跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/19 14:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李伊樺
研究生(外文):Yi-Hua Li
論文名稱:以CFD探討飛機及其輔助翼在高攻角下之流場現象
論文名稱(外文):The investigation of the flow field of aircraft and it’s strake at high angle of attack by CFD
指導教授:王威翔
指導教授(外文):Wei-Hsiang Wang
口試委員:蔣雅郁李崇綱
口試日期:2022-01-12
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:90
中文關鍵詞:計算流體力學翼型輔助翼升力係數
外文關鍵詞:CFDairfoilstrakelift coefficient
相關次數:
  • 被引用被引用:0
  • 點閱點閱:343
  • 評分評分:
  • 下載下載:65
  • 收藏至我的研究室書目清單書目收藏:0
本研究以計算流體力學軟體ANSYS CFX來進行模擬,探討飛機輔助翼在不同翼型下的流場現象及升力係數的變化為目的。比對標準是NASA標準風洞模型TP-1803模型以及編號AD17輔助翼的翼實驗數據。過程分為三個部分,驗證模擬數據、修改翼型並依照相同網格配置增建模型、各個模型模擬數據比對,研究主翼翼型由Biconvex改為NACA 64-206流場改變現象。本次研究製作了四種模型進行模擬,首先利用模型A、模型B(加了AD17輔助翼)驗證了實驗數據的結果,接著換NACA 64-206翼型的模型C、模型D(加了AD17輔助翼)模擬結果也符合預期結果,模型C與模型A在攻角2度時,升力增加69%,在升力線性增加區域,升力約增加15%,失速後的升力約增加8%。模型D與模型B在攻角2度時,升力增加67%,在攻角16度到攻角28度區域升力增加的量最少約2%,在CL,max的區域,增加約8%。雖然本次研究只有模擬馬赫數0.2的低速,翼型對輔助翼的影響和升力增加的趨勢,皆能夠提供給未來飛機發展做一個參考,也能夠當作未來高馬赫數分析的基準。
In this study, the Computational Fluid Dynamics (CFD) software ANSYS CFX was used to simulate the flow field and lift coefficient (CL) of the strake under different airfoils, in contrast with the NASA standard wind tunnel model TP-1083 and the experimental data of the strake numbered AD17. The research was divided into three process, verifying the simulation data, modifying the airfoil depending on same grid configuration for new cases, and comparing the simulation data of each model, to study the flow field phenomenon of the main wing airfoil from Biconvex to NACA 64-206.
In this study, four models were established for simulation. At first, model A and model B(with AD17 strake) were used to verify the results of the experimental data. Then it comes to the simulation results of model C and model D (with AD17 strake), which also comply with the expected consequences. When the angle of attack (AOA) were at 2 degrees, the lift of model C is increased by 69% compared with model A. In addition, in the region where lift linearly increased, the lift rose up about 15%, while the lift after stall rising up about 8%. When the angle of attack (AOA) were at 2 degrees, the lift of model D is increased by 69% compared with model B. In the region from 16~28 degrees, the lift increased the least, only about 2%, while at the region of CL,max, increased about 8%. Although this study only simulates at a low speed of 0.2 Mach, the influence of the airfoil on strake and the trend of increase on lift could be taken as references for future aircraft development, and also as a basis for high Mach number analysis.
摘要 i
Abstract ii
目次 iii
表目次 v
圖目次 vi
符號索引 xi
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.2.1 渦流升力的發展 1
1.2.2 渦流升力輔助翼 6
1.3 研究動機與目的 7
1.4 研究方法 8
第二章 物理模式 9
2.1 統御方程式 9
2.2 研究模型 10
第三章 數值模擬 12
3.1 紊流模型 12
3.1.1 k-ε模型 13
3.1.2 Wilcox k-ω模型 14
3.1.3 Menter k-ω Baseline (BSL)模型 15
3.1.4 Menter k-ω Shear Stress Transport (SST)模型 17
3.2 雷諾數 17
3.3 升力係數 18
3.4 軟體設定 19
第四章 網格獨立性分析及數據驗證 20
4.1 模型型定義模擬矩陣 20
4.2 分析流程 21
4.3 模型A網格驗證 22
4.4 模型B網格驗證 33
第五章 計算結果 46
5.1 模型C分析結果 46
5.2 模型D分析結果 54
第六章 結論與討論 62
參考書目 63
附錄A 66
[1]NASA Glenn Research Center. https://www.grc.nasa.gov/www/k-12/airplane/lift1.html. 2021.12.20.
[2]NASA Glenn Research Center., https://www.grc.nasa.gov/www/k-12/airplane/incline.html. 2021.11.20.
[3]Edward C. Polhamus, Vortex lift research. 1986.
[4]Robert T. Jones, Wing pian forms for high-speed flight. 1945.
[5]Smithsonian National Air and Space Museum. https://airandspace.si.edu/collection-media/NASM-A19590098000cp05. 2021.11.20.
[6]Jr. and J. Calvin Lovell Herbert A. Wilson, Full-Scale Investigation of the Maximum Lift Flow Characteristics of an Airplane Having Approximately Triangular Planform. 1947.
[7]NASA. https://airandspace.si.edu/multimedia-gallery/11421hjpg. 1946.
[8]R. Legendre, Rolling up of vortex sheets from the edges of lifting surfaces. 1981.
[9]R. L. Maltby, The Development of the Slender Delta Concept. 1968.
[10]A. Busemann, Aerodynamic Lift at Supersonic Speeds. Luftfahrtforschung, 1935. 12(6): p. 210–220.
[11]S. Dollyhigh, Some trim drag considerations for maneuvering aircraft, in 2nd Aircraft Design and Operations Meeting. 1970.
[12]W. D. Bard N. S. Gowadia, and W. H. Wooten, YF-17/ADEN System Study. 1979.
[13]Linwood W. McKinney Edward J. Ray, and Julian G. Carmichael, Maneuver and Buffet Characteristics of Fighter Aircraft. 1973.
[14]John E. Lamar and Neal T. Frink, Experimental and Analytical Study of the Longitudinal Aerodynamic Characteristics of Analytically and Empirically Designed Strake-Wing Configurations at Subcritical Speeds. 1981.
[15]B.S. Baldwin and H. Lomax, Thin-layer approximation and algebraic model for separated turbulent flows. 1978.
[16]P. R. Spalart and S. R. Allmaras, A One-Equatlon Turbulence Model. 1992.
[17]B.E. LAUNDER and D.B. SPALDING, The numerical computation of turbulent flows. 1973.
[18]F. R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 1994. 32(8): p. 1598-1605.
[19]P. A. Durbin, On the k-ε Stagnation Point Anomaly. 1996.
[20]Chang Hwan Park and Seung O. Park, On the limiters of two-equation turbulence models. International Journal of Computational Fluid Dynamics, 2005. 19(1): p. 79-86.
[21]F. R. Menter, Zonal Two Equation k-w Turbulence Models For Aerodynamic Flows. 1993.
[22]D. A. Johnson and L. S. King, A mathematically simple turbulence closure model for attached and separated turbulent boundary layers. AIAA Journal, 1985. 23(11): p. 1684-1692.
[23]D.C Wilcox, Turbulence Modeling for CFD. 1993.
[24]David C. Wilcox, Multiscale model for turbulent flows. AIAA Journal, 1988. 26(11): p. 1311-1320.
[25]David C. Wilcox, Turbulence modeling for CFD. 2006.
[26]F. R. Menter, Influence of freestream values on k-omega turbulence model predictions. AIAA Journal, 1992. 30(6): p. 1657-1659.
[27]F. R. Menter, The SST Turbulence Model with Improved Wall Treatment. 2003.
[28]Florian R. Menter, Review of the shear-stress transport turbulence model experience from an industrial perspective. International Journal of Computational Fluid Dynamics, 2009. 23(4): p. 305-316.
[29]M.Z. Abdullah and J.K. Watterson K.A. Ahmad, Numerical modelling of a pitching airfoil. 2010.
[30]邱英吉、劉英俊、沈坤耀, 飛機高攻角氣動力特性之試驗探討. 1992.
[31]M. J. Liu, Z. Y. Lu, C. H. Qiu, W. H. Su, X. K. Gao, X. Y. Deng, and S. W. Xiong, Flow Patterns and Aerodynamic Characteristics of a Wing-Strake Configuration. Journal of Aircraft, 1980. 17(5): p. 332-338.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊