熱法合成的鑭鎢氮氧化物前驅物與不同氮來源組成的混合溶液(包括:Diethylamine (DEA),Ethylenediamine(EDA),Methylamine(MA),Ammonia(A),Ethanolamine(ETA)),於120度進行二次水熱反應;方法二為合成鑭鎢氮氧化物前驅物的同時加入不同氮來源組成的混合溶液,在180度下以水熱法製備LaWO0.6-XN2.4+X。由XRD晶相分析發現方法1及方法2得到的水熱產物經過熱氨處理後,主相仍為LWON,但方法2摻雜EDA、MA及A的LWON有一些未知的中間相,在光電流量測中,以方法2摻雜ETA的LWON有最佳的表現,光電流約為1.04μA/cm2。接著摻雜ETA為主要氮來源,按照方法2的製備方式,調整水熱溫度及濃度,從X光繞射儀的結果顯示,改變水熱溫度對於整個製程沒有太大的影響。相反的,添加ETA的濃度從0.25M、0.5M、0.75M到1M後,LWON的繞峰值逐漸消失。從FE-SEM上可看出,形貌從0.25M的小消波塊狀、0.5M的大消波塊狀、0.75的消波塊狀及片狀的混合形貌到1M的板片狀,有極大的改變。從光電性質中,摻雜濃度為0.25M有最好的光電流效果,光電流約0.094μA/cm2。
This study prepares perovskite-structured lanthanum tungsten oxynitride LaWO0.6N2.4 (LWON) by hydrothermal method over a temperature range of 100 to 180 oC at pH about 8 followed then by ammonia heat-treatment at 900 oC. The XRD shows a pure LWON phase over the hydrothermal temperatures used. The polarization curve in cyclic voltammetry shows characteristic anodic and cathodic peaks at 0.282 and 0.141V, respectively. The photocurrent under UV irradiation is merely 0.105 µA/cm2. We suspect the recombination of electron-hole pairs predominates so that the carriers fail to reach the LWON surface. Doping of conductive nanoparticles (including Au, Ag, Pt, graphene) on the surface of LWON electrodes has been carried out; to which, the photocurrent increases from 0.105 to 4.31 µA/cm2 and 4.85µA/cm2 by doping Pt and Au, respectively. In parallel, the electrochemical impedance spectroscopy reveals that the charge transfer resistance decreases from 20.21 to 16.03 and 15.61 ohms, respectively. The Au- and Pt-loaded LWON show a reduced charge transfer resistance than the pure LWON without metal doping.
In order to increase the nitrogen content in the LWON to form LaWO0.6-XN2.4+X, we have carried out two different approaches. The first one involves a second hydrothermal reaction for the 180oC already prepared LWON precursors. We take 0.1 g of LWON precursor synthesized by the hydrothemal treatment at 180°C and then add different dopants including Diethylamine (DEA), Ethylenediamine (EDA), Methylamine (MA), Ammonia (A), Ethanolamine (ETA), respectively, for the second hydrothermal reaction at 120°C. The second approach carries out the hydrothermal treatment at 180°C using different dopants together with the LWON precursors. XRD diffraction reveals that the main phase of the hydrothermal products obtained by the above approaches after thermal ammonia treatment is the LWON monophase. In the photocurrent measurement, the LWON doped with ETA by method 2 has the best performance. The photocurrent is about 1.04μA/cm2. The ETA is then chosen as the main nitrogen source. We use the second approach, and adjust the hydrothermal temperature as well as the ETA concentration. Based on XRD results, changing the hydrothermal temperature has little effect on the reaction product. On the contrary, when the concentration of ETA was changed from 0.25 to 1M, the diffraction peak of LWON gradually disappears. The doping concentration of 0.25M has the best photoelectrochemical performance with a photocurrent of about 0.094μA/cm2.
摘要 i
Abstract ii
目次 iii
圖目次 v
表目次 vii
第一章 緒論 1
1-1前言 1
1-2研究動機 1
第二章 文獻回顧 2
2-1光電化學與電化學阻抗原理 2
2-2鈣鈦礦介紹 5
2-2-1 鈣鈦礦結構 5
2-3 氮氧化物鈣鈦礦 6
2-3-1氮氧化物鈣鈦礦介紹 6
2-3-2鈦基鈣鈦礦文獻 6
2-3-3鑭鎢鈣鈦礦 8
2-4 表面電漿共振之文獻整理 10
2-5 液相氮摻雜改質粉體之文獻整理 11
第三章 實驗流程與分析儀器介紹 14
3-1實驗藥品與製程設備 14
3-1-1實驗藥品 14
3-1-2 製程設備 14
3-1-3分析儀器 15
3-2實驗流程 16
3-2-1合成鑭鎢氮氧化物粉體 16
3-2-2球磨LWON粉體 17
3-2-3 氮摻雜合成LaWO0.6-XN2.4+X粉體 18
3-3 LWON的光電化學性質分析 20
3-3-1 LWON電極製備之光電化學性質量測 20
3-3-2摻雜不同導電粒子LWON之工作電極製作 22
3-3-3循環伏安法測試 (CV) 23
3-3-4交流阻抗分析 (EIS) 23
3-3-5 光電流測試 (Photocurrent) 24
第四章 結果與討論 25
4.1合成LWON之 XRD晶相分析及表面形貌分析 25
4-2 LWON之三電極電化學量測 27
4-2-1循環伏安法(CV) 27
4-2-2 光電流特性 (Photocurrent) 31
4-2-3 交流阻抗分析 (EIS) 33
4-3氮摻雜合成LaWO0.6-XN2.4+X粉體 35
4-3-1 氮摻雜合成LaWO0.6-XN2.4+X粉體之結構分析 35
4-3-2 EDS半定量元素分析與FE-SEM形貌觀察 36
4-3-3 LaWO0.6-XN2.4+X的光電流特性 38
4-4 改變水熱溫度對LaWO0.6-XN2.4+X摻雜ETA 40
4-4-1 改變水熱溫度對LaWO0.6-XN2.4+X摻雜ETA之XRD晶相分析 40
4-5 改變ETA摻雜濃度對LaWO0.6-XN2.4+X 41
4-5-1 改變ETA摻雜濃度對LaWO0.6-XN2.4+X之XRD分析 41
4-5-2 LaWO0.6-XN2.4+X摻雜不同濃度ETA樣品之EDS半定量及形貌分析 41
4-5-3 LaWO0.6-XN2.4+X摻雜不同濃度ETA樣品之光電化學量測 43
4-5-3-1 循環伏安法(CV) 43
4-5-3-2 光電流特性 44
4-5-3-3交流阻抗分析 45
第五章 結論 47
第六章 參考文獻 48
[1]M. O. Müller, A. Stämpfli, U. Dold, and T. Hammer, "Energy autarky: A conceptual framework for sustainable regional development," Energy Policy, vol. 39, no. 10, pp. 5800-5810, 2011.
[2]J. N. T. Bak, M. Rekas, C.C. Sorrell, "Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects," International Journal of Hydrogen Energy, vol. 27, pp. 991-1022, 2002.
[3]陳厚勛, 結合水熱及熱氨法製備鈣鈦礦結構鑭鎢氮氧化物及其光催化性質研究. 國立中興大學材料科學與工程學系碩士論文, 2020.
[4]T. Lopes, L. Andrade, H. A. Ribeiro, and A. Mendes, "Characterization of photoelectrochemical cells for water splitting by electrochemical impedance spectroscopy," International Journal of Hydrogen Energy, vol. 35, no. 20, pp. 11601-11608, 2010.
[5]K. H. Akira Fujishima "Electrochemical Photolysis of Water at a Semiconductor Electrode," Nature, vol. 238, pp. 37-38, 1972.
[6]R. van de Krol, Y. Liang, and J. Schoonman, "Solar hydrogen production with nanostructured metal oxides," Journal of Materials Chemistry, vol. 18, no. 20, 2008.
[7]J. R. Macdonald and W. B. Johnson, Impedance Spectroscopy: Theory, Experiment, and Applications, Second Edition John Wiley & Sons, Inc. 2005.
[8]L. Bertoluzzi and J. Bisquert, "Equivalent Circuit of Electrons and Holes in Thin Semiconductor Films for Photoelectrochemical Water Splitting Applications," J Phys Chem Lett, vol. 3, no. 17, pp. 2517-22, 2012.
[9]V. M. Goldschmidt, "Die Gesetze der Krystallochemie" Die Naturwissenschaften, vol. 14, pp. 477-485, 1926.
[10]C. Li, K. C. K. Soh, and P. Wu, "Formability of ABO3 perovskites," Journal of Alloys and Compounds, vol. 372, no. 1-2, pp. 40-48, 2004.
[11]Z.G.Ye, Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials: Synthesis, properties and applications. U.K.: Cambridge, 2008.
[12]A. Fuertes, "Synthetic approaches in oxynitride chemistry," Progress in Solid State Chemistry, vol. 51, pp. 63-70, 2018.
[13]K. N. Asako Kasahara, Go Hitoki, Tsuyoshi Takata, Junko N. Kondo, Michikazu Hara, Hisayoshi Kobayashi, and Kazunari Domen, "Photoreactions on LaTiO2N under Visible Light Irradiation," J. Phy. Chem. A, vol. 106,29, pp. 6750-6753, 2002.
[14]K. N. Asako Kasahara, T. Takata, J. Kondo, Michikazu Hara, Hisayoshi Kobayashi, K. Domen, "LaTiO2N as a Visible-Light (≧600 nm)-Driven Photocatalyst (2)," J.Phys.Chem.B, vol. 107, pp. 791-797, 2003.
[15]F. Zhang et al., "Cobalt-modified porous single-crystalline LaTiO2N for highly efficient water oxidation under visible light," J Am Chem Soc, vol. 134, no. 20, pp. 8348-51, 2012.
[16]P. A. P. Bacher, R.Marchand,P.L'Haridon,Y.Laurent ,G. Roult, "Time-of-flight neutron diffraction study of the structure of the perovskite-type oxynitride LaWO0.6N2.4," J. Sol. Chem, vol. 77, no. 1, pp. 67-71, 1988.
[17]R. Sarmiento-Pérez, T. F. T. Cerqueira, S. Körbel, S. Botti, and M. A. L. Marques, "Prediction of Stable Nitride Perovskites," Chemistry of Materials, vol. 27, no. 17, pp. 5957-5963, 2015.
[18]K. Kawashima et al., "Two-step synthesis and visible-light-driven photocatalytic water oxidation activity of AW(O,N)3 (A= Sr, La, Pr, Nd and Eu) perovskites," Journal of Catalysis, vol. 344, pp. 29-37, 2016.
[19]K. Kawashima et al., "Infrared Light-Driven LaW(O,N)3 OER Photoelectrocatalysts from Chloride Flux-Grown La4W3O15 Templating Precursors," ACS Applied Energy Materials, vol. 2, no. 1, pp. 913-922, 2018.
[20]Kevin R. Talley1, Craig L. Perkins1, D. R. D. , G. L. B. , *, and Andriy , and Zakutayev, "Synthesis of ferroelectric LaWN3 - the first nitride perovskite," 2021.
[21]W. Hou and S. B. Cronin, "A Review of Surface Plasmon Resonance-Enhanced Photocatalysis," Advanced Functional Materials, vol. 23, no. 13, pp. 1612-1619, 2013.
[22]Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, "Plasmon resonant enhancement of photocatalytic water splitting under visible illumination," Nano Lett, vol. 11, no. 3, pp. 1111-6, 2011.
[23]H. Duan and Y. Xuan, "Enhancement of light absorption of cadmium sulfide nanoparticle at specific wave band by plasmon resonance shifts," Physica E: Low-dimensional Systems and Nanostructures, vol. 43, no. 8, pp. 1475-1480, 2011.
[24]D. B. Ingram and S. Linic, "Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface," J Am Chem Soc, vol. 133, no. 14, pp. 5202-5, 2011.
[25]N. Bao, J. J. Niu, Y. Li, G. L. Wu, and X. H. Yu, "Low-temperature hydrothermal synthesis of N-doped TiO2 from small-molecule amine systems and their photocatalytic activity," Environ Technol, vol. 34, no. 21-24, pp. 2939-49, 2013.
[26]C. Liu et al., "Hydrothermal synthesis of N-doped TiO2 nanowires and N-doped graphene heterostructures with enhanced photocatalytic properties," Journal of Alloys and Compounds, vol. 656, pp. 24-32, 2016.
[27]X. Pan, Y. Zhao, S. Liu, C. L. Korzeniewski, S. Wang, and Z. Fan, "Comparing graphene-TiO(2) nanowire and graphene-TiO(2) nanoparticle composite photocatalysts," ACS Appl Mater Interfaces, vol. 4, no. 8, pp. 3944-50, 2012.
[28]K. Subramani, N. Sudhan, R. Divya, and M. Sathish, "All-solid-state asymmetric supercapacitors based on cobalt hexacyanoferrate-derived CoS and activated carbon," RSC Advances, vol. 7, no. 11, pp. 6648-6659, 2017.
[29]J. Yan et al., "Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density," Advanced Functional Materials, vol. 22, no. 12, pp. 2632-2641, 2012.
[30]A. Mohammadi, S. E. Moosavifard, A. Goljanian Tabrizi, M. M. Abdi, and G. Karimi, "Nanoporous CuCo2S4 Microspheres: A Novel Positive Electrode for High-Performance Hybrid Energy Storage Devices," ACS Applied Energy Materials, vol. 2, no. 1, pp. 627-635, 2018.
[31]S. F. Cogan, "Neural stimulation and recording electrodes," Annu Rev Biomed Eng, vol. 10, pp. 275-309, 2008.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊