跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/03/16 14:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:費郁宸
研究生(外文):Yu-Chen Fei
論文名稱:25-羥基維生素D對白肉雞抗熱緊迫效果之研究
論文名稱(外文):Evaluation of 25-hydroxycholecalciferol effects on anti-thermal stress in broilers
指導教授:陳洵一
指導教授(外文):Shuen-Ei Chen
口試委員:陳珠亮王建鎧
口試委員(外文):Chu-Liang ChenChien-Kai Wang
口試日期:2022-01-21
學位類別:碩士
校院名稱:國立中興大學
系所名稱:動物科學系所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:63
中文關鍵詞:白肉雞抗熱緊迫25-羥基維生素D食慾調控生長表現
外文關鍵詞:broilersanti-thermal stress25-hydroxycholecalciferolappetite regulationgrowth performance
相關次數:
  • 被引用被引用:2
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
Abstract ii
目次 iv
表目次 vi
圖目次 vii
壹、 前言 1
貳、 文獻探討 2
一、 熱緊迫 2
(一) 熱緊迫之定義 2
(二) 雞隻體溫調節 4
二、 下視丘與熱緊迫之調節 5
(一) 下視丘之位置、結構與功能 5
(二) 下視丘與體溫調節 8
(三) 下視丘與食慾調節 9
三、 熱緊迫對雞隻之影響 10
(一) 熱緊迫對雞隻之採食及生長之影響 10
(二) 熱緊迫對雞隻內分泌之影響 11
(三) 熱緊迫對雞隻代謝之影響 13
四、 Vitamin D 之代謝 15
五、 維生素D的傳統生理功能 17
(一) 維生素D對於骨骼形成的調節 17
(二) 維生素D對於骨骼吸收的影響 18
(三) 維生素D對於腸道的鈣吸收 19
六、 維生素D3與雞隻生長及免疫之關係 20
(一) 25-OH-D3對於雞隻生長及免疫之影響 20
(二) 25-OH-D3對於雞隻免疫及發炎之影響 20
七、 研究目的 21
參、 材料與方法 22
一、 實驗動物與飼養設計 22
(一) 動物來源與分組 22
(二) 熱緊迫處理 22
(三) 生長性狀紀錄 22
(四) 樣品採集 23
二、 維生素D來源與添加 23
三、 基礎生理指標之檢查 23
(一) 直腸溫度之紀錄 23
(二) 呼吸次數之測定 23
四、 血液生化分析 24
(一) 血液pH值測定 24
(二) 血漿中Sphingomyelin測定 24
(三) 血漿中內分泌之測定 24
五、 雞隻下視丘mRNA樣品製備與分析 27
(一) 組織mRNA萃取 27
(二) mRNA完整度測試 28
(三) cDNA之製備 28
(四) 引子設計及驗證 29
(五) 即時聚合酶連鎖反應 31
六、 統計分析 32
肆、 結果 33
一、 ROSS308白肉雞生長性狀 33
二、 AA白肉雞生長性狀 36
三、 ROSS308白肉雞直腸溫度 38
四、 ROSS308白肉雞呼吸速率 38
五、 ROSS308白肉雞血液pH值 41
六、 ROSS308白肉雞血漿中內分泌之分析 43
(一) 血漿中ACTH含量 43
(二) 血漿中corticosterone含量 44
(三) 血漿中T3與T4的含量 44
(四) 血漿中腎上腺素含量 47
(五) 血漿中sphingomyelin含量 47
七、 ROSS308白肉雞下視丘食慾相關基因表達量 50
伍、 討論 53
一、 不同形式維生素D對熱緊迫下白肉雞生長性狀之影響 53
二、 不同形式維生素D對熱緊迫下白肉雞體溫、呼吸與血液pH值之影響 54
三、 不同形式維生素D對熱緊迫下白肉雞內分泌之影響 55
四、 不同形式維生素D對熱緊迫下白肉雞食慾相關基因之調節 56
陸、 結論 57
柒、 參考文獻 58
施得恩、楊倫欣。 2014.。維生素d與人體健康。 內科學誌 25:250-260.
Almeida Moreira Leal, L. K., L. A. Lima, P. E. Alexandre de Aquino, J. A. Costa de Sousa, C. V. Jataí Gadelha, I. B. Felício Calou, M. J. Pereira Lopes, F. A. Viana Lima, K. R. Tavares Neves, G. Matos de Andrade, and G. Socorro de Barros Viana. 2020. Vitamin D (VD3) antioxidative and anti-inflammatory activities: Peripheral and central effects. Eur. J. Pharmacol. 879:173099.
Aslam, S. M., J. D. Garlich, and M. A. Qureshi. 1998. Vitamin d deficiency alters the immune responses of broiler chicks. Poult. Sci. 77:842-849.
Bar, A., M. Sharvit, D. Noff, S. Edelstein, and S. Hurwitz. 1980. Absorption and excretion of cholecalciferol and of 25-hydroxycholecalciferol and metabolites in birds. J. Nutr. 110:1930-1934.
Beckford, R. C., L. E. Ellestad, M. Proszkowiec-Weglarz, L. Farley, K. Brady, R. Angel, H.-C. Liu, and T. E. Porter. 2020. Effects of heat stress on performance, blood chemistry, and hypothalamic and pituitary mrna expression in broiler chickens Poult. Sci. 99:6317-6325.
Bernabucci, U., L. Basiricò, P. Morera, N. Lacetera, B. Ronchi, and A. Nardone. 2009. Heat shock modulates adipokines expression in 3T3-L1 adipocytes. J. Mol. Endocrinol. 42:139-147.
Buyse, J., E. Decuypere, L. Berghman, E. R. Kühn, and F. Vandesande. 1992. Effect of dietary protein content on episodic growth hormone secretion and on heat production of male broiler chickens. Br. Poult. Sci. 33:1101-1109.
Chou, P.-C., P.-C. Lin, S.-W. Wu, C.-K. Wang, T.-K. Chung, R. L. Walzem, L.-S. Lai, and S.-E. Chen. 2021. Differential modulation of 25-hydroxycholecalciferol on innate immunity of broiler breeder hens. Animals. 11:1742.
Chou, P.-C., Y.-H. Chen, T.-K. Chung, R. L. Walzem, L.-S. Lai, and S.-E. Chen. 2020. Supplemental 25-hydroxycholecalciferol alleviates inflammation and cardiac fibrosis in hens. Int. J. Mol. Sci. 21:8379.
Chou, S. H., T. K. Chung, and B. Yu. 2009. Effects of supplemental 25-hydroxycholecalciferol on growth performance, small intestinal morphology, and immune response of broiler chickens. Poult. Sci. 88:2333-2341.
Christakos, S., P. Dhawan, A. Porta, L. J. Mady, and T. Seth. 2011. Vitamin D and intestinal calcium absorption. Mol. Cell. Endocrinol. 347:25-29.
de Guia, R. M., A. J. Rose, and S. Herzig. 2014. Glucocorticoid hormones and energy homeostasis. Horm. Mol. Biol. Clin. Investig. 19:117-128.
Dennis, R. L. 2016. Adrenergic and noradrenergic regulation of poultry behavior and production. Domest. Anim. Endocrinol. 56:94-100.
Du, J., X. Wei, X. Ge, Y. Chen, and Y. C. Li. 2017. Microbiota-dependent induction of colonic Cyp27b1 is associated with colonic inflammation: Implications of locally produced 1,25-dihydroxyvitamin D3 in inflammatory regulation in the colon. Endocrinology. 158:4064-4075.
Felver-Gant, J. N., L. A. Mack, R. L. Dennis, S. D. Eicher, and H. W. Cheng. 2012. Genetic variations alter physiological responses following heat stress in 2 strains of laying hens. Poult. Sci. 91:1542-1551.
Gabriela Pop, M., C. Crivii, and I. Opincariu. 2018. Anatomy and function of the hypothalamus. In Hypothalamus in health and diseases. J. B. Stavros and G. Jan Oxholm, ed. Intech Open, London.
Gogoi, S., G. Kolluri, J. S. Tyagi, G. Marappan, K. Manickam, and R. Narayan. 2021. Impact of heat stress on broilers with varying body weights: Elucidating their interactive role through physiological signatures. J. Therm. Biol. 97:102840.
He, X., Z. Lu, B. Ma, L. Zhang, J. Li, Y. Jiang, G. Zhou, and F. Gao. 2019. Chronic heat stress alters hypothalamus integrity, the serum indexes and attenuates expressions of hypothalamic appetite genes in broilers. J. Therm. Biol. 81:110-117.
Herwig, A., A. W. Ross, K. N. Nilaweera, P. J. Morgan, and P. Barrett. 2008. Hypothalamic thyroid hormone in energy balance regulation. Obes. Facts. 1:71-79.
Hewison, M. 2010. Vitamin D and the intracrinology of innate immunity. Mol. Cell. Endocrinol. 321:103-111.
Ito, K., M. A. Bahry, Y. Hui, M. Furuse, and V. S. Chowdhury. 2015. Acute heat stress up-regulates neuropeptide y precursor mrna expression and alters brain and plasma concentrations of free amino acids in chicks. Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 187:13-19.
Kormos, V., and B. Gaszner. 2013. Role of neuropeptides in anxiety, stress, and depression: From animals to humans. Neuropeptides. 47:401-419.
Lara, L. J., and M. H. Rostagno. 2013. Impact of heat stress on poultry production. Animals. 3:356-369.
Lei, L., L. Hepeng, L. Xianlei, J. Hongchao, L. Hai, A. Sheikhahmadi, W. Yufeng, and S. Zhigang. 2013. Effects of acute heat stress on gene expression of brain–gut neuropeptides in broiler chickens (Gallus gallus domesticus). J. Anim. Sci. 91:5194-5201.
Lin, H., E. Decuypere, and J. Buyse. 2006. Acute heat stress induces oxidative stress in broiler chickens. Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 144:11-17.
Lin, H.-Y., T. K. Chung, Y.-H. Chen, R. L. Walzem, and S.-E. Chen. 2019. Dietary supplementation of 25-hydroxycholecalciferol improves livability in broiler breeder hens. Poult. Sci. 98:6108-6116.
Liu, L., Z. Song, H. Jiao, and H. Lin. 2014. Glucocorticoids increase npy gene expression via hypothalamic ampk signaling in broiler chicks. Endocrinology. 155:2190-2198.
Ma, B., L. Zhang, J. Li, T. Xing, Y. Jiang, and F. Gao. 2021. Heat stress alters muscle protein and amino acid metabolism and accelerates liver gluconeogenesis for energy supply in broilers. Poult. Sci. 100:215-223.
Magomedova, L., and C. L. Cummins. 2016. Glucocorticoids and metabolic control. In: S. Herzig, editor, Metabolic control. Springer International Publishing, Cham. p. 73-93.
Morera, P., L. Basiricò, K. Hosoda, and U. Bernabucci. 2012. Chronic heat stress up-regulates leptin and adiponectin secretion and expression and improves leptin, adiponectin and insulin sensitivity in mice. J. Mol. Endocrinol. 48:129-138.
Morton, G. J., D. E. Cummings, D. G. Baskin, G. S. Barsh, and M. W. Schwartz. 2006. Central nervous system control of food intake and body weight. Nature. 443:289-295.
Nakamichi, Y., N. Udagawa, T. Suda, and N. Takahashi. 2018. Mechanisms involved in bone resorption regulated by vitamin D. J. Steroid Biochem. Mol. Biol. 177:70-76.
Nakao, N., H. Ono, and T. Yoshimura. 2008. Thyroid hormones and seasonal reproductive neuroendocrine interactions. Reproduction. 136:1-8.
Nawab, A., F. Ibtisham, G. Li, B. Kieser, J. Wu, W. Liu, Y. Zhao, Y. Nawab, K. Li, M. Xiao, and L. An. 2018. Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. J. Therm. Biol. 78:131-139.
Norman, A. W., J. Roth, and L. Orci. 1982. The vitamin D endocrine system: Steroid metabolism, hormone receptors, and biological response (calcium binding proteins). Endocr. Rev. 3:331-366.
oacute, G. mez-Verduzco, L. Morales, oacute, R. pez, G. Avila, agrave, and E. lez. 2013. Use of 25-hydroxycholecalciferol in diets of broiler chickens: Effects on growth performance, immunity and bone calcification. J. Poult. Sci. 50:60-64.
Prokoski, K., L. C. Bittencourt, L. V. Teixeira, C. Bortoluzzi, E. Vanroo, S. Palma, and J. I. M. Fernandes. 2021. Classic and non-classic effects of the duration of supplementation of 25-hydroxicholecalciferol in broiler chicken diets. Animals. 11:2971.
Quinteiro-Filho, W. M., A. Ribeiro, V. Ferraz-de-Paula, M. L. Pinheiro, M. Sakai, L. R. M. Sá, A. J. P. Ferreira, and J. Palermo-Neto. 2010. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poult. Sci. 89:1905-1914.
Rodriguez-Lecompte, J. C., A. Yitbarek, T. Cuperus, H. Echeverry, and A. van Dijk. 2016. The immunomodulatory effect of vitamin D in chickens is dose-dependent and influenced by calcium and phosphorus levels. Poult. Sci. 95:2547-2556.
Schwartz, M. W., S. C. Woods, D. Porte, R. J. Seeley, and D. G. Baskin. 2000. Central nervous system control of food intake. Nature. 404:661-671.
Shakeri, M., J. J. Cottrell, S. Wilkinson, H. H. Le, H. A. R. Suleria, R. D. Warner, and F. R. Dunshea. 2019. Growth performance and characterization of meat quality of broiler chickens supplemented with betaine and antioxidants under cyclic heat stress. Antioxidants. 8:336.
Siddiqui, S. H., D. Kang, J. Park, M. Khan, S. A. Belal, D. Shin, and K. Shim. 2021. Altered relationship between gluconeogenesis and immunity in broilers exposed to heat stress for different durations. Poult. Sci. 100:101274.
Sisley, S. R., D. M. Arble, A. P. Chambers, R. Gutierrez-Aguilar, Y. He, Y. Xu, D. Gardner, D. D. Moore, R. J. Seeley, and D. A. Sandoval. 2016. Hypothalamic vitamin D improves glucose homeostasis and reduces weight. Diabetes 65:2732-2741.
Strominger, N. L., R. J. Demarest, and L. B. Laemle. 2012. Hypothalamus. Page 363 in Noback's human nervous system. 7th ed. Humana, Totowa, NJ.
Tao, X., Z. Y. Zhang, H. Dong, H. Zhang, and H. Xin. 2006. Responses of thyroid hormones of market-size broilers to thermoneutral constant and warm cyclic temperatures. Poult. Sci. 85:1520-1528.
Toyomizu, M., M. Tokuda, A. Mujahid, and Y. Akiba. 2005. Progressive alteration to core temperature, respiration and blood acid-base balance in broiler chickens exposed to acute heat stress. J. Poult. Sci. 42:110-118.
van Driel, M., and J. P. T. M. van Leeuwen. 2014. Vitamin D endocrine system and osteoblasts. BoneKEy Rep. 3:493-493.
van Driel, M., and J. P. T. M. van Leeuwen. 2017. Vitamin D endocrinology of bone mineralization. Mol. Cell. Endocrinol. 453:46-51.
Vazquez, J. R., G. V. Gómez, C. C. López, A. C. Cortés, A. C. Díaz, S. R. T. Fernández, E. M. Rosales, and A. G. Avila. 2018. Effects of 25-hydroxycholecalciferol with two D3 vitamin levels on production and immunity parameters in broiler chickens. J. Anim. Physiol. Anim. Nutr. 102:493-497.
Virden, W. S., and M. T. Kidd. 2009. Physiological stress in broilers: Ramifications on nutrient digestibility and responses. J. Appl. Poult. Res. 18:338-347.
Wu, S., A. P. Liao, Y. Xia, Y. C. Li, J. D. Li, R. B. Sartor, and J. Sun. 2010. Vitamin D receptor negatively regulates bacterial-stimulated NF-κB activity in intestine. Am. J. Pathol. 177:686-697.
Xu, Y., X. Lai, Z. Li, X. Zhang, and Q. Luo. 2018. Effect of chronic heat stress on some physiological and immunological parameters in different breed of broilers. Poult. Sci. 97:4073-4082.
Youssef, A., V. Exadaktylos, and D. A. Berckmans. 2015. Towards real-time control of chicken activity in a ventilated chamber. Biosyst. Eng. 135:31-43.
Yunianto, V. D., K. Higuchi, A. Ohtsuka, and K. Hayashi. 1998. Effect of environmental temperature on plasma levels of catecholamines in pair-fed broiler chickens. Japanese poultry science 35:1-8.
Zeng, Z. K., Q. Y. Li, X. S. Piao, J. D. Liu, P. F. Zhao, X. Xu, S. Zhang, and S. Niu. 2014. Forsythia suspensa extract attenuates corticosterone-induced growth inhibition, oxidative injury, and immune depression in broilers. Poult. Sci. 93:1774-1781.
Zhang, H., M. Majdeddin, D. Gaublomme, B. Taminiau, M. Boone, D. Elewaut, G. Daube, I. Josipovic, K. Zhang, and J. Michiels. 2021. 25-hydroxycholecalciferol reverses heat induced alterations in bone quality in finisher broilers associated with effects on intestinal integrity and inflammation. J. Anim. Sci. Biotechnol. 12:104.
Zhao, Z.-D., W. Z. Yang, C. Gao, X. Fu, W. Zhang, Q. Zhou, W. Chen, X. Ni, J.-K. Lin, J. Yang, X.-H. Xu, and W. L. Shen. 2017. A hypothalamic circuit that controls body temperature. Proc. Natl. Acad. Sci. U. S. A. 114:2042-2047.
Zheng, H.-T., Z.-X. Zhuang, C.-J. Chen, H.-Y. Liao, H.-L. Chen, H.-C. Hsueh, C.-F. Chen, S.-E. Chen, and S.-Y. Huang. 2021. Effects of acute heat stress on protein expression and histone modification in the adrenal gland of male layer-type country chickens. Sci. Rep. 11:6499.
電子全文 電子全文(網際網路公開日期:20250401)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊